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THE DUALITY BETWEEN FLOW CHARTS AND CIRCUITS

S. KASANGIAN AND R.F.C. WALTERS

This paper contains a precise description of the duality between the formal evo-
lutions of flow charts and of circuits. In addition, it contains a new description
of the free category-with-products on a multigraph as a familially representable
construction.

0. INTRODUCTION

If A is a set of elementary actions then the elements of the free monoid A* may
be thought of as formal evolutions of the set of actions. This can be generalised. Given
a graph G of elementary actions the arrows in the free category — with appropriate
structure — on G may again be thought of as the formal evolutions of the elementary
actions, taking into account the specificity of the graph.

This paper is concerned in particular with the formal evolution of both flow charts
and of digital circuits. The appropriate notion of graph in both cases is multigraph.
The formal evolutions of a flow chart are arrows in the free category-with-sums on
a multigraph; the formal evolutions of a circuit are arrows in the free category-with-
products on a multigraph.

As a result there is a precise categorical duality between the evolution of flow charts
and of circuits. Roughly speaking, this is the duality between terms and trees.

In addition to this duality theorem, we give a new description of the free category-
with-products on a multigraph. Diers [2] introduced the notion of alocally representable
functor, that is, a functor represented by a family of objects rather than one object.
Johnson and Walters, calling the notion instead familially representable functor, found
further examples (see [4], [5]). A simple example is the free-monoid functor. The family
of objects in this case is the natural numbers, and the free monoid on A may be thought
of as {n — Aj;n a natural number}. In section 5 we indicate that the free category-
with-products on a multigraph is similarly familially representable ~ an idea suggested
by the well-known description in terms of families of the free category-with-products
on a category.
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The importance in computer science of categories with sums, and with products,
has long been recognised — for example, Elgot in [3] treats flow charts in terms of
sums. However the analysis in terms of multigraphs and the resulting precise duality
mentioned above seems to be new. Note that understanding the formalevolution of flow
charts and circuits is the first stage towards understanding, and provides a language
for, actual evolution. Actual evolution involves models, categories which are not free,
and notions of time (see [8]).

1. FLOW CHARTS AND CIRCUITS AS MULTIGRAPHS

DEFINITION: A multigraph G is a finite family of finite sets Go,G;,--- ,G, and
G, together with, for each £k = 0,1,--- ,n, a family of functions dy,d;,--- ,dy : G —
G.. The elements of G| are called arrows, and the elements of G, are called objects.

EXAMPLE 1. Flow Charts.

In dealing with flow charts it is useful to represent the arrows of a multigraph in a
particular way — called the additive notation. If f € Gy and dof = X,d1f =Y1,d2f =
Yy,---,d,f =Y, wedenote f by f: X Y, +Y, +.--Y}.

Now, underlying a flow chart there is a multigraph. We illustrate with a simple
example.

Notice that we have given names to the edges of the flow-chart — these are objects
of the multigraph underlying the flowchart. There are four arrows in the multigraph:
frg,hk. In fact, Gy = {g,k}, G2 = {f,h},and f: X 5 Y +V,h:Z S5 Y +W,
9g: Yo Z, k: VoW,
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The additive notation is apt since, for example, the output state space of f isa
disjoint sum of the state spaces corresponding to the edges Y and V (see for example

[1])-

In dealing with circuits it is useful to represent the arrows of a multigraph in-
another way — called the multiplicative notation. If f €¢ G, and &yf = Y, d;f =
Xi1,d2f = X3,--- ,dpf = X we denote f by

f:Xl XX;X"'X];—'Y,

or more briefly f: X;X;--- X, - Y.
Now, underlying a circuit there is a multigraph. We illustrate with two simple

examples.

EXAMPLE 2. A combinatorial circuit.

X

Y

z

Notice that we have given names to the edges of the circuit - these are objects of
the multigraph underlying the circuit. There are two arrows in the multigraph: f,g.
In fact, G2 = {f,g},and f: X xY - U, g:UXxZ >V,

The multiplicative notation is apt since, for example, the input state space of f is
a product of the state spaces corresponding to the edges X and Y (see for example

(8])-

EXAMPLE 3. A circuit with feedback.

X

G-
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The multigraph corresponding to this circuit has four objects X,Y,U,V and two
arrows f: XV U, g:UY - V.

2. THE DUALITY THEOREM

The precise definition of free category-with-products FxG on multigraph G - as
well as a concrete description of it using terms - is given in [7]. After recalling this
definition briefly we will give the definition of free category-with-sums on a multigraph
and then prove the categorical duality at the basis of this paper.

Let CAT « be the 2-category of categories-with-products and the usual product-
preserving functors, and let MGPH be the category of multigraphs. In [7] a 2-functor
Ux : CAT x —» CAT(MGPH) is described. Then Fx G satisfies the universal property

CAT «(Fx G, C) ~ CAT(MGPH)(G, Uy C).

(C is a category with products; on the right-hand-side G is the multigraph regarded
as a discrete category object in MGPH.) That is, Fy is a partial left adjoint, in an
appropriate 2-dimensional sense, of U .

The definition of free category-with-sums is closely related. Let CAT ; be the 2-
category of categories-with-sums and the usual sum-preserving functors. Then the as-
signment to a category of its dual category is an isomorphism Z : CAT . — CAT? (the
dual obtained by reversing 2-cells), and it is also an isomorphism J : CAT(MGPH) —
[CAT(MGPH)]°?. Then define the forgetful 2-functor Uy : CAT; — CAT(MGPH)
by Ut = T 1 oUP o T; that is, U4 (C) = [Ux(C°?)]°?. Then the free category-with-
sums F,.G on multigraph G is defined by the universal property

CAT (F4+G,C) ~CAT(MGPH)(G,U;C).
(C is a category with sums; on the right-hand-side G is the multigraph regarded as a
discrete category object in MGPH.)

DuaLiTy THEOREM. F,G =~ (FG)*.

ProOF: The result is immediate from the definition of F; as a composite of F
with isomorphisms; to be specific we spell out the details.

CAT +(F4+G,C) ~ CAT(MGPH)(G,U;C)
=~ CAT(MGPH)(G?,(UxC°?)°?) (since G? = G)
= [CAT(MGPH)|°?(G,Ux CP)
= [CAT(MGPH)(G,Ux C?)]°P
~ [CAT «(Fx G, C°P)|°P
~ CAT P (Fx G,C°P)
= CAT ((FxG)*?,C).
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a

It is instructive to examine this duality at the level of arrows. Consider the classical
description of the free category-with-products Fx G on a multigraph G - see (7] for a
more details. Briefly, the objects of Fx G are words X; X3 -+ - X,, in the objects of G.
Now regard the arrows of the multigraph as function symbols. The arrows

D CP. CIERD. D €3 CRTED M

are n-tuples of terms buiit out of the function symbols, and with variables amongst the
variables z,, €3, -, z,.
For example, if G is the multigraph with objects X,Y,Z a1 o arrows f: X% —
Z,g9:YX — X then
f(z1,9(y,21)) : X3Y - Z

is an arrow of Fx G. This arrow might be more clearly denoted z = f(z1,9(y,z1)). By
the duality theorem, ;G has objects which are words in the objects of G, but now
we denote them additively. The arrows of G written additively are f : Z — X + X,
g: X -5 Y + X. The term we have just described is an arrow in 741G but in the
reverse direction

Z—-X+X+Y.

It is useful to use a different notation — reflecting the interpretation in Sets — for the
arrows as well as the objects, and to regard the arrow as a ‘tree of choices’ rather than

as a term.
z

LY}
KX
<

I

We write the arrow as:
either f(z) ==
or ( either g(f(z)) =y
or g(f(2)) ==).

You are meant to read this as follows. The arrow has three formulas depending on
where f and g land. Notice that the variables allow you to specify which copy of X
the arrow lands in.
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3. THE FORMAL EVOLUTION OF CIRCUITS

We hope to persuade you by some examples that it is appropriate to view the
arrows in the free category-with-products on the multigraph of a circuit as the formal

evolutions of the circuit.
ExAMPLE 1. Consider the circuit in section 1, example 2. We now think of the name

attached to an edge as the state space of the edge. Then the state space of the whole
circuit is X XY X Z x U x W, and hence an evolution of the whole circuit is an arrow

XYZUW - XYZUW.
Two examples in FxG are
(z,9,2, f(zay)’g(u1 z)) and
(z,¥, 2, f(z,9), 9(f(=,9),2)),
which clearly describe two possible evolutions of the circuit.
Of course the endomorphisms of XY ZUW are not the only arrows in FxG. For
example, there is exactly one arrow in Fx G from XY Z to W, namely
9(f(z,y),2) : XYZ - W.
Such an arrow is clearly important in the evolution of the circuit, and deserves to be
considered as an evolution of ‘parts’ of the circuit.
It is less clear that arrows which have a repetition of X,Y,Z,U or W in the domain
or codomain should be called evolutions of the circuit since they are not physically

realised; however, the necessity of the free category-with-products construction suggests
that they should also be included as evolutions.

ExAMPLE 2. Consider the circuit in section 1, example 3. The feedback in this circuit
is, to a first approximation, described by the arrows
a = (z,y, f(z,v),9(u,y)) : XYUV - XYUYV,
and aocoa, aocaoa,:--.
It can be better described by adding constants 0,1:1 — X, 0,1:1 — Y, to the
circuit. Then it is possible to describe phenomena which involve (externally) changing
the states of X and Y, and the order in which the atomic actions are applied. It is

instructive to consider the meaning of the following four different arrows from UV to

Uv:
(f(1,v),9(u,0))
(f(1,v),9(f(1,v),0))
(£(1,9(z,0)), 9(f(1,v),0))
(£(0,9(f(1,v),0)),9(f(1,9(x,0)),0)).
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4. THE FORMAL EVOLUTION OF FLOW CHARTS

We hope to persuade you that it is appropriate to regard the arrows in the free
category-with-sums on the multigraph of a flow chart as the formal evolutions of the
flow chart.

The free category-with-sums F; G on a multigraph G is the dual of FxG. As we
have mentioned we can interpret the arrows in the free category-with-sums are ‘trees
of choices’. Consider the flow chart in Section 1, Example 1. The state space of the
whole flow chart is X +Y + Z + V + W, so that evolutions of the whole flow chart
are endomorphisms of X +Y + Z + V + W. We give just one example of an a partial
evolution X - Y + W:

either {either [either A(g(h(g(f(2))))) =¥
or h(g(hg(f(2))))) = u]
or h(g(f(2))) = w}
or k(f(z)) =w.

5. A NEW DESCRIPTION OF THE FREE CATEGORY-WITH-PRODUCTS
ON A MULTIGRAPH

We give briefly a new description of the free categories-with-products functor
Fx : MGPH — CAT x CCAT,

in terms of the notion of ‘familially representable’ functors; further details are given in
[5]. In order to say when a functor F : C — CAT is familially representable we need the
notion of a ‘cocategory family’ in C. This is a category M (whose objects and arrows
we will denote m, n, p,---, f:m — n, g:n — p,--- ) and two families of objects of
C, namely I, (m an object of C) and Iy (f an arrow of C). In addition there are

various associated arrows of C, namely s8pm : Iy, = Ip, tn i In = Ip, i 1 1, — In,

and ¢y : Ijoy — Iy + I,. The idea is that s, t are cosource and cotarget maps, 1 is

n
coidentity, and ¢ is cocomposition. These data are required to satisfy obvious coidentity

and coassociativity laws.
Now given such a cocategory family in C and an object X of C thereis an induced
category with morphism set
> Homc(Iy, X)
f

and object set

> Homg(Inm, X).
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As we vary X we get a functor C — CAT ; any functor isomorphic to a functor induced
in such a way is called ‘familially representable’.

We claim that Fx is familially representable. Let us describe the appropriate
category M, and families I. Consider the multigraph T with one object X and, to
each natural number k one arrow p; : X¥ — X - that is, the terminal multigraph.
Let M be the free category-with-products on T. Its objects are powers of X; we
may identify X™ with m. An arrow from m (=X™) to n (=X™) is an n-tuple of
terms constructed using p’s and with variables out of z1,z2,--- ;2. Let I, be the
multigraph with m objects 1,2,--. ,m and no arrows. If f:m — n is an arrow in M
let Iy be the multigraph whose objects are the subterms of f, including all the variables
Z1,Z2,++ yZm, and whose arrows are u’s which build a subterm out of subterms one
level below. Note that each variable is counted only once as an object, whereas a
subterm is counted as many times as it occurs in f. For example, the multigraph
corresponding to the term

(k2(z2,21)), p2(21, p2(22,21)) : 3 — 2
has objects z;, z2, zs, two copies of pa(z2,z1), po(z1,p2(22,21)); and arrows

B2t TaZ1 = pa(22,21)

P2t T22y — po(2a, 1)

2 : 21p2(22,21) — pa(21, 2(22, 21))-
Now s,, takes k to z;, and t,, takes k to the k-th highest-level subterm. Composition
is the identity.

Roughly, the familial representability of Fx amounts to the fact that a general
term is a labelling of a term in M.

6. CONCLUSIONS

In view of the identification in Section 3, Section 4 of formal evolutions of flows
and circuits as arrows in certain free categories we are now able to interpret the duality
theorem of Section 2 as the category of formal evolutions of a circuit is the dual of the
category of formal evolutions of a flow chart with the same multigraph.

REMARK. Although circuits have been discussed entirely in terms of products (and
products are sufficient to understand their dynamics, see [8]), in fact the state space
of the simplest control line is 1 + 1 so that the control aspect of circuits is achieved
by sums which are not explicit in the multigraph. Similarly, although flow-charts have
been discussed entirely in terms of sums, in practice the state space of an edge of a flow
chart is a product not explicit in the multigraph. A richer theory, hinted at in {6] and
to be discussed in future papers, will make explicit both sums and products and the
relation between them.
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