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1. Introduction. The purpose of this note is to give a
precise formulation of the correspondence principle between
classical and quantum mechanics, for the case of momentum
operators. (See e.g. I. Segal, Journ. Math. Phys. (1960), 475).

We follow Abraham - Marsden [1] for notation.

2. Induced Vectorfields. Let M be a manifold (con-
figuration space) and T¥M the cotangent bundle (phase space)
with the natural symplectic structure, [1, §14]. Classical mech-
anics deals with Hamiltonian vectorfields on T*M , while quantum
mechanics is concerned with linear operators on 7 (M), the
smooth functions on M . Notice that if X is a vectorfield on

M, then iLX may be regarded as a self adjoint opérator; (see

[1], exercises for §12).

PROPOSITION. If Ft is a flow on M, then F’: is a flow

on T*M .
Proof. Clearly F’: is a diffeomorphism and
® k¥ x
Frap = (Fo Pt = FreFy,

which proves the assertion [1, §10].

DEFINITION. If X is a vectorfield on M, with (local)
flow Ft let X* be the vectorfield on T*M generating F’: .

PROPOSITION. X is locally Hamiltonian [1, §16].
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Proof. From [1, §14], F': is a symplectic diffeomorphism,

and hence the corresponding vectorfield is locally Hamiltonian.

Thus we may write, locally, X* = XP for some smooth

function P .

3. Momentum Operators.

DEFINITION. Suppose X is a vectorfield on M with
corresponding vectorfield X* on T*M . Suppose that X*is
globally Hamiltonian. (It is easy to show that this always holds).

¥ X* = XP we say that P 1is the classical momentum corres-

ponding to the quantum operator iLX . (Lie derivative.)

PROPOSITION. Let f be a smooth function on M and
= p’l< f =fop , where p: T*M =M denotes the canonical pro-
jection. Then

f*

¥ tS
=L °f .
p" Lot = Lsp
This follows easily from the fact that
p¥(£9F ) = (PTE)oFY .
PROPOSITION. Restricted to functions on M, we have
(X} %5 1= [x,, %, T
12 12
for any two vectorfields X1 and X2 on M.

This follows immediately from the above proposition.

4. Correspondence Principle. Our main result may be
stated as follows:

THEOREM. Let P1 and PZ be classical momenta

corresponding to quantum operators iX'1 and iX_ respectively.

2
Then, restricting to functions on M , {Pi’Pz} (the classical

Poisson bracket) is the classical momentum corresponding to the
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quantum operator i[X1, X2] .
Proof. From [1, §14] we have L =-L ,
—_— X ,X X
o Xl X, gy

from which the result follows by the above proposition.

5. Position Operators. As we have seen, for each feJF(M)
there is associated f*s’&'(T*M) in a natural way. Interpreting f
as an operator on ¥ (M) , namely multiplication by f, we say
that f* is the corresponding classical position. The correspon-
dence principle extends to this case as follows:

THEOREM. If f,ge F(M) then {f*,g*} =0 is the
classical position corresponding to the operator [f,g] =0 .
(trivial.) If P is the classical momentum corresponding to a
vectorfield X on M, and fe F(M) then {P,f*} is the classi-
cal position corresponding to the operator -LXf = -X(f) .

Proof. From [1, §14], we have {P,f¥} = -L, £ =
P
—X*(f*) = - X(f)>:< ; the latter equality following from 3 above.

This proves the result.

Much of the above carries through for distributions (in the
sense of Schwartz) as well as that in [1]. These results will be
given in the near future [3].

6. Remarks. Itis shown in [1] that the usual linear and
angular momenta correspond to the linear and angular momentum
operators in quantum mechanics, in the sense we have defined
here. Hence it is no surprise that both satisfy the same commu-
tation rules. It is easy to see that P(am) =a - X(m) . See

Sternberg [4], p.146. This is exploited in [3].
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