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The principal stage in wind-wave generation
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The dynamics of wind-generated water waves in the principal stage of the Phillips
theory (Phillips, J. Fluid Mech., vol. 2, 1957, pp. 417–445) is investigated by a combined
numerical and analytical approach. We perform a number of high-resolution direct
numerical simulation (DNS) of turbulent wind over initially calm water to capture the
multistage generation of water waves. Detailed analyses are conducted to evaluate the
Phillips theory in both physical space and wavenumber space. Numerical evidence is
obtained for the existence of a principal stage when the surface elevation variance grows
linearly with time. We further propose a random sweeping turbulence pressure–wave
interaction model by introducing the random sweeping hypothesis of air pressure
fluctuations to the Phillips theory, and obtain an asymptotic solution of the mean square
of surface wave elevations over time. This asymptotic analysis captures the temporal
oscillations of surface elevation variance in the principal stage, which is also confirmed
by our DNS results. The wavenumber spectrum of surface wave elevations is analysed
using a time-dependent norm to elucidate the role of the resonance mechanism on wave
generation. In physical space, we use the random sweeping turbulence pressure–wave
interaction model to obtain a quantitative prediction of the growth rate of surface elevation
variance in the principal stage, which is found to agree with the DNS results better than
the original Phillips model.

Key words: wind-wave interactions, wave-turbulence interactions, gas/liquid flow

1. Introduction

The mechanism of how water surface waves are generated by wind forcing has been a
research topic of interest for decades. As early as 1956, Ursell (1956) pointed out that

‘Wind blowing over a water surface generates waves in the water by a physical process
which cannot be regarded as known. . . The real problem is then how to find the proper
simplifications. . . The present state of our knowledge is profoundly unsatisfactory’.
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Many theoretical, numerical and experimental studies on the dynamics of wind-wave
generation have been conducted over the past several decades. However, a full
understanding of the wind-wave-generation mechanism has not been obtained, including
in the initial stages of wave development. Owing to the randomness and smallness of
surface waves in the initial response to turbulent air motions, it was challenging to obtain
fine-resolution data until the recent growth in computer power and advances in experiment
techniques, which motivated systematic investigations and quantitative evaluations of
classical early-stage wave generation models.

Several theories have been proposed to explain the fundamental mechanism of
wind-wave generation. Jeffreys (1925, 1926) first proposed a separation sheltering theory
to explain wave growth, which assumes that wind generates separated flows over a wave
crest to induce a pressure difference between the windward and leeward sides of the wave
and leads to wind input to the wave. However, Jeffreys’ theory overestimates the air–water
momentum exchange (Stanton, Marshall & Houghton 1932). Approximately thirty years
later, two seminal theories were separately proposed by Miles (1957) and Phillips (1957)
on wind-wave generation. Miles (1957) assumed that the growth of a surface wave is
caused by an instability mechanism of the coupled air–water system and proposed a
quasi-linear theory, which predicts that the wave grows exponentially over time owing
to the shear instability associated with the critical layer where the speed of wind matches
the phase velocity of the wave. Phillips (1957) argued that the convection of air turbulence
pressure fluctuations at the water surface is responsible for early-stage wave generation and
proposed a stochastic model, which predicts that the mean square of surface elevations,
i.e. surface elevation variance, grows linearly with time. These two pioneering works
became cornerstones for the study of wind-wave generation and inspired many follow-up
works.

Miles (1957) assumed that there exists an initially prescribed monochromatic wave with
small steepness and applied the Rayleigh equation to a two-dimensional mean airflow.
He found that the energy transfer rate from the wind to the wave is proportional to the
curvature of the mean velocity profile at the critical layer. Later, Miles (1959) further
considered the complete Orr–Sommerfeld equation with viscous terms included and
found that the viscous effect on wave growth is insignificant. Laboratory experiments
(e.g. Shemdin & Hsu 1967; Wilson et al. 1973; Larson & Wright 1975) and ocean
field observations (e.g. Dobson 1971; Hristov, Miller & Friehe 2003; Grare, Lenain &
Melville 2013a) qualitatively confirmed Miles’ critical-layer theory (Miles 1957, 1959),
but discrepancies in the wave-growth rate remain between the theory and measurements.
The effects of wave-induced turbulence stress in the air boundary layer were further
considered to extend the Miles theory (e.g. Townsend 1972; Jacobs 1987; Van Duin &
Janssen 1992; Miles 1993). Belcher & Hunt (1993) applied the rapid distortion theory to
a four-layer asymptotic boundary layer structure above a slow-moving wave and proposed
the non-separated sheltering theory to explain the origin of the phase difference between
the wave and the pressure perturbation and the formation of the pressure-induced form
drag. Following the above theoretical developments, wave-induced turbulence structures
have been extensively studied numerically (e.g. Sullivan, McWilliams & Moeng 2000;
Kihara et al. 2007; Yang & Shen 2010; Hao & Shen 2019) and experimentally (e.g. Hsu,
Hsu & Street 1981; Grare et al. 2013b; Grare, Lenain & Melville 2018).

Unlike the Miles theory, in which the water wave is initially prescribed, the Phillips
theory focuses on how waves are generated from an initially flat water surface (Phillips
1957). Phillips conjectured that the convection of air pressure fluctuations plays an
essential role in the early stage of wind-wave generation. In this theory, the resonance
between waves and air pressure fluctuations leads to initial wave development, resulting
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Principal stage in wind-wave generation

in a quadratic growth of the surface elevation variance at certain wavenumbers satisfying
the resonance condition. This duration is referred to as the initial stage by Phillips (1957).
After the time far exceeds the development time of pressure fluctuations (see Phillips 1957,
p. 421), the surface elevation variance grows linearly with time. This stage is referred
to as the principal stage (Phillips 1957). The Phillips theory is based on Taylor’s frozen
hypothesis (Taylor 1938), which assumes that turbulent fluctuations are convected at a
certain velocity by the mean flow. Although the original frozen hypothesis only focuses
on turbulent velocity fluctuations, the convection of wall pressure fluctuations is also
validated through experiments (e.g. Farabee & Casarella 1991; Abraham & Keith 1998)
and numerical simulations (e.g. Choi & Moin 1990; Hu, Morfey & Sandham 2006). Based
on the linearised water wave equation, Phillips (1957) derived a stochastic second-order
ordinary differential equation for each wave elevation component in Fourier space. The
long-term asymptotic solution predicts that the mean square of wave elevations grows
linearly with the elapsed time t, and the expression is

〈η2〉 ∼ 〈p2〉t
2
√

2ρw2Upg
, (1.1)

where η is the wave surface elevation, p is turbulence pressure fluctuations of airflow
at the water surface, ρw is the water density, Up is the convection velocity of pressure
fluctuations, g is the gravitational acceleration and 〈·〉 denotes the spatial averaging
operator. It should be noted that (1.1) is not a quantitative prediction of the surface
elevation variance because Phillips used ‘a rough approximation’ to relate the integral
time scale of pressure fluctuations to the convection velocity (see Phillips 1957, p. 437).
Phillips (1957) assumed that the prefactor in (1.1) is 1 and conducted comparisons with
observations of wave fields (see Phillips 1957, § 4.3). The right-hand side of (1.1) is
referred to as the Phillips model for predicting the surface elevation variance in the
principal stage, which has been widely used as a quantitative prediction of wave growth
based on the Phillips theory (see e.g. Snyder & Cox 1966; Barnett & Wilkerson 1967;
Longuet-Higgins 1969; Lin et al. 2008; Paquier, Moisy & Rabaud 2016; Perrard et al.
2019). Lin et al. (2008) conducted direct numerical simulation (DNS) of wave generation
underneath a turbulent airflow and first captured the linear-growth rate in the principal
stage of the wave generation process. The authors compared their DNS result of 〈η2〉 with
the right-hand side of (1.1) and found that they are of the same order of magnitude.

The intensity of turbulent pressure fluctuations exerted on the water surface is usually
low, and thus, the Phillips theory is commonly believed to dominate wave evolution
only in the early development of wind waves. The quantification of small-amplitude
wave heights in experiments requires highly accurate instruments and can be complicated
by environmental noise. The direct measurement of pressure at the wave surface is
challenging, and the surface value of pressure is usually obtained by extrapolation
(see Peirson, Garcia & Pells 2003). Kawai (1979) studied the initial wave patterns
under wind forcing in a wave tank but did not observe the linear growth of surface
elevation variance. Kahma & Donelan (1988) discussed the possible relations between
experimentally observed initial excitations of water waves at low wind speed and the
resonance mechanism in the Phillips theory. Recently, Zavadsky & Shemer (2017) first
directly observed the linear growth of surface elevation variance in the principal stage
in a high-resolution laboratory experiment, which partially supported the Phillips theory.
However, the pressure fluctuations on the water surface cannot be accurately measured,
which poses challenges for a quantitative validation between the experimental data and
the theory.
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The theories of Phillips (1957) and Miles (1957) are based on two different wave
generation mechanisms. Miles (1960) combined these two mechanisms and pointed
out that the linear growth of surface elevation variance occurs in early wind-wave
development, while the exponential growth occurs in the late phase. However, a strict
classification of different wave growth stages has not yet been obtained. Lin et al. (2008)
observed the linear-growth stage and the exponential growth stage of waves in a DNS
study. Zavadsky & Shemer (2017) reported laboratory observations of the linear-growth
stage. Before the linear-growth stage, however, they also measured a period in which
the wave grows exponentially over time, which is not predicted by the Phillips theory.
Zonta, Soldati & Onorato (2015) numerically studied wave generation in a countercurrent
air–water turbulent flow and showed that the wave amplitude grows in time following a
power law, η ∝ t2/5. Paquier, Moisy & Rabaud (2015) experimentally studied the viscous
effect of wind-wave generation by controlling the kinematic viscosity of the mixture of
water and glycerol and showed that viscosity plays an important role in the formation
of small water wrinkles. Based on the experimental work of Paquier et al. (2015, 2016),
Perrard et al. (2019) proposed a spectral theory for the spatial-temporal evolution of
wrinkles under low wind conditions. Nové-Josserand et al. (2020) numerically studied
the effect of a weak current on wind-generated waves in the wrinkle regime. Recently,
Wu & Deike (2021) numerically investigated the growth rate of gravity–capillary waves in
the viscous regime. Comparisons between wave evolution in a wave-tank and numerical
model were conducted by Shemer, Singh & Chernyshova (2020) and Shemer & Singh
(2021). We note that the linear wave theory is adequate to describe the wave dynamics in
the early development of water waves when the wave amplitude is small. However, as the
wave amplitude grows over time, the importance of wave nonlinearity increases. Resonant
interactions can occur among a group of wave components for the wave energy of different
wave components to exchange, such as the four-wave resonant interaction in deep water
waves (see Hasselmann 1962, 1963).

Numerical simulations can provide detailed descriptions of the flow field, such as
the structures of turbulent pressure, shear stress and velocity fluctuations, and have
become a powerful tool for studying wind–wave interactions with the increasing capability
of computing power. Large-eddy simulation (LES) and DNS are common simulation
methods used in recent years to study the interactions between waves and turbulence.
LES computes the turbulent motions down to grid-sized scales and uses subgrid-scale
models to capture smaller-scale effects. Sullivan et al. (2008), Sullivan, McWilliams &
Patton (2014), Hara & Sullivan (2015), Sullivan et al. (2018), Zhang, Huang & Xu (2019),
Hao & Shen (2019), Åkervik & Vartdal (2019), Cao, Deng & Shen (2020) and Cao &
Shen (2021) performed LES over different wave surfaces. DNS simulates Navier–Stokes
equations directly and can resolve detailed turbulence structures at the cost of fine grid
resolutions. Sullivan et al. (2000), Kihara et al. (2007), Yang & Shen (2010, 2017) and
Druzhinin, Troitskaya & Zilitinkevich (2012) performed DNS of turbulent airflow over
prescribed monochromatic wave boundary. Coupled air–water simulations have also been
performed, usually focusing on the dynamics of irregular waves or scalar transfer (e.g.
Lin et al. 2008; Liu et al. 2009; Komori et al. 2010; Zonta et al. 2015; Kurose et al.
2016; Campbell, Hendrickson & Liu 2016). Compared with LES, the Reynolds number in
DNS is relatively low when resolving the Kolmogorov scale (Moin & Mahesh 1998). For
the study of the fundamental physical mechanisms of wind-wave generation occurring at
small scales, DNS is a suitable research tool.

The present study focuses on the principal stage in the Phillips theory. Using the
computational framework developed by Yang & Shen (2011a,b) and Xuan & Shen (2019),
we conduct high-resolution DNS for turbulent airflow-induced wave growth starting with
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Principal stage in wind-wave generation

Constant shear
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Figure 1. Configuration of the simulation set-up and sketch of the initial condition of shear-driven turbulent
airflow over an initially calm water surface.

a flat water surface. From the DNS results, we rigorously evaluate the Phillips theory in
the principal stage, show convincing numerical evidence on its existence, and perform
comprehensive analyses on the statistics of waves forced by wind. We further develop
a new random sweeping turbulence pressure–wave interaction model to quantitatively
predict the wave-growth rate in the principal stage, which shows substantial improvement
over the estimation by the Phillips model. The remainder of the paper is organised as
follows. In § 2, we introduce the problem set-up and simulation method. In § 3, we describe
the multiple stages of wind-wave generation in the DNS results. In § 4, we present a
theoretical framework of the closure model for wave generation in the principal stage
and derive an asymptotic solution of surface elevation variance. In § 5, we evaluate our
theoretical model with the DNS results. Conclusions are given in § 6.

2. Problem set-up and simulation cases

2.1. Problem set-up
Following Lin et al. (2008), we consider the canonical problem of a turbulent air Couette
flow over an initially flat water surface. The simulations are conducted in a horizontally
periodic rectangular domain, as shown in figure 1. To obtain the airflow with fully
developed turbulence as the initial condition, we perform a DNS for a turbulent air
shear-driven flow and keep the air–water interface flat and the water calm. Constant shear
stress is applied on the top of the air domain in the x-direction to drive the airflow. After
the turbulent airflow has reached a statistically steady state, we release the constraint of
the water surface and let the entire air–water system evolve dynamically. The water surface
deforms owing to the forcing by the turbulent motions of air to form waves. Details of the
computational cases are given in the following sections.

2.2. Governing equations and boundary conditions

2.2.1. Governing equations
We simulate the motions of air and water and focus on their hydrodynamic properties.
Air and water motions are governed by incompressible Navier–Stokes equations.
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The entire physical space can be split into a water domain and air domain, with their
adjacent boundary being the dynamically evolving air–water interface.

Cartesian coordinates (xa, ya, za) and (xw, yw, zw) are established in the air and water
domains, with the superscripts ‘a’ and ‘w’ representing the air and water domains,
respectively. When the superscript is not explicitly specified, the variables are for both
the air and the water domains. The coordinates are established such that the (x, y)
plane is horizontal and the z-axis denotes the vertical direction pointing upwards. The
two coordinates in the air and water domains are coincident with each other, and their
origins (x, y, z) = (0, 0, 0) are located on the plane of the mean water surface level. The
incompressible continuity and Navier–Stokes equations are

∂ua
i

∂xa
i

= 0 in Ωa, (2.1a)

∂ua
i

∂t
+
∂(ua

i ua
j )

∂xa
j

= − 1
ρa
∂pa

∂xa
i

+ νa ∂2ua
i

∂xa
j ∂xa

j
in Ωa, (2.1b)

∂uw
i

∂xw
i

= 0 in Ωw, (2.1c)

∂uw
i
∂t

+
∂(uw

i uw
j )

∂xw
j

= − 1
ρw
∂pw

∂xw
i

+ νw ∂
2uw

i
∂xw

j xw
j

in Ωw. (2.1d)

Here, ui(i = 1, 2, 3) = (u, v,w) are the velocity components in Cartesian coordinates, p
denotes the pressure and ν is the kinematic viscosity. The horizontal domain size for
both the air and water is Lx × Ly. The heights of the air domain Ha and water domain
Hw are defined as the distance from the mean level of the air–water interface to the
upper and lower boundaries, respectively, and we set Ha = Hw = H in this study. The
deviation of the local water surface height from its mean level is denoted as η(x, y, t).
Equations (2.1a) and (2.1b) are defined in the air domainΩa = {(x, y, z) | 0 ≤ x ≤ Lx, 0 ≤
y ≤ Ly, η(x, y, t) ≤ z ≤ H}, and (2.1c) and (2.1d) are defined in the water domain Ωw =
{(x, y, z) | 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly,−H ≤ z ≤ η(x, y, t)}. The closures of Ωa and Ωw are
time varying.

To accurately resolve the turbulence fluctuations near the air–water interface and
explicitly capture the deformation of the interface, we perform the DNS on a curved grid
that fits the dynamically evolving water surface (Yang & Shen 2011a,b; Xuan & Shen
2019). The flow solvers have been used and validated extensively in previous studies (Yang
& Shen 2010; Yang, Meneveau & Shen 2013, 2014a,b; Hao & Shen 2019; Xuan & Shen
2019; Cao et al. 2020; Xuan, Deng & Shen 2020; Cao & Shen 2021). In the present study,
the air and water domains are discretised on a wave-surface-fitted curvilinear grid. The
discrete incompressible Navier–Stokes equations are solved in the air and water domains
synchronically and coupled through boundary conditions on the air–water interface at each
timestep to enforce the matching of velocity and stresses between air and water. The time
evolution of the air–water interface is calculated through the nonlinear kinematic boundary
conditions of the interface. Details of the numerical schemes are provided in Appendix A.

2.3. Simulation cases
We first generate a fully developed turbulent airflow while keeping the water calm, i.e.
enforcing the air–water interface as a no-slip boundary when performing the air-side
simulation only. At the beginning of the simulation, we initialise the airflow velocity field
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Principal stage in wind-wave generation

by adding random divergence-free velocity fluctuations to a mean profile, which contains
the viscous sublayer and the logarithmic inner layer following the law of the wall on
both the bottom and top boundaries. The total simulation time for shear-driven turbulence
development is approximately 6.7 × 105 viscous time units, normalised by the air friction
velocity and kinematic viscosity, before the coupled air–water simulation starts. Validation
of DNS of the turbulent airflow is discussed in § 1 of the supplementary materials are
available at https://doi.org/10.1017/jfm.2021.1153. After the turbulent airflow reaches a
statistically steady state, we conduct the simulation for the coupled air and water motions
with the interface evolving dynamically.

We use the densities of air and water at sea level and the temperature of 15 ◦C, which
are ρa = 1.225 kg m−3 and ρw = 9.99 × 102 kg m−3, respectively, and the air–water
density ratio is ρa/ρw = 1.23 × 10−3. The kinematic viscosities of water and air are
νa = 1.46 × 10−5 m s−2 and νw = 1.14 × 10−6 m s−2, respectively. The corresponding
water–air kinematic viscosity ratio is νa/νw = 12.8. The Reynolds number is limited in
the DNS. Note that the computational cost for the present simulation on a boundary-fitted
moving grid is substantially higher than that for regular domains. The Reynolds numbers
based on the friction velocity uτ and each domain height H are Rea

τ = ua
τHa/νa = 268

and Rew
τ = uw

τ Hw/νw = 120 for air and water, respectively. The relation between Rea
τ and

Rew
τ is (see Liu et al. 2009)

Rea
τ =

√
ρw

ρa
νw

νa Rew
τ . (2.2)

The friction velocity uτ is defined as uτ = √
τs/ρ, where τs denotes the mean shear

stress exerted on the top or bottom boundary. In the present simulations, the air friction
velocity is ua

τ = 0.08 m s−1, which is comparable to the previous DNS studies of air–water
interactions (Lin et al. 2008; Zonta et al. 2015), and the corresponding characteristic
length scale is H = 0.0489 m. The simulation domain sizes are (2πH,πH,H) for both
air and water. Based on the gravitational acceleration g = 9.81 m s−2, surface tension of
the air–water interface σ = 7.35 × 10−2 N m−1, and the mean velocity of the air at the
upper boundary Ua = 31ua

τ , we can obtain the Froude number Fra = Ua/
√

gHa = 3.58
and Weber number Wea = ρwUa2Ha/σ = 4088. The parameters of the simulation cases
are summarised in table 1. The capillary length scale is lc = √

σ/(ρwg) = Fra/
√

WeaH =
0.056H. The domain sizes relative to the capillary length scale are Lx = 112.2lc and
Ly = 56.1lc in x- and y-directions, respectively.

The non-dimensional timestep 	t based on the velocity at the mean top boundary
Ua and domain height Ha is chosen as 	tUa/Ha = 9 × 10−4, which is constrained by
the Courant–Friedrichs–Lewy condition. The generation of surface waves is an unsteady
problem, and the initial condition of the turbulent airflow field may bring uncertainties
to the long-term behaviour of wave growth. We conduct multiple ensemble simulations
to reduce the effects of the selected turbulent field when the surface starts to deform.
Specifically, based on the computer resource availability, we perform ten independent
simulations, denoted by Group I, with a 128 × 128 × 128 grid in both the air and
water domains. Moreover, we perform superresolution simulations, denoted by Group
II, using the same physical parameters with a 384 × 384 × 384 grid in both the air
and water domains. In both Group I and Group II, we conduct different simulations
with the same initial conditions for gravity–capillary waves and gravity waves. The grid
resolutions in the viscous length scale are (	x+,	y+,	z+

min) = (13.1, 6.6, 0.234) and
(	x+,	y+,	z+

min) = (4.4, 2.2, 0.078) for Group I and Group II simulations, respectively.
Here, the superscript ‘+’ denotes the normalisation based on the viscous length scale
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Category Name Rea
τ Rew

τ Fra Wea 	x+ 	y+ 	z+
min 	z+

min Total runs Scheme

Group I Ensmbl_g 268 120 3.58 ∞ 13.1 6.6 0.234 3.7 10 Full
Ensmbl_gc 268 120 3.58 4088 13.1 6.6 0.234 3.7 10 Full

Group II P1S1_gc 268 120 3.58 4088 4.4 2.2 0.078 1.2 1 Full
P1S1_g 268 120 3.58 ∞ 4.4 2.2 0.078 1.2 1 Full
P1S0_gc 268 120 3.58 4088 4.4 2.2 0.078 1.2 1 S0

Table 1. Summary of simulation case parameters. The abbreviations ‘g’ and ‘gc’ denote gravity waves and
gravity–capillary waves, respectively, and the superscript ‘+’ denotes normalisation by the viscous length scale
νa/ua

τ in the air domain. The column named ‘Scheme’ lists the air–water coupling schemes. ‘Full’ denotes the
fully coupled air–water interface scheme where the transfer of both the turbulence pressure and shear stress
from the air to the water surface is applied. ‘S0’ denotes the case where the transfer of turbulent air shear stress
on the air–water interface to the water domain is turned off.

νa/ua
τ , 	x+ and 	y+ denote the grid space in the horizontal directions and 	z+

min
denotes the minimum grid space near the air–water interface in the vertical direction.
All grid resolutions are sufficient for the DNS study (Moin & Mahesh 1998). The grid
resolutions compared with the capillary length scale are (	x/lc,	y/lc) = (0.877, 0.438)
in Group I simulations and (	x/lc,	y/lc) = (0.292, 0.146) in Group II simulations.
The corresponding wavelength (i.e. 2πlc) in the x-direction is resolved by 7 grid points
and 21 grid points in Group I and Group II simulations, respectively. The present grid
resolutions in the capillary length scale are adequate for simulating gravity–capillary
waves and are comparable to other free-surface simulations in the literature (e.g. Lin et al.
2008; Deike, Pizzo & Melville 2017; Yu et al. 2019). We note that higher resolution is
needed to fully resolve parasitic capillary waves that occur at the leeward side of steep
waves (Deike, Popinet & Melville 2015), which is not present in our study because our
work only involves the early stage of wind-wave generation when the wave steepness
is small. We also note that because coupled air and water simulations are performed
and a surface-fitted curvilinear grid is employed, the computational cost is high (Yang
& Shen 2011b; Xuan & Shen 2019). On the massively parallel Onyx supercomputer
at the U.S. Army Engineer Research and Development Center, which is a Cray 40/50
system using 2.8 GHz Intel Xeon E5-2699v4 Broadwell processors, simulations take
approximately 3.4 × 105 CPU hours for each case in Group I and 7.0 × 106 CPU hours
for each case in Group II. The total computational cost is estimated 2.8 × 107 CPU hours.
In the simulations, the airflow is strong enough to generate surface waves. To illustrate
the relative velocity differences between air turbulent fluctuations and water waves, we
plot the wavenumber–phase velocity spectrum of air pressure fluctuations at the water
surface S(kx, c) = 〈Π̃p〉y(kx, ω = ckx) in figure 2, where 〈Π̃p〉y is the spanwise-averaged
wavenumber–frequency spectrum of the air pressure fluctuations along the streamwise
direction, kx is the streamwise wavenumber, ω is the frequency and c = ωk−1

x is the phase
velocity. We use a wave surface-fitted grid to conduct DNS, and the air pressure at the
water surface p(x, y) = pa(x, y, η(x, y, t)) can be explicitly calculated. This approach is
consistent with the Zakharov formulation (Zakharov 1968). The air pressure at the water
surface is expressed as a function of x and y. The averaging and norm calculations are
computed via integral on the boundary-fitted grid (x, y, η(x, y, t)) which corresponds to
the water surface. We sample 34 488 consecutive instantaneous snapshots to calculate the
spectrum in the early duration of 20H/ua

τ when the wave amplitudes are not significant
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Principal stage in wind-wave generation

enough to modulate the airflow. The black line in figure 2 represents the averaged
convection velocity of pressure fluctuations, which is computed by (see Del Álamo &
Jiménez 2009)

Up(kx) =

∫
ω〈Π̃p〉y dω

kx

∫
〈Π̃p〉y dω

, (2.3)

and decays slightly as the wavenumber kx increases, indicating that the larger scales of
turbulent pressure fluctuations are convected faster (Kim 1989). In figure 2, the phase
velocities of gravity–capillary waves cgc(kx) and gravity waves cg(kx) are respectively
calculated as

cgc(kx) =
√

1
Fr2

1
|kx| + 1

We
|kx|, (2.4)

cg(kx) =
√

1
Fr2

1
|kx| . (2.5)

The phase speed of gravity waves decreases monotonically as the wavenumber increases.
For gravity–capillary waves, the phase velocity has a global minimum at kcritH =√

We/Fr = 17.9. When the wavenumber is larger than the critical wavenumber, cgc(kx)
increases with |kx|. One can expect that at sufficiently high wavenumbers, cgc(kx) is larger
than the convection velocity of pressure fluctuations Up(kx). However, the spectrum Π̃p
decays fast with wavenumber kx for large |kx| so that its contribution to wave growth
is negligible. In the present study, the phase velocities of both gravity–capillary waves
and gravity waves are less than the resolved pressure convection velocity (figure 2). This
result is consistent with the assumption of the Phillips theory that the pressure convection
velocity is much larger than the wave phase velocity, which makes our DNS suitable for
evaluating the Phillips theory.

2.4. Descriptions of datasets
After the coupled simulations start and the surface begins to deform due to air motions,
surface variables such as elevations and air surface pressure are collected for a duration
of 75H/ua

τ , i.e. 75 times the largest eddy turnover time. Surface waves are initially
generated from a calm water surface, and simulations stop in the stage when waves grow
exponentially with time. During the wave-generation process, snapshots of instantaneous
variables are output every 1.44 × 10−2H/ua

τ for Group I simulations and every 5.8 ×
10−4H/ua

τ for Group II simulations. The higher sampling frequency for Group II is
beneficial for conducting analysis in the spectral space.

3. Multiple stages of wind-generated wave development

In this section, we show the multiple stages of wind-generated wave development in our
DNS results in §§ 3.1 and 3.2. The effects of air turbulence shear stress on wave growth in
the principal stage are discussed in § 3.3. Following § 3, theoretical analyses are performed
in § 4, and a comparison with the DNS data is presented in § 5.
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Figure 2. The wavenumber–phase velocity spectrum of air pressure fluctuations Sp(kx, c) at the water surface,
normalised by its maximum value. The black line (——) is the averaged convection velocity of pressure
fluctuations at the water surface, Up(kx). The red (– –) and orange (– · –) curves represent the phase velocities
of gravity–capillary waves and gravity waves, cgc(kx) and cg(kx), respectively. The result shows that the air
pressure convection velocity is larger than the wave phase velocity for all wavenumbers.

3.1. Instantaneous flow field
Figure 3 shows instantaneous snapshots of the air–wave–water field at different times in
the superresolution simulation (Group II). The air–water interface is flat at t = 0, and
the contours of water surface deformation in figure 3(a) illustrate the initial response of
the interface to the imposition of air turbulence pressure and shear stress fluctuations.
Figures 3(b) and 3(c) show the flow field in the early phase when the turbulent airflow
distorts the water surface and generates small-scale irregular waves. Figure 3(d) illustrates
a late phase when spanwise dominant waves are generated. In the water domain, wind
shear generates a thin shear layer underneath the water surface. We further conduct a
spectral analysis of the surface elevation at the four time instants of the superresolution
simulation (Group I) shown in figure 3. Table 2 shows the wavenumbers of the five most
energetic wave components at the four time instants and their percentages of the total
wave energy. At the very beginning when tua

τ /H = 0.03, the energy fraction of each wave
component is very low (less than 3 %), and the five most energetic waves contain only
12.4 % of the wave energy in total. In the early phase of wave development (see table 2a–c),
the spanwise wavenumbers (ky) of the five most energetic waves are mostly larger than
the streamwise wavenumbers (kx), which results in the streak-like surface wave pattern as
shown in figures 3(a)–3(c). In the late phase (table 2d), the spanwise wavenumbers of the
most energetic waves become smaller, and the wave components are mostly streamwise
dominant (see figure 3d). As the elapsed time increases, the wave energy accumulates at
selected wavenumbers. The total of the wave energy percentages of the five most energetic
wave components rises from 12.4 % at tua

τ /H = 0.03 to 63.8 % at tua
τ /H = 45.8.

3.2. Temporal behaviour of wave growth
Figure 4 shows the temporal growth of the surface elevation variance and pressure variance
for the ensemble simulations of gravity–capillary waves (case Ensembl_gc in Group I) and
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Figure 3. Snapshots of instantaneous air–water interface deformation and velocity field of air and water at: (a)
tua
τ /H = 0.03; (b) tua

τ /H = 2.9; (c) tua
τ /H = 12.2; (d) tua

τ /H = 45.8. For all cases, contours on representative
vertical planes show the streamwise velocity u in the air and water domains normalised by the friction
velocity uτ . The water surface deformation is plotted on its actual scale, and contours of surface deformation
are normalised by the instantaneous maximum absolute value. For clarity, only the near-surface half of the
computational domain is plotted.

tua
τ /H kxlc kylc Ψ̂η/〈η2〉 tua

τ /H kxlc kylc Ψ̂η/〈η2〉
(a) 0.03 0.39 0.00 2.9 % (b) 2.9 0.06 0.0 18.2 %

0.17 0.45 2.5 % 0.06 0.22 8.3 %
0.11 0.56 2.4 % 0.11 0.34 7.9 %
0.06 1.01 2.4 % 0.11 0.45 7.3 %
0.0 0.56 2.2 % 0.17 0.22 5.5 %

sum 12.4 % sum 47.2 %
(c) 12.2 0.06 0.22 15.5 % (d) 45.8 0.17 0.00 15.4 %

0.11 0.45 8.9 % 0.22 0.11 14.2 %
0.06 0.11 7.2 % 0.28 0.00 13.2 %
0.11 0.34 7.0 % 0.22 0.00 13.1 %
0.22 0.11 4.9 % 0.34 0.00 7.8 %

sum 43.5 % sum 63.8 %

Table 2. Wavenumber (kxlc, kylc) and wave energy percentage (Ψ̂η/〈η2〉) of the five most energetic wave
components at the time instants tua

τ /H = 0.03, 2.9, 12.2, 45.8 shown in figure 3. Here, Ψ̂η denotes the wave
energy at the wavenumber (kx, ky) defined in (4.14). The symbol ‘sum’ represents the summation of wave
energy percentages of the five most energetic wave components.
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the superresolution simulation of gravity–capillary waves (case P1S1_gc in Group II). All
variables are normalised using the air domain height H or the capillary length scale lc and
the friction velocity uτ . Group I has ten independent simulation cases, and we calculate
the ensemble average and its 99 % confidence interval (CI). Plots of individual realisations
are visualised in Appendix B. The 99 % CI is computed as (x̄ − 2.58s/

√
n, x̄ + 2.58s/

√
n),

where x̄, s and n denote the sample mean, standard deviation and number of realisations,
respectively. As shown in figure 4, the results from the superresolution group II lie within
the 99 % CI region of Group I. The growth of surface elevation variance 〈η2〉 consists of
multiple stages. Here, the bracket 〈·〉 denotes the spatial average on the horizontal plane.
The growth rate is low in the early wind-wave development but rises explosively in the
late phase. This phenomenon can be further explicitly demonstrated using log-scale plots.
Figure 4(c) uses logarithmic scales in both the x- and y-axes. A straight line indicates the
power law, 〈η2〉 ∝ tα , with the index α being a constant. Initially, the index α = 4 shows a
nascent stage when waves first respond to the sudden imposition of turbulent airflow. The
index α decreases to 1 shortly, and the corresponding linear growth lasts for a duration
of O(20)H/ua

τ , which corresponds to the principal stage in the Phillips theory (Phillips
1957) that is the focus of this study. More rigorous validations of the linear growth of
surface elevation variance in this stage are discussed in Appendix C, where we show that
the principal stage lasts until the elapsed time reaches tua

τ /H ≈ 20. The fast growth rate
after the principal stage is exhibited in figure 4(d), with the x-axis plotted on a linear
scale and the y-axis plotted on a logarithmic scale. The straight line when the elapsed
time tua

τ /H > 50 shows the exponential growth of surface elevation variance 〈η2〉 (Miles
1957). A more detailed analysis on the exponential growth behaviours of surface elevation
variance in the late stage is discussed in § 2 of the supplementary materials.

In the Phillips theory, the motions of airflow are not affected by surface waves. Waves
are generated by the motions of airflow, but the airflow is not affected by the air–water
interface deformation because the wave amplitude is very small in the principal stage.
The linear growth of surface elevation variance is contributed by the space–time turbulent
characteristics of air pressure fluctuations. In the Miles theory, coherent motions of surface
waves and air mean flow trigger the instability induced at the critical layer, and the unstable
modes have exponential growth in time. However, the Miles theory cannot predict a
minimum threshold of wave amplitude for the onset of instability. During the transition
period, 20 < tua

τ /H < 50, both these two mechanisms are expected to have influences.
As the resonance mechanism of the pressure fluctuations continues contributing to the
wave growth, the finite-amplitude surface waves begin to disturb the turbulent airflow,
and coherent motions between waves and airflow are formed. The critical-layer instability
caused by coherent motions gradually dominates the resonance mechanism, which leads
to the exponential growth of the surface elevation variance. Determination of a criterion
for the transition between the linear-growth regime (Phillips 1957) and the exponential
growth regime (Miles 1957) is currently an open research problem. Perrard et al. (2019)
analysed the liquid viscosity scaling of the amplitude of viscous saturated wrinkles using
the experimental data from Paquier et al. (2016) and proposed a criterion for the minimum
root mean square (r.m.s.) of surface elevation for the exponential growth behaviour,
ηrms = Aδν , where A = 0.11 ± 0.02, and δν = νa/ua

τ is the viscous length scale of air
turbulent flow. In the present study, the time series of the surface elevation variance is fitted
by a linear function for the duration of early phase tua

τ /H ∈ [0, 20] and an exponential
function for the duration of late phase tua

τ /H ∈ [50, 70]. The intersection of these two
functions defines a characteristic transition time t∗ua

τ /H = 31.1. The r.m.s. of surface
elevation at this time is ηrms = 0.135δν . Our numerical result is close to the criterion
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Figure 4. The overall temporal growth behaviours of surface elevation variance 〈η2〉 and pressure variance
〈p2〉: (a) 〈η2〉, linear scale in both the x- and y-axes; (b) 〈p2〉, linear scale in both the x- and y-axes; (c) 〈η2〉,
logarithmic scale in both the x- and y-axes; (d) 〈η2〉, linear scale in the x-axis and logarithmic scale in the
y-axis. In (a,c,d), surface elevation variance 〈η2〉 is normalised by the air domain height H and the capillary
length scale lc, shown on the left and right y-axes, respectively. The solid blue line denotes the sample average
of the 10 realisations of Group I, and the light blue shaded area denotes the 99 % confidence interval of the
ensemble mean. The orange line represents the surface elevation variance for the superresolution simulation
(Group II).

proposed by Perrard et al. (2019). A more systematic study on the transition mechanism
between the Phillips theory and the Miles theory should be a subject of future research.

Figure 5 shows the growth of wave slope statistics in time, including the r.m.s. of
the streamwise spatial derivative of surface elevation, 〈η2

x〉1/2, r.m.s. of the spanwise
spatial derivative of surface elevation, 〈η2

y〉1/2 and r.m.s. of the surface elevation gradient,
〈|∇η|2〉1/2. As shown in figure 5(a), during the principal stage (tua

τ /H < 20), the wave
slope grows with time slowly, and the total wave slope 〈|∇η|2〉1/2 does not exceed 0.003.
The small values of wave slope indicate that nonlinear wave effects are weak in the
principal stage, consistent with the linear wave assumption in the Phillips theory. We
also observe that 〈η2

y〉1/2 is larger than 〈η2
x〉1/2 in the principal stage, which indicates that

the waves are streak like in the early phase. This phenomenon was also reported in the
DNS of Lin et al. (2008) and in the studies of surface deformations in the wrinkle regime
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Figure 5. The temporal growth of spatial derivative statistics of surface elevation in (a) the early phase and
(b) the entire wind-wave-generation stage considered. – – (blue), 〈η2

x 〉1/2; – - – (green), 〈η2
y 〉1/2; —— (black),

〈|∇η|2〉1/2.

(Paquier et al. 2016; Perrard et al. 2019). A corollary of the Phillips theory is that the
variance of spatial derivatives of surface elevation is proportional to the variance of spatial
derivatives of pressure fluctuations at the air–water interface. In turbulent channel flows,
the variances of wall pressure derivatives shows that 〈p2

x〉 < 〈p2
y〉 (Vreman & Kuerten

2014), which is consistent with our results of surface elevation derivatives in the principal
stage, 〈η2

x〉 < 〈η2
y〉. In the late phase, the spatial derivatives of surface elevation exhibit an

exponential growth behaviour, similar to the evolution of surface elevation variance. 〈η2
x〉

becomes much larger than 〈η2
y〉 when tua

τ /H > 50, indicating that dominant streamwise
waves are generated.

3.3. Air turbulence shear stress effect
Airflow provides turbulence pressure stress and shear stress on the air–water interface,
which deform the water surface and generate waves. Most wind-wave-generation models
consider only the pressure effect on wave growth without accounting for the contributions
of shear stress. The air turbulence shear stress has two major effects on the wave dynamics.
First, air shear stress can contribute additional momentum flux to the waves through
coherent structures between waves and shear stress (see Peirson & Garcia 2008). As
discussed in Peirson & Garcia (2008), including the wave coherent tangential stress to the
wind input term could reduce the discrepancy between experiments and the exponential
growth models within the Miles framework. Perrard et al. (2019) found that in the viscous
wrinkles regime below the onset of wind-wave generation, the main contribution to the
surface elevation dynamics comes from air pressure fluctuations, while the effect of air
shear stress is negligibly small. Second, air shear stress drives the mean water flow
and generates a sheared current at the air–water interface. The current motion modifies
the dispersion relation of water waves owing to the Doppler effect. The change in the
dispersion relation could affect the resonance interactions between turbulent airflow and
surface waves. In this section, we numerically investigate the effects of air shear stress on
the wave growth behaviours in the principal stage of wave development. We compare
the evolution of surface elevation variance under the actions of air turbulent pressure
fluctuations only and under both air turbulent pressure fluctuations and shear fluctuations.
We also analyse the evolution of air shear stress-induced current and evaluate its effect on
the dispersion of surface waves, which is found to be insignificant (§ 3.3).
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Here, we present in figure 6 a comparison of surface statistics between the
superresolution simulation cases (P1S1_gc and P1S0_gc) for gravity–capillary waves to
examine the effects of shear stress. The notations ‘P1S1’ and ‘P1S0’ denote that the
transfer of air shear stress to the water domain is turned on and off, respectively. Owing
to the high water–air density ratio, in the simulation, the air sees the air–water interface
as a moving deformable boundary, and the water is driven by the shear stress and normal
stress at the air–water interface (Liu et al. 2009). In the present coupled air–water DNS
solver, the air domain provides the stress information at the air–water interface to the water
domain, and the water domain transfers the interface geometry and velocity information
to the air domain (Yang & Shen 2011b). The transfer of air shear stress at the air–water
interface from the air domain to the water domain can be artificially turned off when we
conduct simulations of wave evolution subject to air pressure fluctuations only.

Figure 6(a) shows the growth of surface elevation variance 〈η2〉, which indicates that
the shear effect on the wave growth is insignificant. The pressure variance at the air–water
interface 〈p2〉, plotted in figure 6(b), is the main source of wave generation. Meanwhile,
air shear stress exerted on the air–water interface can generate currents due to the viscosity
of water. Figure 6(c) shows the temporal evolution of the mean water velocity at the
free surface 〈us〉. The subscript ‘s’ denotes variables at the water surface. In the early
development of wind waves, surface deformations are not significant enough to distort
air turbulence structures, and thus air shear stress remains in a statistically steady state.
The growth of surface current velocity can be modelled by a constant shear stress applied
on the surface of an initially still deep water. In the Navier–Stokes equations in the water
domain, the unsteady term and vertical viscous diffusion term are the two major terms. The
convection term, pressure gradient and horizontal viscous diffusion terms can be neglected
(Melville, Shear & Veron 1998). Therefore, the governing equation for water motion can
be simplified as the following diffusion equation:

∂uw

∂t
= νw ∂

2uw

∂z2 . (3.1)

A constant shear stress τs is applied on the free surface. Therefore, the surface current
velocity us can be solved analytically (see Veron & Melville 2001):

us(t) = 2τs

ρw
√

πνw

√
t. (3.2)

Figure 6(c) shows that the mean water surface velocity 〈us〉 grows with the square root
of time, and (3.2) agrees well with our DNS result of the superresolution simulation
of gravity–capillary waves (case P1S1_gc). Second-order statistics of surface velocity
variables are shown in figure 6(d). Variables u′

s and v′
s are velocity fluctuations computed

by u′
s = us − 〈us〉 and v′

s = vs − 〈vs〉, respectively. As shown, 〈u′2
s 〉 and 〈v′2

s 〉 grow linearly
with time, which can be made analogous to a diffusion process. The intensities of velocity
fluctuations decrease when the transfer of air shear stress to the water is turned off. In the
present simulations, the maximum current velocity is less than 0.4ua

τ and much smaller
than the phase velocity of surface waves. Therefore, the Doppler effect on the dispersion
relation of surface waves can be neglected.

4. Theory of wave dynamics in the principal stage

In this section, we first revisit the Phillips (1957) theory on the principal stage of
wind-wave generation in § 4.1. In §§ 4.2 and 4.3, a random sweeping model for turbulence
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Figure 6. Comparison of surface-variable statistics between case P1S1_gc and case P1S0_gc: (a) surface
elevation variance; (b) pressure variance at the air–water interface; (c) mean surface velocity; (d) surface
velocity fluctuations. In (c), the black dashed line shows the theoretical evolution of the mean surface velocity
when a constant shear stress is applied at the water surface. In (d), both x- and y-axes are plotted in the
logarithmic scale, and the back dashed lines indicate linear growth.

air pressure fluctuations is then introduced to obtain a closure model for wave development
in the principal stage of the Phillips theory. In § 4.3, the asymptotic solution of the expected
value of the wave energy spectrum is calculated.

4.1. Wave evolution in the spectral space
We first revisit Phillips’ theory of the principal stage of wind-wave generation (Phillips
1957). Assuming that the water is inviscid and irrotational, the evolution of surface waves
is governed by the following equations of the surface elevation η(x, t) and surface velocity
potential ψ(x, t) subject to the external forcing from the air pressure fluctuations p(x, t)
(see Zakharov 1968; Lannes 2013):

∂η

∂t
− G[η]ψ = 0, (4.1)

∂ψ

∂t
+ gη − σ

ρw ∇ · ∇η√
1 + |∇η|2

+ 1
2
|∇ψ |2 − (G[η]ψ + ∇η · ∇ψ)2

2(1 + |∇η|2) + p
ρw = 0. (4.2)

Here, ∇ = (∂x, ∂y) is the horizontal gradient operator, and G[η] is the Dirichlet-to-Neumann
operator, G[η] : ψ →

√
1 + |∇η|2∂nφ|z=η, where ∂n denotes the upward normal

derivative and φ is the water velocity potential satisfying the Laplacian equation
in the water domain. The surface velocity potential ψ is defined as the value of
velocity potential φ at the free surface, i.e. ψ(x, t) = φ(x, z, t)|z=η(x,t) (Zakharov 1968).
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Principal stage in wind-wave generation

The Dirichlet-to-Neumann operator G[η] is non-local and nonlinearly dependent on the
surface elevation η. Assuming that the surface elevation and wave slope are infinitesimally
small and the water depth is infinity, the Dirichlet-to-Neumann operator is reduced to the
operator |∇| in the sense of Fourier multiplier by linearisation around η = 0. Therefore,
by eliminating surface velocity potential ψ in (4.1) and (4.2), we obtain a single evolution
equation for surface elevation η to describe the dynamics of linear waves subject to
external air pressure forcing

∂2η

∂t2
+

(
g − σ

ρwΔ

)
|∇|η = −|∇|

ρw p(x, t). (4.3)

Here, Δ is the Laplacian operator. Equation (4.3) is a linear and non-local evolution
equation for η, which shows a dispersive feature of surface waves: waves of different
wavelength propagate at different phase speeds.

For deep water waves, nonlinear four-wave interactions play an important role in energy
exchange among different wave modes (see, e.g. Phillips 1960; Hasselmann 1962, 1963;
Zakharov 1968). Equation (4.3) is linear with respect to η, and this linearity indicates
that there exist no interactions between different wave modes. As discussed in Hammack
& Henderson (1993) and Hammack & Henderson (1993), the time scale for nonlinear
four-wave interactions is O(ε−4Λ−1), where ε and Λ are the typical wave slope and
angular frequency, respectively. This scaling indicates that the nonlinear wave–wave
interaction becomes significant when the wave slope is large or the wavenumber is high.
As shown in figure 5(a), the wave slope ε in the principal stage is less than 3 × 10−3. For
gravity–capillary waves with wavenumbers in the range klc ≤ 3.36, the time scale of Λ−1

is larger than 4 × 10−3H/ua
τ . Therefore, the time scale for nonlinear four-wave interactions

O(ε−4Λ−1) is O(106) larger than the duration of principal stage, i.e. 20H/ua
τ . The above

analysis shows that the nonlinear wave–wave interactions are insignificant in the principal
stage of wave development and the linear wave theory (see (4.3)) is adequate to describe
the wave dynamics.

At time t = 0, the water is still, and the surface is flat, i.e. η|t=0 = ∂tη|t=0 = 0. The
air pressure fluctuations are assumed to be statistically steady, and its space–time Fourier
transform decays at high frequencies.

The Fourier transform F and its inverse F−1 for single-variable functions are defined
as

F{f (x)}(k) = 1
2π

∫ ∞

−∞
e−ikxf (x) dx, (4.4)

F−1{g(k)}(x) =
∫ ∞

−∞
eikxg(k) dk. (4.5)

The above Fourier transform and its inverse can be extended to multivariable functions,
and for variable f (x, t) with two dimensions in space and one dimension in time, we use
f̂ (k, t) to denote its spatial Fourier transform and f̃ (k, ω) to denote its space–time Fourier
transform, i.e.

f̂ (k, t) = 1
(2π)2

∫
x∈R2

e−ik·xf (x, t) dx, (4.6)

f̃ (k, ω) = 1
(2π)3

∫
t∈R

∫
x∈R2

e−i(k·x−ωt)f (x, t) dx dt, (4.7)

where R and R
2 denote the real space with dimension one and dimension two, respectively.
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Taking the spatial Fourier transform in x for (4.3), we obtain

∂2

∂t2
η̂(k, t)+Λ2(k)η̂(k) = − k

ρw p̂(k, t), (4.8)

where η̂ and p̂ denote the spatial Fourier transform of surface elevation η and surface
pressure p, respectively, and Λ =

√
g|k| + σ(ρw)−1|k|3 is the dispersion relation of

gravity–capillary waves. The surface tension σ equals zero for gravity waves. Equation
(4.8) describes the evolution of linear surface waves with small wave steepness in an
inviscid deep water. Perrard et al. (2019) considered the viscous effect of a liquid and
presented a rigorous derivation of the wrinkle dynamics in a statistically steady state
where viscous dissipation balances turbulent air input. In the present study, we focus on
the unsteady process of early-stage wind-wave generation. The viscous effect on the wave
dynamics can be neglected owing to the low viscosity of water.

The solution of η̂(k, t) subject to the homogeneous initial boundary condition
η̂(k, t)|t=0 = 0 and ∂tη̂(k, t)|t=0 = 0 can be explicitly integrated as

η̂(k, t) = k
ρwΛ

∫ t

0
sin(Λτ −Λt)p̂(k, τ ) dτ. (4.9)

Therefore, the wave energy component in Fourier space has the following expression:

η̂∗(k, t)η̂(k, t) = k2

2ρw2Λ2

∫ t

0

∫ t

0
(cos(Λ(τ2 − τ1))− cos(Λ(τ1 + τ2 − 2t)))

p̂∗(k, τ1)p̂(k, τ2) dτ1 dτ2, (4.10)

where the superscript ‘∗’ denotes the complex conjugate. Equation (4.10) directly indicates
a key property of wind-generated waves: the wave energy component at a certain time t is
correlated with the entire evolution of pressure fluctuations in the previous duration [0, t].

The spectrum function of pressure fluctuations naturally arises when we evaluate (4.10)
in an ensemble sense. The expected value for the pressure term p̂(k, τ1)p̂∗(k, τ2) only
depends on the wavenumber k and the time separation τ1 − τ2, and we have the following
relation:

E[p̂∗(k, τ1)p̂(k, τ2)] = Π̂p(k, τ2 − τ1). (4.11)

Here, E[·] denotes the expected value of a statistical variable, and Π̂p(k, t) is the spatial
Fourier transform of the two-point, two-time autocovariance of pressure fluctuations
Πp(x, t),

Πp(x, t) = 〈p(x + x′, t + t′)p(x′, t′)〉x′,t′, (4.12)

where the averaging is conducted in both space and time. The two-point, one-time
autocorrelation of surface elevations Ψη(x, t) is defined as

Ψη(x, t) = 〈η(x + x′, t)η(x′, t)〉x′, (4.13)

where the averaging is conducted in space, and its spatial Fourier transform Ψ̂η(k, t) is the
wave energy component η̂∗(k, t)η̂(k, t), i.e. (see Phillips 1957)

Ψ̂η(k, t) = η̂∗(k, t)η̂(k, t). (4.14)

The expected value of the wave energy component Ψ̂η(k, t) is related to the
wavenumber–frequency spectrum of the pressure autocovariance Π̃p(k, ω) and the
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Principal stage in wind-wave generation

dispersion relation of water waves Λ(k). Taking the expected values on both sides of
(4.10), we obtain

E[Ψ̂η](k, t) = k2

2ρw2Λ2

∫ t

0

∫ t

0
(cos(Λ(τ2 − τ1))

− cos(Λ(τ1 + τ2 − 2t)))Π̂p(k, τ1 − τ2) dτ1 dτ2. (4.15)

Phillips (1957) obtained the long-term asymptotic solution of the expected value of the
wave energy spectrum in each wave mode k,

E[Ψ̂η](k, t) = πk2t
2ρw2Λ2 (Π̃p(k,Λ)+ Π̃p(k,−Λ))+ l.o.t., (4.16)

where l.o.t. denotes lower-order terms. The expected value of surface elevation variance
in the physical space is obtained via the inverse Fourier transform,

E[〈η2〉](t) =
∫

E[Ψ̂η](k, t) dk. (4.17)

As shown in (4.16), the evolution of a wavefield is closely connected to the dispersion curve
ω = Λ(k) in the wavenumber–frequency spectrum of pressure fluctuations Π̃p(k, ω).
Modelling the term Π̃p(k, ω = Λ(k)) is the key to the prediction of surface elevation
variance. Phillips (1957) conjectured that Π̃p(k,Λ(k)) is proportional to the inverse
of wavenumber and the convection velocity of pressure fluctuations on the air–water
interface, i.e. (kUp)

−1, and obtained an estimation of the temporal growth of the surface
elevation variance (1.1). This assumption has a physical meaning that the convective
time scale is proportional to the length scale of pressure fluctuations k−1 divided by the
convection velocity of pressure fluctuations Up. Nevertheless, the scaling factor could not
be rigorously determined within the Phillips framework. Phillips noted this assumption
as a ‘rough approximation’ in his original paper (see Phillips 1957, p. 437) and chose the
scaling factor as 1 approximately to close (4.16). A more quantitative model needs to be
established with the space–time correlation properties of pressure fluctuations taken into
consideration.

4.2. Random sweeping model for air pressure fluctuations
To quantitatively model the behaviours of the pressure-fluctuation wavenumber–frequency
spectrum Π̃p(k, ω) on the dispersion curve ω = Λ(k), we need to characterise the decay
of Π̃p in the frequency domain, i.e. along the ω-axis. Taylor’s frozen hypothesis (Taylor
1938) uses a Dirac delta function δ to model the wavenumber–frequency spectrum,
i.e. Π̃p(k, ω) = Ψ̂p(k)δ(ω − k · U) where Ψ̂p denotes the wavenumber spectrum of
pressure fluctuations, which indicates a non-physical concentration of energy on the
line ω − k · U = 0 in the frequency domain, where U denotes the convection velocity.
Inspired by the recent development of space–time correlation models for turbulent velocity
fluctuations (He & Zhang 2006; Wilczek & Narita 2012), we conjecture that the pressure
fluctuations on the water surface are independent of each spatial Fourier mode, and each
Fourier mode propagates at a convection velocity with random distortion. To capture
the broadening property of the pressure wavenumber–frequency spectrum, we introduce
a random sweeping model of pressure fluctuations. This method is analogous to the
modelling of the wavenumber–frequency spectrum of turbulent velocity fluctuations first
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proposed by Wilczek & Narita (2012), which is based on the random sweeping hypothesis
(Kraichnan 1964; Tennekes 1975). The pressure fluctuations are convected at a velocity
U + v in time, where U is the mean convection velocity and v is a two-dimensional
random sweeping velocity,

∂

∂t
p̂(k, t) = −ik · (U + v)p̂(k, t). (4.18)

The random sweeping velocity v satisfies the multivariate Gaussian distribution of a zero
mean and a variance Σ . Here, Σ is a two-by-two positive definite matrix. Equation (4.18)
yields the evolution of pressure fluctuation in the spectral space,

p̂(k, t) = p̂(k, 0) exp(−ik · (U + v)t). (4.19)

Therefore, the two-time energy spectrum of pressure fluctuations Π̂p(k, τ ) is computed by

Π̂p(k, τ ) = E[〈p̂∗(k, t)p̂(k, t + τ)〉] = Π̂p(k, 0) exp(−ik · Uτ)E[exp(−ik · vτ)]

= Π̂p(k, 0) exp(−ik · Uτ) exp
(

−1
2

kΣkTτ 2
)
, (4.20)

where kT is the transpose of the one-by-two wavenumber vector k = (kx, ky). We note that
the two-time energy spectrum is related to the expected value of the energy spectrum by
Π̂p(k, 0) = E[Ψ̂p](k). The wavenumber–frequency spectrum of pressure fluctuations can
be derived via Fourier transform,

Π̃p(k, ω) = Π̂p(k, 0)√
2πkΣkT

exp
(

−(ω − k · U)2

2kΣkT

)
. (4.21)

The positive–definite quadratic form kΣkT represents the strength of the random sweeping
velocity of pressure fluctuations and can be determined through the following integral
identity: ∫ ∞

−∞

(
1√

2πkΣkT
exp

(
−(k · U − ω)2

2kΣkT

))2

dω = 1

2
√

πkΣkT
. (4.22)

Therefore,
√

kΣkT can be determined by

√
kΣkT =

(∫ ∞

−∞
Π̃p(k, ω) dω

)2

2
√

π

∫ ∞

−∞
Π̃2

p (k, ω) dω
. (4.23)

The square root of the quadratic form,
√

kΣkT, represents the angular velocity of random
sweeping events, which is analogous to the angular convection velocity k · U . From (4.21),
we can obtain the expression of k · U in the wavenumber space (Del Álamo & Jiménez
2009),

k · U =

∫ ∞

−∞
Π̃p(k, ω)ω dω∫ ∞

−∞
Π̃p(k, ω) dω

. (4.24)

We plot contours of k · U and
√

kΣkT in the wavenumber space (kx, ky) to understand
the distributions of these angular velocities. As shown in figure 7, both the variations of
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Principal stage in wind-wave generation

k · U and
√

kΣkT are much larger in the kx-direction than in the ky-direction. The
ky-related terms can be treated as higher-order perturbations relative to the kx-related
terms, i.e.

k · U = kxUp + h.o.t., (4.25)√
kΣkT =

√
k2

x + Ck2
yVp + h.o.t., (4.26)

where h.o.t denotes higher-order terms. Equation (4.26) shows that the quadratic form
kΣkT has a diagonal leading-order approximation where C < 1 is a constant. Wilczek,
Stevens & Meneveau (2015) suggest C = 0.41 for modelling the wavenumber–frequency
turbulence velocity spectrum in the logarithmic layer. We adopt C = 0.41 for the
reconstruction of pressure fluctuation spectrum in the present study. The effect of the value
of C on the wave spectrum and wave-growth rate in the principal stage is further discussed
in § 3 of the supplementary materials. Thus, the leading-order approximations of vector U
and matrix Σ can be written as

U = (Up, 0)+ h.o.t., (4.27)

Σ =
[

V2
p 0

0 CV2
p

]
+ h.o.t., (4.28)

where the scalar quantities Up and Vp are defined as the magnitudes of the
streamwise convection velocity and streamwise sweeping velocity of pressure fluctuations,
respectively, both of which are only dependent on the wavenumber kx. We can formally
define the sweeping velocity vector V = (Vp,

√
CVp) such that

√
kΣkT = |k · V | + h.o.t.

to simplify notations in further derivations. The convection velocity and sweeping velocity
can be numerically calculated from the wavenumber–frequency spectrum of pressure
fluctuations by

Up(kx) =

∫ ∞

−∞

∫ ∞

−∞
Π̃p(kx, ky, ω)ω dky dω

kx

∫ ∞

−∞

∫ ∞

−∞
Π̃p(kx, ky, ω) dky dω

, (4.29)

Vp(kx) =

(∫ ∞

−∞

∫ ∞

−∞
Π̃p(kx, ky, ω) dky dω

)2

2
√

πkx

∫ ∞

−∞

(∫ ∞

−∞
Π̃p(kx, ky, ω) dky

)2

dω

. (4.30)

Therefore, the wavenumber–frequency spectrum of pressure fluctuations can be modelled
via the convection velocity vector U and the sweeping velocity vector V ,

Π̃p(k, ω) = Π̂p(k, 0)√
2π|k · V | exp

(
−(ω − k · U)2

2(k · V )2

)
. (4.31)

Figure 8 visualises the present wavenumber–frequency model for pressure fluctuations
at the air–water interface. The convection velocity Up and the sweeping velocity Vp
are plotted in figures 8(a) and 8(b), respectively. The convection velocity decays as the
wavenumber increases, indicating that the larger-scale pressure fluctuations move faster.
This phenomenon is consistent with previous studies (see Choi & Moin 1990; Luhar,
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Figure 7. Contours of (a) k · U and (b)
√

kΣkT normalised by their maximum values, respectively, in the
wavenumber space. For both k · U and

√
kΣkT, variations in the kx-direction are much more significant than

those in the ky-direction.

Sharma & McKeon 2014). The sweeping velocity Vp shares a similar tendency, and
its amplitude is smaller than the convection velocity for all wavenumbers. Figures 8(c)
and 8(d) compare the wavenumber–frequency spectrum of pressure fluctuations between
the DNS results and the random sweeping model. The numerical results are obtained
by conducting the space–time Fourier transform using 34 488 consecutive snapshots of
the superresolution simulation of gravity–capillary waves (case P1S1_gc). As shown,
the present model directly captures the energy decay along the wavenumber kx and the
broadening effect along with the frequency ω and has good agreement with the numerical
results.

In the present model, we adopt a Gaussian distribution to depict the dependence
of the wavenumber–frequency spectrum Π̃p(k, ω) on the frequency variable ω. We
note that the Gaussian distribution assumption is not a rigorous approach for the
wavenumber–frequency spectrum, and the frequency spectrum reveals a non-Gaussian
shape due to the intermittency effects in turbulence (Choi & Moin 1990; Farabee
& Casarella 1991; Hu et al. 2006). Although theoretical frameworks of space–time
characteristics of the turbulent velocity field have been established (He & Zhang 2006;
Wilczek & Narita 2012; Wu & He 2020), modelling the wavenumber–frequency spectrum
of wall pressure fluctuations is still challenging (see Luhar et al. 2014; He, Jin & Yang
2017; Towne, Lozano-Durán & Yang 2020). The Gaussian distribution model provides the
simplest approach to introduce the frequency broadening effect to linear wave theory. As
shown in § 4.3 below, this approach results in reasonable predictions of wave fluctuation
growth in both physical space and Fourier spectral space.

4.3. Random sweeping turbulence pressure–wave interaction model in the principal
stage

We assume that the air pressure fluctuations exerted on the air–water interface satisfy
the random sweeping model (4.18). The space–time evolution of pressure fluctuations
can be described by the convection velocity vector U and the random vector v, of
which the variance can be characterised by the sweeping velocity vector V . We obtain a
closure model governing turbulence–wave interactions, which is referred to as the random
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Figure 8. Panels (a) and (b) show the convection velocity Up(kx) and sweeping velocity Vp(kx) of turbulent
pressure at the water surface, respectively. (c) The DNS results of the wavenumber–frequency spectrum
of pressure fluctuations averaged in the y-direction, S = 〈Π̃p〉y. (d) The random sweeping model for the
wavenumber–frequency spectrum of pressure fluctuations averaged in the y-direction.

sweeping turbulence pressure–wave interaction model, and the wave evolution equation in
the spatial Fourier space (4.8) becomes

∂2

∂t2
η̂(k, t)+Λ2(k)η̂(k) = − k

ρw p̂(k, 0) exp(−ik · (U + v)t). (4.32)

For any wavenumber k, (4.32) can be viewed as a stochastic ordinary differential equation
with respect to time t, and the corresponding statistical quantities can be analytically
evaluated. The expected value of the wave energy spectrum has the following integral
expression:

E[Ψ̂η](k, t) = k2Π̂p(k, 0)
2ρw2Λ2

∫ t

0

∫ t

0
(cos(Λ(τ2 − τ1))− cos(Λ(τ1 + τ2 − 2t)))

exp(−ik · U(τ1 − τ2)) exp
(

−1
2
(k · V )2(τ − τ2)

2
)

dτ1 dτ2. (4.33)

Equation (4.33) is deterministic in time, and the double integral on its right-hand side
leads to an algebraic solution, which is shown in Appendix D as (D5)–(D7). Utilising
the properties of the Gaussian function in the expression (4.33), we can conduct rigorous
asymptotic analysis on the expected value of the wave energy spectrum in the next section.
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4.4. Asymptotic solution of E[Ψ̂η]

In the wavenumber space, the expected value of the wave energy spectrum E[Ψ̂η](k, t) in
(4.33) can be written in the following asymptotic expansion for a large time t:

E[Ψ̂η](k, t) = Θ1 +Θ2 +Θ3 + · · · , (4.34)

withΘi(i = 1, 2, 3, . . .) being the first ith term in the asymptotic expansion of E[Ψ̂η] with
respect to time t. The asymptotic solution can be calculated as

Θ1 =
√

2πk2Π̂p(k, 0)t
4ρw2Λ2|k · V |

(
exp

(
−(k · U −Λ)2

2(k · V )2

)
+ exp

(
−(k · U +Λ)2

2(k · V )2

))
, (4.35)

Θ2 = −
√

2πk2Π̂p(k, 0) sin(2Λt)
8ρw2Λ3|k · V |

(
exp

(
−(k · U +Λ)2

2(k · V )2

)
+ exp

(
−(k · U −Λ)2

2(k · V )2

))

+
√

2k2Π̂p(k, 0) cos(2Λt)
4ρw2Λ3|k · V |

(
D+

(
k · U +Λ√

2|k · V |

)
− D+

(
k · U −Λ√

2|k · V |

))
, (4.36)

Θ3 =
√

2k2Π̂p(k, 0)
4ρw2Λ3|k · V |

(
2Λ(k · U +Λ)+ (k · V )2

(k · V )2
D+

(
k · U +Λ√

2|k · V |

)

+ 2Λ(k · U −Λ)− (k · V )2

(k · V )2
D+

(
k · U −Λ√

2|k · V |

)
− 2

√
2Λ

|k · V |

)
. (4.37)

Here, Θ1 is the leading-order term, which grows linearly with time, Θ2 oscillates with
time t, andΘ3 is a constant independent of time t. The Dawson function, D+(x), is defined
as

D+(x) = e−x2
∫ x

0
et2 dt, (4.38)

which is a bounded function for real x. Detailed derivations can be found in Appendix D.
Next, we analyse the relative strength betweenΘ1 andΘ2. BecauseΘ2 is the summation

of two trigonometric functions, we can obtain the following estimation of the ratio between
|Θ2| and |Θ1| via the Cauchy–Schwartz inequality:

|Θ2|
|Θ1| ≤ Γ

2Λt
, (4.39)

where the scaling factor Γ is independent of time, defined as

Γ =
√

1 + 4
π

(
D+(α + β)− D+(α − β)

exp(−(α + β)2)+ exp(−(α − β)2)

)2

. (4.40)

The two non-dimensionalised variables in (4.40) are α = k · U/(
√

2|k · V |) and β =
Λ/(

√
2|k · V |).

In the expression of the leading-order asymptotic solution Θ1 (4.35), the Gaussian
functions indicate that the growth rates of certain wavenumbers near the resonance curve
Λ− k · U = 0 are amplified. To obtain a priori estimates of the scaling factor Γ , it is
sufficient to focus on the wavenumber regime near the resonance curve Λ− k · U = 0.
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Principal stage in wind-wave generation

When the wavenumber k is near the resonance curve, we have β ≈ α. Taking the Taylor
series expansion with respect to β around the region β = α, we obtain

Γ =
√

1 + 4
π

(
D+(2α)

1 + exp(−4α2)

)2

+ C(β − α)+ h.o.t., (4.41)

where C is the Taylor coefficient of the first-order expansion. By direct calculations, we
can prove that C is a bounded function with respect to α, which satisfies |C| < 0.5 for all
α ∈ R. The leading-order term in (4.41) is also a bounded function with respect to α and
its value is close to 1, i.e. Γ ≈ 1.

In the principal stage of the Phillips theory, the time scale of wave development is
larger than the development time of turbulent pressure fluctuations (Phillips 1957, p. 426).
In the present random sweeping turbulence–wave interaction model, the tendency of the
amplitude ratio between the second-order asymptotic term and the first-order asymptotic
term is explicitly given in (4.39), i.e. |Θ2/Θ1| ∼ (2Λt)−1. When the time scale reaches
t � Λ−1, the linear growth dominates the oscillation, and the linear-growth behaviour
of E[Ψ̂η] (see (4.35)) in the wavenumber space can be observed. In the present DNS
study, the time scale of Λ−1 is much smaller than the principal stage time scale. Because
the dispersions of gravity–capillary waves and gravity waves are different and they both
are dependent on the wavenumber, we summarise some typical values of Λ−1 and
compare them with the principal stage time scale. For gravity–capillary waves with small
wavenumber klc = 0.06 and large wavenumber klc = 3.36, the inverse of wave angular
frequencies normalised by the air friction velocity and domain height, i.e. Λ−1ua

τ /H, is
0.115 and 0.004, respectively. For gravity waves with small wavenumber klc = 0.06 and
large wavenumber klc = 3.36, the time scale Λ−1ua

τ /H is 0.116 and 0.015, respectively.
The time scale of the principal stage is tua

τ /H ∈ [0, 20] in our study. For example, when
the elapsed time reaches tua

τ /H = 1, the value of t is at least eight times larger than
Λ−1. Therefore, t � Λ−1 is a valid assumption for the analysis of the principal stage
development.

Next, we examine the leading-order approximation of Θ3 when the wavenumber is
located near the resonance curve. From direct calculations using (4.35) and (4.37), we
obtain

Θ3

Θ1
= (8α + α−1)D+(2α)− 4

1 + exp(−4α2)

1√
2π|k · V |t + h.o.t.. (4.42)

The series expansion of the Dawson function gives D+(x) = (2x)−1 + l.o.t. for large x
and D+(x) = x + h.o.t. for x near zero. This indicates that the ratio between Θ3 and Θ1 is
uniformly bounded for all α.

A comparison of the temporal growth rates of the leading-order asymptotic terms can
be conducted using a similar approach. We obtain the ratio of amplitudes between the time
derivatives of the second-order asymptotic term |∂tΘ2| and the first-order asymptotic term
|∂tΘ1|,

|∂tΘ2|
|∂tΘ1| ≤ Γ. (4.43)

As shown in the discussion above, the scaling factor Γ is close to 1. This indicates
that the strength between the time derivatives of the first and second asymptotic terms
are comparable. The overall growth behaviour of the expected value of the wave energy
spectrum E[Ψ̂η] is linear because the magnitude of Θ1 dominates that of Θ2 in the
principal stage, as shown above. We also note that the coefficient C of the first-order
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T. Li and L. Shen

Taylor expansion term in (4.41) does not degenerate. The scaling factor Γ can be larger
than 1 when the wavenumber k moves across the resonance curve Λ− k · U = 0, which
indicates the possibility of a negative instantaneous grow rate of E[Ψ̂η](k, t), as shown in
(4.36). Therefore, the instantaneous growth rate of E[Ψ̂η] fluctuates due to the comparable
strength between |∂tΘ1| and |∂tΘ2| and can decrease to zero or even a negative value at
certain times. The above theoretical analysis indicates the oscillating nature of the growth
of the wave energy spectrum, which cannot be eliminated with ensemble averaging. Our
DNS results confirm this conjecture, as shown below in § 5.1.

5. Comparison between theoretical and DNS results

In this section, we analyse the linear-growth behaviour of the wave energy spectrum
and evaluate the existence of the principal stage in the wavenumber space (§ 5.1). The
development of the wave energy spectrum is further studied using a time-dependent
norm. A comparison among our present model, the Phillips model and the DNS results is
performed in both the wavenumber space (§ 5.2) and the physical space (§ 5.3).

5.1. Numerical evidence of the principal stage
In this section, we compare the wave-growth behaviour in the wavenumber space between
the DNS results and Phillips theory to evaluate the linear-growth conjecture of the wave
energy spectrum. In the Phillips theory, the expected values of wave energy components
E[Ψ̂η](k, t) grow linearly with time for all wavenumbers in the principal stage. To evaluate
the similarity between the evolution of E[Ψ̂η](k, t) and a linear function of time, we
compute the similarity score S(k), which is defined as the correlation between E[Ψ̂η](k, t)
and the linear function f (t) = t

S(k) =
∫ TM

0 E[Ψ̂η]t dt(∫ TM
0 E[Ψ̂η]2 dt

)1/2 (∫ TM
0 t2 dt

)1/2 , (5.1)

where TM denotes the maximum sampling time. The score S varies from 0 to 1 because
E[Ψ̂η](k, t) is a non-negative function of t. The score S equals 1 if E[Ψ̂η](k, t) is a
perfectly linear function of t. Figure 9(a) depicts S(k) in the wavenumber space (kx, ky).
The maximum sampling time TM is chosen to be TM = 20H/ua

τ , which is approximately
the end time for the principal stage (see figure 21), and the sampling interval is 1.44 ×
10−2H/ua

τ . Ten realisations of independent gravity–capillary wave simulations are used to
conduct ensemble averaging. Contours in figure 9(a) indicate that the similarity score S
varies between 0.73 and 0.996, and it is very close to 1 in the low-wavenumber regime.
Figure 9(b) visualises the distribution of the similarity score S as a function of |k| and
plots the azimuthal average of S . In the low-wavenumber regime {(kx, ky) | klc < 0.8}, S
at most wavenumbers is above 0.97, which indicates that E[Ψ̂ ](k) grows linearly with
time. There exist some wavenumbers where S is beyond 0.99. The temporal growth of
E[Ψ̂η](k, t) at these wavenumbers has a nearly perfect linear dependence on the time
t. Figure 9(c) shows the temporal growth of wave energy components with five highest
similarity scores. A scaling factor γ is manually chosen in each case to separate curves for
visualisation purpose. Black dashed lines denote linear fitting results, and the coefficient
of determination values all exceed 0.966, indicating good linear growth behaviours of
wave energy components at these wavenumbers. On the other hand, in the regime where
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Figure 9. (a) Contours of the similarity score S(k) using continuous colour map. (b) Scatter plot of the
similarity score S as a function of absolute wavenumber klc: • (blue), discretised value of similarity score
S; —— (orange), smoothed function of the similarity score S . The similarity score S is close to 1 in the
low-wavenumber region. (c) Time series of wave energy components |η̂|2 at the wavenumbers with five highest
similarity scores. Black dashed lines denote linear fitting. (d) Time series of four-wave energy components at
high wavenumbers.

the magnitude of wavenumber |k| is large, the similarity score is much lower. The wave
energy components E[Ψ̂η](k, t) at these wavenumbers do not grow monotonically with
time, as shown in figure 9(d).

We conduct a spectral analysis of the surface elevation in the principal stage, and
summarise the wavenumbers (kxlc, kylc) and expected values of wave energy percentage
E[Ψ̂η/〈η2〉] of the five most energetic wave components in table 3. The expected value
of wave energy percentage E[Ψ̂η/〈η2〉] at the wavenumber (kx, ky) is calculated as the
ensemble average of Ψ̂η/〈η2〉 using ten realisations in the Group I simulations. Here,
E[Ψ̂η/〈η2〉] represents the relative linear-growth rate among different wavenumbers in
the principal stage of wave development. For both gravity–capillary waves and gravity
waves, the behaviours of the top most energetic wave components have similar features
in the principal stage (i.e. tua

τ /H < 20). The spanwise wavenumbers ky of these wave
components are relatively larger than the streamwise wavenumbers, and the summation of
energy percentages of these five most energetic wave components is less than one half of
the total wave energy. The wave energy is distributed over a range of wave components,
rather than concentrated in a few wavenumbers. These five most energetic waves contain
approximately 33 % of the total wave energy in the principal stage, similar to the value of
28 % reported in the DNS study of Lin et al. (2008). In a dimensional form, the fastest
growing wave mode in the principal stage is (kx, ky) = (0.20, 0.82) cm−1 in our study,
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Gravity–capillary waves Gravity waves

tua
τ /H kxlc kylc E[Ψ̂η/〈η2〉] kxlc kylc E[Ψ̂η/〈η2〉]

5.0 0.06 0.22 12.8 % 0.06 0.22 10.8 %
0.06 0.11 6.8 % 0.06 0.11 5.8 %
0.11 0.45 5.5 % 0.06 0.00 4.5 %
0.11 0.34 4.9 % 0.17 0.67 3.6 %
0.11 0.22 4.5 % 0.11 0.34 3.6 %

sum 34.4 % sum 28.2 %
10.0 0.06 0.22 15.7 % 0.06 0.22 11.7 %

0.06 0.11 6.9 % 0.06 0.00 7.2 %
0.11 0.34 5.8 % 0.11 0.45 7.0 %
0.11 0.22 4.8 % 0.06 0.11 3.8 %
0.11 0.00 2.9 % 0.17 0.78 3.3 %

sum 36.2 % sum 32.9 %
15.0 0.06 0.22 14.1 % 0.06 0.22 14.1 %

0.06 0.11 6.1 % 0.06 0.11 7.5 %
0.11 0.22 4.6 % 0.06 0.00 4.5 %
0.22 0.00 4.6 % 0.11 0.45 3.5 %
0.11 0.34 4.6 % 0.11 0.22 2.9 %

sum 33.9 % sum 32.5 %
20.0 0.06 0.22 10.3 % 0.06 0.22 13.4 %

0.06 0.11 7.2 % 0.06 0.11 6.4 %
0.17 0.00 5.5 % 0.17 0.00 4.2 %
0.22 0.00 5.3 % 0.06 0.00 3.8 %
0.28 0.22 4.0 % 0.11 0.45 3.5 %

sum 32.2 % sum 31.3 %

Table 3. Wavenumbers and expected values of wave energy percentages for the five most energetic wave
components at the time instants tua

τ /H = 5, 10, 15 and 20 in the principal stage for gravity–capillary waves
and gravity waves. Here, Ψ̂η denotes the wave energy at the wavenumber (kx, ky) defined in (4.14). The symbol
‘sum’ represents the summation of wave energy percentages of the five most energetic wave components.

which is compatible with the value of (kx, ky) = (0.26, 1.0) cm−1 reported by Lin et al.
(2008).

We quantitatively compare the wave-growth behaviours of the present DNS simulation
in the principal stage with the previous numerical simulation by Lin et al. (2008) and
laboratory experiment by Zavadsky & Shemer (2017). Based on the air friction velocity
ua
τ = 0.08 m s−1 and air domain height H = 0.0489 m, we convert the present results

to dimensional form and compare them with the literature. Figure 10(a) shows the
temporal evolution of surface elevation variance of present DNS, denoted by blue line
(——, blue) for Group I simulations and red line (——, red) for Group II simulations,
and DNS from Lin et al. (2008), denoted by marker � (black). Blue dashed lines
(– –, blue) represent individual realisations of ensemble simulations in Group I. The
linear-growth rates of surface elevation variance are in agreement between our results
and Lin et al. (2008) because the air friction velocities are close between these two DNS.
We plot the linear-growth rates of our DNS results, DNS from Lin et al. (2008), and the
experiment of Zavadsky & Shemer (2017) in figure 10(b). The air friction velocities in
the experimental study by Zavadsky & Shemer (2017) are about 6–9 times larger than
our DNS. Therefore, their linear-growth rates are significantly higher than ours. The
power-law scaling, ∂t〈η2〉 ∼ (ua

τ )
4, which was proposed by Zavadsky & Shemer (2017),

is also illustrated in figure 10(b). It should be noted that the air friction velocity of
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Principal stage in wind-wave generation

DNS (i.e. 0.08 m s−1) is significantly beyond the parameter range of the experimental
study (i.e. 0.53 m s−1 ∼ 0.74 m s−1). Figures 11(a) and 11(b) show two examples of
linear growth of E[Ψ̂η](k, t), where the wavenumbers are (kxlc, kylc) = (0.11, 0) and
(kxlc, kylc) = (0.45, 0.34), respectively. The linear-growth behaviour of the expected value
of the wave energy component E[Ψ̂η](k, t) can be clearly observed. Figures 11(c) and 11(d)
are zoomed-in views of (a) and (b), respectively, during the time interval tua

τ /H ∈ [10, 11].
Owing to the high sampling frequency, our DNS results can capture the fine oscillatory
structure of the expected value of the wave energy component E[Ψ̂η](k, t), which is
theoretically predicted in (4.43). In figures 11(c) and 11(d), the local maxima and minima
are marked as red and green asterisks, respectively. We calculate the mean oscillation
period Tos for each wavenumber based on the DNS results. The dependency of Tos on
wavenumber is plotted in figure 12. In the asymptotic analysis of the expected value of
the wave energy spectrum E[Ψ̂η](k, t) = Θ1 +Θ2 +Θ3 + · · · (see (4.34)), the second
leading-order term Θ2(k, t) represents the temporal oscillation behaviour for the wave
energy spectrum. As shown in (4.36), for any fixed wavenumber k, the functionΘ2 evolves
as a trigonometric function in time t; Θ2 can be rewritten as Θ2 = A0 sin(2Λt + θ0),
where A0 and θ0 are only functions of wavenumber k. Therefore, for any wavenumber
k, Θ2(k, t) has an angular frequency of 2Λ(k) and its oscillation period Tos is given by
Tos = 2π/(2Λ) = π/Λ, where Λ(k) denotes the dispersion relation of surface waves. As
shown in figures 12(a) and 12(b), the numerical periods agree well with the theoretical
predictions for both gravity–capillary waves and gravity waves. The similarity between
figures 12(a) and 12(b) is because the theoretical oscillation period (i.e. Tos = π/Λ)
does not differ much between gravity–capillary waves and gravity waves. Owing to the
dispersion relation, Tos of gravity–capillary waves is smaller than that of gravity waves.
The difference is not obvious if inspected visually because they are both monotonically
decreasing functions with time. However, the capillary effects have major effects on the
shape of wave energy spectrum in the wavenumber space, which is discussed in § 5.2.

The wave energy spectrum is related to the surface elevation variance via (4.17). The
oscillation phenomenon of the wave energy spectrum E[Ψ̂η](k, t), which occurs at all
wavenumbers in the wavenumber space (see (4.36)), also contributes to the oscillation
of the expected value of surface elevation variance E[〈η2〉](t) in the physical space.
To evaluate the temporal oscillation of E[〈η2〉](t), we compute the time derivatives of
instantaneous surface elevation variance ∂t〈η2〉(t) and perform ensemble averaging on
different numbers of realisations N. The distributions of ∂t〈η2〉 are depicted in figure 13
using Gaussian kernel density estimation. As N increases, the kernel density function
becomes narrower and more concentrated near the mean, of which the trend is consistent
with general statistical analysis. From the asymptotic analysis on the expected value of the
wave energy spectrum E[Ψ̂η](k, t) in § 4.4, the normalised instantaneous wave-growth
rate can vary from 1 − Γ to 1 + Γ near the resonance curve where the wave-growth
rates are mostly amplified with the scaling factor Γ ≈ 1. This result indicates that the
expected values of the normalised instantaneous wave-growth rates have a finite variance,
and the temporal oscillation of E[〈η2〉](t) cannot be eliminated when the number of
realisations N approaches infinity. The margins of theoretically predicted oscillation
interval [1 − Γ, 1 + Γ ] are marked using the vertical dashed lines in figure 13(a).
We further calculate the interval (1 − 1.96σ, 1 + 1.96σ) which includes 95 % of the
normalised ∂t〈η2〉 in the Gaussian distribution assumption. Here, σ denotes the normalised
variance. In figure 13(b), we plot the interval width, defined as L95 = 3.92σ/μ, among
different numbers of realisations together with the idealised width of estimation, 2Γ .
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Figure 10. (a) Surface elevation variance as a function of time in the principal stage. DNS from Lin et al.
(2008) is denoted by � (black). Present simulations results are denoted by: – – (blue), each realisation of
ensemble simulations (Group I); —— (blue), ensemble average of Group I; —— (red), super-resolution
simulation (Group II). (b) Wave linear-growth rate ∂t〈η2〉 in the principal stage as a function of air friction
velocity ua

τ . Numerical and measurement data are plotted for comparison: � (green), DNS from Lin et al.
(2008); � (purple) and ♦ (purple), laboratory experiments (EXP.) from Zavadsky & Shemer (2017) with fetch
distances of 220 cm and 340 cm, respectively. Present DNS results are denoted by ◦ (red). The dashed line
(– –, grey) denotes the power-law scaling, ∂t〈η2〉 ∼ (ua

τ )
4, proposed by Zavadsky & Shemer (2017).
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Figure 11. Temporal growth of the wave energy component E[Ψ̂η](k, t) at selected wavenumbers. (a):
(kxlc, kylc) = (0.11, 0), and (b): (kxlc, kylc) = (0.45, 0.34). Panels (c) and (d) are zoomed-in views of (a) and
(b), respectively. Local maxima and minima are marked using red and green asterisks, respectively.

We note that while the trend is clear, it is desirable to have a larger number of realisations
N to further confirm the above analysis. However, as described in § 2.3, the DNS is
computationally expensive. With the currently available computing power, we can only
afford ten realisations.
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Figure 12. Oscillation period Tos of the temporal evolution of the expected value of wave energy component
E[Ψ̂ ](k, t) for (a) gravity–capillary waves and (b) gravity waves.
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Figure 13. (a) Kernel density estimations of instantaneous growth rate ∂t〈η2〉, normalised by the time-averaged
mean. Legends indicate the number of realisations N. Two vertical dashed lines depict the theoretically
predicted upper and lower bounds. (b) The width of the interval containing 95 % of total data, L95, among
different N. The blue dashed line indicates the idealised width estimation 2Γ when N → ∞.

For wave components with a high wavenumber k, our DNS results show that the
expected values of wave energy components E[Ψ̂η](k, t) oscillate instead of growing
with time. Two examples where the wavenumbers are (kxlc, kylc) = (0.67, 1.01) and
(kxlc, kylc) = (1.68, 3.36) are presented in figure 14. The first intersection of the black line
and the blue line is used to define the saturation time Tsat when the wave energy component
at wavenumber k first reaches the mean saturation level. Figure 15 plots the distribution
of saturation time Tsat at different wavenumbers in the high-wavenumber regime. The
tendency is that the saturation time decreases when the wavenumber increases. This can
be explained by the viscous effect of water. At high wavenumbers, surface waves are in a
statistically steady state when the energy input from the air turbulence balances viscous
dissipation in the water (Paquier et al. 2016; Perrard et al. 2019). The viscous dissipation
of surface waves is related to the kinematic viscosity ν, wavenumber k, and time t, and
these three quantities form a non-dimensional parameter νk2t to describe the time scale
of viscous dissipation, indicating the negative correlation between the saturation time
and the wavenumber. In our present theoretical analysis, negligence of the viscous effect
leads to the growth of the wave energy spectrum at all wavenumbers. Nevertheless, the
contributions of high wavenumbers to the overall growth of the surface elevation variance
are negligible because the pressure energy spectrum decays fast at high wavenumbers, as
shown in § 4.2.
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Figure 14. Temporal growth of wave energy components E[Ψ̂η](k, t) at high wavenumbers; (a) (kxlc, kylc) =
(0.67, 1.01) and (b) (kxlc, kylc) = (1.68, 3.36). The black line shows the evolution of the wave energy
component E[Ψ̂η](k, t), and the blue dashed line indicates the mean saturation level of E[Ψ̂η](k, t), which
is calculated by averaging during the second half of the principal stage. The orange dots denote the saturation
time Tsat.
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Figure 15. Distribution of saturation time Tsat at different wavenumbers.

5.2. Wave development in the spectral space
We analyse the properties of wave development in the spectral wavenumber space. The
proposed random sweeping turbulence pressure–wave interaction model results in an
explicit leading-order approximation of surface elevation variance in the principal stage
of the Phillips theory (see (4.35)). The expected value of the wave energy spectrum grows
linearly with time,

E[Ψ̂η]Present(k, t) =
√

2πk2Π̂p(k, 0)t
4ρw2Λ2|k · V |

(
exp

(
− (k · U −Λ)2

2(k · V )2

)
+ exp

(
− (k · U +Λ)2

2(k · V )2

))
,

(5.2)

where the subscript ‘Present’ denotes the present random sweeping turbulence
pressure–wave interaction model. In Phillips (1957), the growth of the wave energy
spectrum, denoted as E[Ψ̂η]Phillips(k, t), has the following expression:

E[Ψ̂ ]Phillips(k, t) = Π̂p(k, 0)t

2
√

2ρw2Upg
. (5.3)

We note that (5.3) represents a quantitative prediction of wave growth by setting the
prefactor in (1.1) to be 1 (see Phillips 1957, § 4.3). We refer to (5.3) as the ‘Phillips model’.
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Principal stage in wind-wave generation

In the Phillips theory, the shape of the wave energy spectrum is identical to the pressure
energy spectrum (see (5.3)), and there is no preferred selection of energy amplifications
related to the dispersion of surface waves. Our present random sweeping turbulence
pressure–wave interaction model indicates a preferred amplification of the wave-growth
rate near the resonance curve Λ− k · U = 0 because the exponential decay in (5.2) is
much faster than the power-law decay.

To numerically evaluate the wave growth in the spectral space, we define the following
L1

t norm for the pressure energy spectrum Ψ̂p and the time-dependent X1
t norm for the

wave energy spectrum Ψ̂η(k):

‖Ψ̂p(k)‖L1
t (T ) =

∫
T
Ψ̂p(k, t) dt, (5.4)

‖Ψ̂η(k)‖X1
t (T ) =

∫
T

t−1Ψ̂η(k, t) dt, (5.5)

where T denotes the time interval. We note that the X1
t norm is well defined in any time

interval [0, TM] because the wave energy spectrum has a power-law growth near t = 0 (see
figure 4c), and the integrand t−1Ψ̂η is regular for any t ∈ [0, TM]. The weighted norm X1

t
captures the linear-growth behaviour of the wave energy spectrum in the principal stage
and provides a direct measure to evaluate the wave growth in the spectral wavenumber
space. Figure 16 shows a comparison of the X1

t norm of the wave energy spectrum among
the DNS results, the present model and the Phillips model for both gravity–capillary waves
and gravity waves. A total of 34 488 snapshots with a sampling interval 5.8 × 10−4H/ua

τ
are used to generate these plots, and the time interval T is set to be T = [0, 20H/ua

τ ].
As shown in figures 16(a) and 16(b), the differences in the wave energy spectrum

between gravity–capillary waves and gravity waves in the wavenumber space are distinct.
Our present model (5.2) successfully captures the inhomogeneity of the wave energy
spectrum for both gravity–capillary waves and gravity waves, as shown in figures 16(c)
and 16(d), respectively. Compared with the DNS results, the random sweeping turbulence
pressure–wave interaction model predicts the wave energy spectrum in the principal
stage of the wind-wave-generation process reasonably well. In contrast, the Phillips
model (see (5.3)) predicts a homogeneous wave energy spectrum (figures 16e and 16f ),
which is identical to the pressure energy spectrum. The shape of the wave energy
spectrum in the Phillips model deviates from the DNS results. Phillips (1957) conjectured
that in the principal stage, the resonance mechanism is insignificant, i.e. Λ � k · U ,
and the temporal growth behaviour of the wave energy component is the same at all
wavenumbers. Our DNS results indicate that the resonance mechanism is also essential
in the principal stage, which results in the formation of different wave energy spectra for
gravity–capillary waves and gravity waves. To further illustrate the significance of the
resonance mechanism on the formation of the wave energy spectrum in the principal stage
of the wind-wave-generation process, we calculate the ratio between the X1

t norm of the
wave energy spectrum and the L1

t norm of the pressure fluctuation spectrum, i.e.

‖Ψ̂η(k)‖X1
t

‖Ψ̂p(k)‖L1
t

=
√

2πk2

4ρw2Λ2|k · V |
(

exp
(

−(k · U −Λ)2

2(k · V )2

)
+ exp

(
−(k · U +Λ)2

2(k · V )2

))
.

(5.6)

From (5.6), we observe that the profile of ‖Ψ̂η(k)‖X1
t

/‖Ψ̂p(k)‖L1
t

is dominated
by the product of the coefficient term k2Λ−2|k · V |−1 and the Gaussian function
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Figure 16. Comparisons of the X1
t norm of wave energy spectra ‖Ψ̂η‖X1

t
in the principal stage among the

DNS results, the present model (5.2) and the Phillips model (5.3).

exp(−(k · U −Λ)2/(k · V )2). The coefficient term can be viewed as a power-law
function with respect to the wavenumber k. Because the decay of a Gaussian function
is significantly faster than the decay of a power-law function, the profile of (5.6)
can be characterised by the behaviour of resonance curve Λ− k · U = 0 as follows.
The amplitude of k2Λ−2|k · V |−1 changes slightly with the coefficient term when the
wavenumber k moves along with the resonance curve but decays rapidly when the
wavenumber k moves away from the resonance curve. For gravity–capillary waves, the
dispersion Λ(k) grows asymptotically as k3/2 for large k, and thus, the coefficient term
k2Λ−2|k · V |−1 decays asymptotically as k−1|k · V |−1. For gravity waves, the dispersion
Λ(k) decays asymptotically as k−1/2 for large k, which results in the asymptotic behaviour
of the coefficient term as k|k · V |−1. Therefore, we conclude that along the resonance
curve, the amplitude of ‖Ψ̂η(k)‖X1

t
/‖Ψ̂p(k)‖L1

t
decays as k−2 for gravity–capillary waves

and does not decay along with the resonance curve for gravity waves.
To verify the above analysis, we plot the profiles of ‖Ψ̂η(k)‖X1

t

/‖Ψ̂p(k)‖L1
t

at the
wavenumber space for both gravity–capillary waves and gravity waves in figure 17.
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Figure 17. Comparisons of ‖Ψ̂η(k)‖X1
t

/‖Ψ̂p(k)‖L1
t

between the DNS results and the present model for
gravity–capillary waves and gravity waves. The red dashed line represents the resonance curve,

k · U −Λ = 0.

The red dashed lines represent the resonance curves Λ− k · U = 0 for gravity–capillary
waves and gravity waves. From the DNS results, we observe that the amplitude of
‖Ψ̂η(k)‖X1

t

/‖Ψ̂p(k)‖L1
t

decays fast along with the resonance curve for gravity waves (see
figure 17a). However, no obvious decay along with the resonance curve can be found for
gravity waves (see figure 17b). Figures 17(c) and 17(d) visualise (5.6) for gravity–capillary
waves and gravity waves, respectively. Our proposed random sweeping turbulence
pressure–wave interaction model shows good agreement with the DNS results. Next, we
investigate the wavenumber–frequency wave spectrum Π̃η(k, ω) at different wind-wave
development stages. We note that in the present wind-wave-generation problem, surface
elevation η(x, t) is only defined in a space–time domain R2 × [0,∞] rather than the
entirespace–time R2+1. Nevertheless, the space–time Fourier transform can be utilised
to study the dispersive properties of surface elevations under a mild assumption of
artificial periodical extension in time. Take the space–time Fourier transform in (4.3),
we obtain the linearised governing equation for the surface elevation η̃(k, ω) in the
wavenumber–frequency space

− ω2η̃ +Λ2η̃ = − k
ρw p̃. (5.7)

The solution to η̃(k, ω) is given in the sense of distributions (see Tao 2006)

η̃(k, ω) = δ(|ω| − |Λ(k)|)
(

1
2
η̂0(k)− sgn(ω)

2 iΛ(k)
η̂1(k)

)
+ kp̃(k,ω)
ρw(ω2 −Λ(k)2)

, (5.8)
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Figure 18. The space–frequency spectrum of surface elevation Sη, normalised by its maximum value, in (a)
the principal stage, i.e. 0 < tua

τ /H < 20, (b) the transition stage, i.e. 25 < tua
τ /H < 45 and (c) the exponential

growth stage, i.e. 50 < tua
τ /H < 70. Red dashed lines denote the dispersion curve ω = ±Λ(k) when ky = 0.

Orange dashed lines in (a) denote the dispersion curve ω = ±Λ(k) when the discrete value of ky satisfies
kylc = 0.56.

where δ(x) and sgn(x) denote the Dirac delta function and the sign function, respectively.
Here, η0 and η1 are the surface elevation and its temporal derivative at t = 0, i.e.
η0 = η|t=0 and η1 = ∂tη|t=0. The first term on the right-hand side (right-hand side) of
(5.8) represents the evolution of free surface waves subject to the initial condition at
t = 0, and the second term in right-hand side of (5.8) represents the evolution of surface
waves subject to the external pressure forcing. Singularities in (5.8) can be regularised by
further considering the viscosity effect (see Perrard et al. 2019). From (5.8), because the
wavenumber–frequency spectrum of pressure fluctuations p̃ is a continuous and bounded
function of k and ω, we can see that |η̃| is concentrated near the dispersion isosurface
|ω| − |Λ(k)| = 0 in the sense of distributions.

Because the airflow propagates in the streamwise +x-direction, we focus on the
spanwise-averaged wavenumber–frequency spectrum Sη(kx, ω) = 〈Π̃η(k, ω)〉y for clarity.
In the spanwise-averaged wavenumber–frequency wave spectrum Sη(kx, ω), the energy
is concentrated in the subdomain D = {(kx, ω) | |ω| > Λ(kx, ky = 0)} because |k| ≥ |kx|
always holds for any k = (kx, ky). Figures 18(a)–18(c) show the spanwise-averaged
wavenumber–frequency wave spectrum Sη(kx, ω) in the principal stage (0 < tua

τ /H < 20),
the transition stage (25 < tua

τ /H < 45) and the exponential growth stage (50 < tua
τ /H <

70), respectively. In each stage, a total of 8 622 consecutive snapshots with a sampling
interval 2.3 × 10−3H/ua

τ are collected for conducting space–time Fourier transform.
The red dashed lines denote the dispersion curve ω = Λ(kx, ky = 0), representing the
boundaries of domain D. As shown in figure 18, most of the energy of Sη is concentrated
inside D, which is consistent with the above theoretical analysis and is similar to the
wavenumber–frequency spectrum of viscous wrinkles studied by Perrard et al. (2019).
Specifically, the oblique stripe structures in figure 18 reveal the dispersion relations
subject to discrete values of ky in numerical simulations. For example, an orange curve
in figure 18(a) illustrates a dispersion relation ω = Λ(kx, ky) with the discrete value of
kylc = 0.56 being the fifth smallest non-zero wavenumber in the ky-direction. The orange
curve coincides with the corresponding strip structure in the spectrum, which indicates that
the spanwise-averaged wavenumber–frequency spectrum S(kx, ω) reveals the dispersion
properties of surface elevations in the two-dimensional wavenumber space.
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Principal stage in wind-wave generation

As shown in the second term on the right-hand side of (5.8), the role of turbulent
pressure fluctuations is to excite surface elevations at broadband wavenumbers and to
modulate their relative strength among different wavenumbers. In (5.8), η̃ is singular on
the dispersion isosurface |ω| = |Λ(k)|, but away from the dispersion isosurface, η̃ still
has non-zero finite value. It indicates that the majority of energy in the surface elevation
spectrum obeys the dispersion relation of surface waves in the wavenumber–frequency
space. The energy is concentrated over a wide range of ky, as shown in figure 18(a),
indicating that the small-scale surface deformations are generated in the principal stage.
Figure 18(b) shows the wavenumber–frequency spectrum in the transition stage between
the Phillips theory and the Miles theory. The majority of energy moves towards the
dispersion curve where ky = 0. Figure 18(c) shows Sη(kx, ω) in the late phase where the
surface elevation variance grows exponentially in time. Most energy in the spectrum is
concentrated near the dispersion curve where ky = 0, indicating the onset of streamwise
dominant regular waves.

5.3. Further discussion on the present model for wave growth in the physical space
The expected value of surface elevation variance E[〈η2〉](t) is related to the expected
value of the wave energy spectrum E[Ψ̂ ](k, t) via the inverse Fourier transform (see
(4.17)). The present random sweeping turbulence pressure–wave interaction model has
two independent parameters, the convection velocity vector U and the sweeping velocity
vector V of the air pressure fluctuations at the water surface, to quantitatively describe the
wave-growth behaviour in both the wavenumber space and the physical space. As shown
in figures 8(a) and 8(b), both the convection velocity and sweeping velocity are functions
of wavenumber, the information of which is needed in the direct integration of (4.17).
We recognise that the convection and sweeping velocities of air pressure fluctuations in
wall-bounded turbulent flows are open research questions (see He et al. 2017). There have
not yet been satisfying closed forms developed for the U and V of pressure fluctuations
yet, and this is beyond the scope of the present paper. Nevertheless, we can perform the
following analyses on the range of our new model, which shows more accurate predictions
than the Phillips model.

From the plots of Up and Vp against wavenumber kx in the wavenumber
space (see figures 8a and 8b), we observe that Up varies within the interval
Up ∈ [12.2ua

τ , 16.2ua
τ ] and Vp varies within the interval Vp ∈ [3.1ua

τ , 3.5ua
τ ] for the

wavenumbers kxlc ≤ 0.6. Therefore, we consider the vector q = (q1, q2) = (Up,Vp) that is
located within a continuous two-dimensional parameter space Q, defined as the following
direct product:

Q = [12.2ua
τ , 16.2ua

τ ] × [3.1ua
τ , 3.5ua

τ ]. (5.9)

Using our new model (5.2), we estimate the expected value of surface elevation variance
in the physical space by computing

E[〈η2〉]Present(t, q) =
∫ √

2πk2Π̂p(k, 0)t
4ρw2Λ2|k · V |

(
exp

(
−(k · U −Λ)2

2(k · V )2

)

+ exp
(

−(k · U +Λ)2

2(k · V )2

))
dk, (5.10)

where the constants U and V are related to the vector q through U = (q1, 0) and
V = (q2, 0), respectively. As a result, the expected value of surface elevation variance
E[〈η2〉]Present in the present model is a continuous function of the vector q ∈ Q.
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We calculate the upper bound and the lower bound of E[〈η2〉]Present with respect to q
to obtain an estimation of the expected value of surface elevation variance E[〈η2〉](t),

min
q∈Q

E[〈η2〉]Present(q, t) ≤ E[〈η2〉](t) ≤ max
q∈Q

E[〈η2〉]Present(q, t). (5.11)

The estimation (5.11) results in the growth rate of surface elevation variance E[〈η2〉](t)
that is within a certain range. We note that in the present model, the prediction
of the linear wave-growth rate only requires the spatial Fourier transform of surface
turbulence pressure fluctuations. As shown in (4.15), wave growth is closely related to the
spatial-temporal evolution of turbulence pressure fluctuations. The present model reduces
the cost of computing the wavenumber–frequency spectrum to the wavenumber spectrum
by assuming the random sweeping hypothesis. The Phillips model neglects the resonance
mechanism in the principal stage, and predicts that the wave-growth rate in the physical
space is proportional to an unweighted integral of the pressure fluctuation energy spectrum
which is equivalent to the mean square of surface pressure fluctuations. Our model further
takes into account the effects of the resonance mechanism in the principal stage, and the
computation of the wave-growth rate can be viewed as a weighted integral of the pressure
fluctuation energy spectrum. Figure 19 compares surface elevation variance among the
DNS results, the present model (see (5.10)) and the Phillips model (see (1.1)) for both
gravity–capillary waves and gravity waves in the principal stage of wave development.
In the Phillips model, the surface elevation variance is related to the convection velocity
Up. We use the same methodology as above in which the convection velocity varies in a
certain range, i.e. Up ∈ [12.2ua

τ , 16.2ua
τ ], to obtain that the Phillips model also provides

a wave-growth prediction with finite bandwidth. Because the Phillips model neglects the
surface tension effect, it results in identical expressions of surface elevation variance for
gravity–capillary waves and gravity waves. As shown in figure 19, the Phillips model
underestimates the growth of surface elevation variance for both gravity–capillary waves
and gravity waves, which is consistent with the finding from the previous numerical
simulations by Lin et al. (2008). In contrast, the present model has much better agreement
with the DNS results for both gravity–capillary waves and gravity waves. In the early
phase when tua

τ /H ≤ 4, figures 19(a) and 19(b) show that most DNS wave fluctuation
data 〈η2〉/H2 are located within the shaded range predicted by the present model. In the
entire principal stage tua

τ /H ≤ 20 (see figure 19c), the DNS results match well with the
present model for gravity–capillary waves. For gravity waves, figure 19(d) shows that the
present model overpredicts the wave growth for gravity waves. Note that the linear-growth
rate in the DNS results for gravity waves has a slight decrease when tua

τ /H > 4, which
results in the deviation between DNS and the present model. The mechanisms of the
change in the wave-growth rate for gravity waves need further research. Nevertheless, for
gravity–capillary waves, the present model can quantitatively predict the linear growth of
surface elevation variance and shows good agreement with DNS (figure 19c). We note that
in the wind-wave-generation problem, waves are generated from an initially calm water
surface, and the small-scale deformation of the air–water interface dominates the wave
dynamics in the early phases of wind–wave development. The surface tension effect plays
a key role in the evolution of water waves with short wavelengths. Therefore, compared
with gravity waves, modelling the growth of gravity–capillary waves is more relevant for
the present research focus on the early stage.

We note that Perrard et al. (2019) investigated the dynamics of wrinkles in a viscous
fluid and proposed a spectral theory for the spatial-temporal evolution of wrinkles in
a statistically steady state. The authors introduced the viscous effect of liquid to the
evolution equation of water waves subject to turbulent pressure forcing and derived the
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Figure 19. Comparisons of wave growth in the principal stage among the DNS results, the present model
and the Phillips model for (a) gravity–capillary waves and (b) gravity waves. The orange lines represent the
superresolution cases (Group II). The blue lines denote the average of the ensemble cases (Group I), with the
light blue shaded area being the range bounded by one standard deviation of the ensemble data. The purple
and green shaded areas show the surface elevation variance predictions by the present model and the Phillips
model, respectively.

spectrum of surface elevation in a statistically steady state by considering the balance
between viscous dissipation and turbulent air input. They conducted synthetic wrinkles
simulations to reproduce the previous experimental observations by Paquier et al. (2015)
and Paquier et al. (2016). In the present study, we numerically investigate the early stage
of wind-wave generation using a coupled air–water simulation solver. We systematically
evaluate the Phillips theory by examining wave-growth behaviour in both the physical
space and wavenumber space. A random sweeping hypothesis is introduced to model the
wavenumber–frequency spectrum of turbulent pressure fluctuations. By combining the
random sweeping model and linear water wave equation, we propose a closure model to
predict the wave-growth rate in the principal stage and analytically obtain an asymptotic
solution for the expected value of surface elevation variance.

6. Conclusions

In this work, we conduct a systematic study on the profound and long-standing problem
of wind-wave generation with a focus on its early stage. Using a combined theoretical
and simulation-assisted approach, we revisit the classic work by Phillips (1957). Phillips
conjectured that there exists a principal stage when waves grow linearly with time.
We conducted high-resolution DNSs to study wave development when turbulent airflow
blows over an initially flat water surface. Ensemble cases and superresolution cases
for both gravity–capillary waves and gravity waves are run to elucidate the temporal
behaviour of wave growth and the role of surface tension on the formation of the wave
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energy spectrum. The total computational cost is over 2 × 107 CPU hours on a high
performance parallel supercomputer. The simulations capture the multistage evolution
of water waves under wind forcing during the early phase of the wind-wave generation
process. Initially, the air–water interface is distorted by the convection of the turbulent
pressure and stress fluctuations of airflow, and the surface elevation variance grows linearly
with time in the principal stage predicted by Phillips (1957). In the late stage, the wave
grows exponentially with time due to the shear flow instability mechanism first proposed
by Miles (1957). Through a rigorous analysis, we confirm the existence of the principal
stage when the elapsed time does not exceed 20H/ua

τ . We also observe the oscillation
of surface elevation variance via high-frequency data sampling. The oscillation is further
substantiated theoretically by asymptotic analysis.

We develop a theoretical framework of the closure model for wave generation in the
principal stage of the Phillips theory. A random sweeping turbulence pressure–wave
interaction model is developed to quantitatively describe the wave dynamics in the
wavenumber space and physical space during the principal stage in the Phillips theory.
The present model uses a combination of Taylor’s frozen hypothesis and random sweeping
hypothesis to model the evolution of air turbulent pressure fluctuations exerted on the
air–water interface, which is inspired by the works of He & Zhang (2006) and Wilczek
& Narita (2012). A stochastic closure evolution equation for the wave elevation is
derived. Different from the Phillips model, where the scaling coefficient is determined
approximately, the proposed model quantitatively describes the wave evolution. Based on
the analytical solution to the present model, we conduct a rigorous asymptotic analysis
on the expected value of wave energy components and obtain the first three leading-order
terms, which are a linear function of time, a trigonometric oscillation function of time and
a constant, respectively. By comparing the relative strength among these leading-order
terms, we further find that even though the amplitude of the linear-growth term is larger
than the oscillating term in the principal stage, their instantaneous growth rate can be
comparable. This result explains the oscillation phenomenon of temporal wave fluctuation
growth observed from our DNS results in physical space and is further validated by
analysing the wave energy spectrum in wavenumber space.

We use a time-dependent norm to quantify the growth behaviour of each wave energy
component and compare the DNS results with the present model and the Phillips model.
The Phillips model yields that the distribution of the wave energy spectrum is identical
to the pressure energy spectrum. Both the DNS results and the present model reveal the
inhomogeneity in the wavenumber space, and they have good agreement with each other.
The present model elucidates the role of the resonance mechanism on the formation of
the wave energy spectrum in the principal stage of the wind-wave-generation process.
The resonance curves are distinct in the wavenumber space. Gravity–capillary waves
and gravity waves have different dispersion relationships, which leads to differences in
the distributions of wave energy spectra. Based on the present model, we obtain an
estimation of the linear-growth rate of surface elevation variance in the principal stage of
the wind-wave-generation process. We provide an expression of the upper bound and the
lower bound of the expected value of surface elevation variance. While the Phillips model
underestimates the wave-growth rate, the present model provides a much more accurate
estimation that has good agreement with DNS data of gravity–capillary waves.

Supplementary materials. Supplementary materials are available at https://doi.org/10.1017/jfm.2021.1153.
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Appendix A. Numerical method

A.1. Grid transformation
The lower boundary of the air domain Ωa and the upper boundary of the water domain
Ωw are the dynamically evolving water surface. We adopt the following algebraic mapping
to transform each irregular physical domain (x, y, z, t) into a rectangular computational
domain (ξ, ϕ, ζ, τ ):

ξa = xa, ϕa = ya, ζ a = z − η(x, y, t)
−η(x, y, t)+ Ha , τ a = ta in Ωa, (A1)

ξw = xw, ϕw = yw, ζw = z + Hw

η(x, y, t)+ Hw , τw = tw in Ωw. (A2)

The corresponding Jacobian matrices J a and J w are

J a =

⎡
⎢⎢⎣
ξa

x ξa
y ξa

z ξa
t

ϕa
x ϕa

y ϕa
z ϕa

t
ζ a

x ζ a
y ζ a

z ζ a
t

τ a
x τ a

y τ a
z τ a

t

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0

(za − Ha)ηx

(−η + Ha)2
(za − Ha)ηy

(−η + Ha)2
1

−η + Ha
(za − Ha)ηt

(−η + Ha)2

0 0 0 1

⎤
⎥⎥⎥⎦ , (A3a)

J w =

⎡
⎢⎢⎣
ξw

x ξw
y ξw

z ξw
t

ϕw
x ϕw

y ϕw
z ϕw

t
ζw

x ζw
y ζw

z ζw
t

τw
x τw

y τw
z τw

t

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0

−(zw + Hw)ηx

(η + Hw)2
−(zw + Hw)ηy

(η + Hw)2
1

η + Hw
−(zw + Hw)ηt

(η + Hw)2

0 0 0 1

⎤
⎥⎥⎥⎦ , (A3b)

where the subscripts denote partial derivatives.
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Transforming equations (2.1a)–(2.1d) from the physical coordinates (x, y, z, t) to the
computational coordinates (ξ, ϕ, ζ, τ ) in each domain, we obtain

∂uε

∂ξε
+ ζ εx

∂uε

∂ζ ε
+ ∂vε

∂ϕε
+ ζ εy

∂vε

∂ζ ε
+ ζ εz

∂wε

∂ζ ε
= 0, (A4a)

∂uε

∂τ ε
+ ζ εt

∂uε

∂ζ ε
+ ∂(uεuε)

∂ξε
+ ζ εx

∂(uεuε)
∂ζ ε

+ ∂(uεvε)
∂ϕa + ζ εy

∂(uεvε)
∂ζ ε

+ ζ εz
∂(uεwε)
∂ζ ε

= − 1
ρε

(
∂pε

∂ξε
+ ζ εx

∂pa

∂ζ ε

)
+ νε∇2uε, (A4b)

∂vε

∂τ ε
+ ζ εt

∂vε

∂ζ ε
+ ∂(vεuε)

∂ξε
+ ζ εx

∂(vεuε)
∂ζ ε

+ ∂(vεvε)

∂ϕε
+ ζ εy

∂(vεvε)

∂ζ ε
+ ζ εz

∂(vεwε)
∂ζ ε

= − 1
ρε

(
∂pε

∂ϕε
+ ζ εy

∂pa

∂ζ ε

)
+ νε∇2vε, (A4c)

∂wε

∂τ ε
+ ζ εt

∂wε

∂ζ
+ ∂(wεuε)

∂ξε
+ ζ εx

∂(wεuε)
∂ζ ε

+ ∂(wεvε)
∂ϕε

+ ζ εy
∂(wεvε)
∂ζ ε

+ ζ εz
∂(wεwε)
∂ζ ε

= − 1
ρε

(
ζ εz
∂pε

∂ζ ε

)
+ νε∇2wε, (A4d)

with the symbol ε = {a,w} indicating variables in the air and water domains, respectively.

A.2. Boundary conditions
The horizontal boundary conditions are periodic in the x- and y-directions. At the top
boundary of the air domain, we apply a constant shear stress in the x direction to simulate
the shear-driven air turbulence. At the bottom of the water domain, we use the no-slip
velocity boundary condition. Dirichlet boundary conditions of velocity components and
the profile of wave waves are used as the bottom boundary condition for the air motion,
written as

ua = uw, va = vw,wa = ww at z = η(x, y, t). (A5)

The motion of wave surface elevation η is governed by the kinematic boundary condition
of the air–water interface,

ηt = ww − uwηx − vwηy at z = η(x, y, t). (A6)

For the water domain, the upper boundary conditions for velocity components and pressure
are the dynamic boundary conditions on the water surface,

t1 · σw · nT = t1 · σ a · nT at z = η(x, y, t), (A7a)

t2 · σw · nT = t2 · σ a · nT at z = η(x, y, t), (A7b)

n · σw · nT = n · σ a · nT +	p at z = η(x, y, t), (A7c)

where the stress tensor is σ ij = −( p − ρgz)δij + ν(ui,j + uj,i), n, t1 and t2 denote the
normal vectors and two tangential vectors of the air–water interface, respectively, and 	p
is the difference in normal stress across the air–water interface due to the surface tension.
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A.3. Numerical algorithms
The governing equations are spatially discretised by a Fourier-based pseudospectral
method in the horizontal (ξ, ϕ) plane and a second-order finite difference method in
the vertical ζ -direction. The (ξ, ϕ) plane uses an evenly spaced mesh. Grid points in
the vertical ζ -direction are clustered near the upper and lower boundaries of the air and
water domains. The governing equations (A4a)–(A4b) in the computational air and water
domains are solved using a fractional-step method (Kim & Moin 1985). A second-order
Adams–Bashforth scheme is applied to the convection terms, and the viscous terms and the
ζt-related terms are discretised using the Crank–Nicholson scheme. The evolution equation
of the air–water interface elevation in (A6) is calculated using a predictor–corrector
method fully coupled with the Navier–Stokes equation solver. An iteration scheme is
used to satisfy the continuation of velocity (A5) and constraints of stress tensors (A7) at
the air–water interface. Details of the numerical schemes are provided in Yang & Shen
(2011a,b) and Xuan & Shen (2019). Applications of our numerical method to various
turbulence–wave interaction problems can be found in Yang & Shen (2010), Yang et al.
(2013), Yang et al. (2014a,b), Hao & Shen (2019), Xuan & Shen (2019), Xuan et al. (2020),
Cao et al. (2020) and Cao & Shen (2021).

Appendix B. Individual realisations of ensemble simulations

In this appendix, we visualise individual realisations of ensemble simulations (Group I).
Figure 20 shows the temporal growth behaviours of surface elevation variance 〈η2〉 in the
wind-wave-generation process. The early development of surface waves interacting with
turbulent airflow is an unsteady problem, and thus variations among different independent
simulations are expected. We use coefficient of variation (CV), i.e. the ratio between the
standard deviation and the mean, to quantify the variations among different realisations. As
illustrated in figures 20(a) and 20(b), surface elevation variance 〈η2〉 grows linearly with
time in the early phase when tua

τ /H < 20. The averaged CV of surface elevation variance
〈η2〉 in the time interval tua

τ /H ∈ [0, 20] is 16 % and 13 % for gravity–capillary waves
and gravity waves, respectively. Figures 20(c) and 20(d) show the exponential growth
behaviour of 〈η2〉 in the late phase when tua

τ /H > 50. The exponential growth rate of
surface elevation variance (i.e. the slope in figures 20c and 20d) is closely related to Miles’
critical-layer theory. We extract the exponential growth rate in each individual simulation
during the time interval tua

τ /H ∈ [50, 75] using the least squares method. The CV of the
exponential growth rate is 1 %, which indicates that all individual realisations exhibit a
consistent exponential growth rate in the late phase.

Appendix C. Diagnostic functions of linear-growth behaviour

We examine the existence of the principal stage of wave development (Phillips 1957)
in the physical space. To validate that there exists a certain time period within which
the surface elevation variance 〈η2〉 grows linearly with time, we adopt its first- and
second-order time derivatives as the diagnostic functions. If the hypothesis of the principal
stage holds, the first derivative and second derivative of the surface elevation variance
should be constant and zero, respectively. We sample the surface wave elevation η(x, y)
every 1.44 × 102H/ua

τ and collect 2778 consecutive snapshots for each realisation in case
Ensembl_gc. The ensemble average of surface elevation variance E[〈η2〉], which is a
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Figure 20. Individual realisations of the temporal growth of surface elevation variance 〈η2〉 in the ensemble
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discrete function of time instant t, is then computed based on these data

E[〈η2〉](t) = 1
NeNxNy

Ne∑
k

Nx∑
i

Ny∑
j

η2
(k)(xi, yj, t). (C1)

Here, η(k)(xi, yj, t) denotes the surface elevation at grid point (xi, yj) and time t of the
kth realisation of the ensemble runs in the gravity–capillary wave simulations (case
Ensmbl_gc). Here, Nx, Ny, and Ne are the numbers of the grid points in the x- and
y-directions and the total number of realisations, respectively. When we conduct time
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differentiation to the discrete data E[〈η2〉], intense oscillations are observed. To extract
the dominant evolution feature, we smooth the data while keeping its tendency (Savitzky
& Golay 1964). We define the following diagnostic functions F1 and F2 corresponding to
the smoothed first and second time derivatives of surface elevation variance:

F1(t) = S Dt E[〈η2〉], (C2)

F2(t) = S Dtt E[〈η2〉]. (C3)

Here, Dt and Dtt are fourth-order finite difference operators of the first and second
derivatives, respectively, and S is a smoothing operator to filter high-frequency oscillations
of time series of 〈η2〉 and capture the trend of the data. We apply the Savitzky–Golay filter
(Savitzky & Golay 1964) to smooth discrete series. It is an efficient method to locally
smooth discrete data series by using the least squares method to fit successive subsets
of adjacent data points with low-order polynomials. When calculating F1 and F2, we set
the window size and the polynomial order to 55 and 5, respectively. Figure 21 shows the
temporal evolution of the diagnostic functions F1 and F2. We can observe a plateau of
F1 when tua

τ /H < 20 in figure 21(a). In the later stage, F1 grows with time indicating the
deviation from the linear-growth behaviour. The plateau regime is further confirmed by
function F2, which oscillates around 0, as shown in figure 21(b). These numerical results
indicate that the surface elevation variance grows linearly with time until the elapsed time
reaches tua

τ /H ≈ 20.

Appendix D. Derivation of the asymptotic solution of E[Ψ̂η]

As given in (4.15), the wave energy component E[Ψ̂η](k, t) has the explicit integral
representation,

E[Ψ̂η](k, t) = k2Π̂p(k, 0)
2ρw2Λ2

∫ t

0

∫ t

0
(cos(Λ(τ2 − τ1))− cos(Λ(τ1 + τ2 − 2t)))

exp
(

−ik · U(τ2 − τ1)− 1
2
(k · V )2(τ2 − τ1)

2
)

dτ1 dτ2. (D1)

We non-dimensionalise (D1) and define the following dimensionless variables:

A = k · U
Λ

, B = |k · V |
Λ

, T = Λt. (D2a–c)

Therefore, (D1) can be rewritten as

E[Ψ̂η](k, t) = k2Π̂p(k, 0)
ρw2Λ4 F(T), (D3)

where F(T) is the dimensionless wave energy component and is defined as

F(T) =
∫ T

0

∫ T

0

1
2
(cos(τ2 − τ1)− cos(τ1 + τ2 − 2T))

exp
(

−iA(τ2 − τ1)− 1
2

B2(τ2 − τ1)
2
)

dτ1 dτ2. (D4)

We seek the asymptotic solution of F(T) when the dimensionless time T approaches
infinity.
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By direct calculation, we obtain F(T) = F1(T)+ F2(T)+ F3(T), where

F1(T) =
√

2πT
8B

(
exp

(
−(A − 1)2

2B2

) (
erf

(
B2T + i(A − 1)√

2B

)

− erf
(−B2T + i(A − 1)√

2B

))

+ exp
(

−(A + 1)2

2B2

)(
erf

(
B2T + i(A + 1)√

2B

)
− erf

(−B2T + i(A + 1)√
2B

)))
,

(D5)

F2(T) =
√

2π

16B

(
erfi

(
A − 1√

2B

) (
− exp

(
2 iT − (A − 1)2

2B2

)
− exp

(
−2 iT − (A − 1)2

2B2

))

+ erfi
(

A + 1√
2B

)(
exp

(
2 iT − (A + 1)2

2B2

)
+ exp

(
−2 iT − (A + 1)2

2B2

))

− ierf
(

B2T + i(A − 1)√
2B

)
exp

(
−2 iT − (A − 1)2

2B2

)

− ierf
(−B2T + i(A − 1)√

2B

)
exp

(
2 iT − (A − 1)2

2B2

)

+ ierf
(−B2T + i(A + 1)√

2B

)
exp

(
−2 iT − (A + 1)2

2B2

)

+ierf
(

B2T + i(A + 1)√
2B

)
exp

(
2 iT − (A + 1)2

2B2

))

+ 1
2B2 exp

(
−1

2
B2T2

)
(cos((A − 1)T)+ cos((A + 1)T)), (D6)

F3(T) = − 1
B2 +

√
2π

4B3

((
−B2

2
+ A − 1

)
exp

(
−(A − 1)2

2B2

)
erfi

(
A − 1√

2B

)

+
(

B2

2
+ A + 1

)
exp

(
−(A + 1)2

2B2

)
erfi

(
A + 1√

2B

)

+ i
2A − 2 − B2

4
exp

(−(A − 1)2

2B2

)

×
(

erf
(

B2T + i(A − 1)√
2B

)
+ erf

(−B2T + i(A − 1)√
2B

))
+ i

2A + 2 + B2

4

× exp
(−(A + 1)2

2B2

)
×

(
erf

(
B2T + i(A + 1)√

2B

)
+ erf

(−B2T + i(A + 1)√
2B

))
.

(D7)

Here, erf(z) and erfi(z) are the error function and imaginary error function, respectively,
which are defined in the complex z plane as

erf(z) = 2√
π

∫ z

0
exp(−t2) dt, (D8)
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erfi(z) = −ierf(iz). (D9)

For any real value (x, y) ∈ R
2, we can explicitly calculate the complex-valued error

function erf(x + iy) through a specific integral path in the complex plane, 0 → x →
x + iy, and separate the real part and imaginary part of erf(x + iy),

erf(x + iy) = erf(x)+ 2√
π

e−x2
∫ y

0
ez2

sin(2xz) dz + i
2√
π

e−x2
∫ y

0
ez2

cos(2xz) dz.

(D10)

Based on (D10), we can analytically calculate the limit of the complex-valued error
function erf(x + iy) when its real part x approaches infinity,

lim
x→∞ erf(x + iy) = 1, (D11)

lim
x→−∞ erf(x + iy) = −1. (D12)

From the asymptotic behaviour of the error function, we have erf(x) ≈ sgn(x)√
1 − exp (−x2) for large |x|, where sgn(x) denotes the sign function. The error function

converges to ±1 at ±∞ fast. Function exp(−x2) also follows a quadratically exponential
decay. In the asymptotic analysis for large time T , the first three leading-order terms, Θ1,
Θ2 and Θ3 (see (4.35)–(4.37)), represent the linear function, the trigonometric function
and the constant function, respectively. We can replace the error functions and imaginary
error functions in (D5)–(D7) by their limits at T = ∞ and obtain the asymptotic expansion
of E[Ψ̂η](k, t) for large time t, which are (4.35)–(4.37). We note that the approximations
of F1(T), F2(T) and F3(T) are based on the assumption that the term BT is large.
This assumption indicates that the time scale of wave development is larger than the
development time scale of pressure fluctuation decorrelation (Phillips 1957). Take the
elapsed time at tua

τ /H = 1 for instance, we calculate that BT ≈ 3 for small wavenumber
klc = 0.06, and BT ≈ 180 for large wavenumber klc = 3.36. For these typical values of
BT , the key term in the expression of F1(T), erf(BT/

√
2), is very close to its value at

T = ∞, e.g. erf(3/
√

2) = 0.997 ≈ erf(∞).
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