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Many flows especially in geophysics involve turbulent boundary layers forming
over rough surfaces with multiscale height distribution. Such surfaces pose special
challenges for large-eddy simulation (LES) when the filter scale is such that only part
of the roughness elements of the surface can be resolved. Here we consider LES of
flows over rough surfaces with power-law height spectra Eh(k) ∼ kβs (−3 � βs < −1),
as often encountered in natural terrains. The surface is decomposed into resolved
and subgrid-scale height contributions. The effects of the unresolved small-scale
height fluctuations are modelled using a local equilibrium wall model (log-law or
Monin–Obukhov similarity), but the required hydrodynamic roughness length must
be specified. It is expressed as the product of the subgrid-scale root-mean-square
of the height distribution and an unknown dimensionless quantity, α, the roughness
parameter. Instead of specifying this parameter in an ad hoc empirical fashion, a
dynamic methodology is proposed based on test-filtering the surface forces and
requiring that the total drag force be independent of filter scale or resolution.
This dynamic surface roughness (DSR) model is inspired by the Germano identity
traditionally used to determine model parameters for closing subgrid-scale stresses
in the bulk of a turbulent flow. A series of LES of fully developed flow over
rough surfaces are performed, with surfaces built using random-phase Fourier modes
with prescribed power-law spectra. Results show that the DSR model yields well-
defined, rapidly converging, values of α. Effects of spatial resolution and spectral
slopes are investigated. The accuracy of the DSR model is tested by showing that
predicted mean velocity profiles are approximately independent of resolution for the
dynamically computed values of α, whereas resolution-dependent results are obtained
when using other, incorrect, α values. Also, strong dependence of α on βs is found,
where α ranges from α ∼ 0.1 for βs = −1.2 to α ∼ 10−5 for βs = −3.

Key words: turbulence modelling, turbulence simulation, turbulent boundary layers

1. Introduction
Due to their prevalence in geophysics and engineering, turbulent boundary layer

flows over rough surfaces have received sustained attention over many decades. The
research topic was reviewed recently by Jiménez (2004) and Castro (2007). Since the
early works by Schlichting (1936) and Nikuradse (1950), in the engineering literature
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Dynamic surface roughness model for LES 289

the focus has been on estimating the velocity shift, �U , in the logarithmic profile
in response to surface roughness. In experiments, surface roughness has often been
achieved with sand grains, leading to the concept of equivalent sand-grain roughness
height ks . In geophysical flows, the logarithmic profile is commonly expressed in terms
of an effective roughness height z0 (the Monin–Obukhov similarity theory, Monin &
Obukhov 1954). In general, streamwise velocity profiles obtained from laboratory
or field experiments, or direct numerical simulations (DNS) of rough wall-bounded
flows, can be used a posteriori to deduce such hydrodynamic roughness length scales.

Much attention has been focused on surfaces with roughness elements that can
be described by one or a few characteristic length scales, such as cubes, spherical or
ellipsoidal bumps, or sinusoidal shapes. Many recent studies have yielded relevant
experimental and computational data. For instance, Cheng & Castro (2002) and
Castro, Cheng & Reynolds (2006) present wind-tunnel experimental results for flow
over an urban-like staggered array of blocks. Coceal et al. (2006) use DNS to simulate
similar roughness element configurations, finding close agreement. Orlandi & Leonardi
(2006) and later Orlandi & Leonardi (2008) use DNS to study flows over surfaces with
various types of roughness elements, created with combinations of wedges (at different
orientations), cubes and cylinders. Also, Bhaganagar, Kim & Coleman (2004) and
Bhaganagar (2008) use the immersed boundary method within DNS to model flow
over three-dimensional (3D) ellipsoidal ‘egg carton’ roughness elements. In their work,
the height amplitude of the roughness elements is varied to study the corresponding
hydrodynamic response. Colebrook & White (1937) investigated transitionally rough
pipe flows with surfaces containing two sizes of sand grains. More recently, Schultz &
Flack (2005) extend the work of Colebrook & White (1937) in the fully rough regime.
For recent experimental data on flow over rough surfaces in pipes, channels and
developing boundary layers, see Shockling, Allen & Smits (2006), Allen et al. (2007),
Bakken et al. (2005) and Schultz & Flack (2007).

Nakayama, Hori & Street (2004) use DNS to study flow over surfaces composed of
two sinusoids in the streamwise direction, where the wavelength and amplitude of the
second wave is much smaller than the first. The flow field is then spatially filtered with
filter width sufficient to simultaneously remove details of the second surface wave.
For comparison, the spatially filtered large-eddy simulation (LES) equations are then
solved for flow over this smoothed surface. Differences between the LES and DNS
data are used by Nakayama et al. (2004) to develop additional terms in the filtered
(LES) momentum equation to account for pressure and skin-friction drag from the
unresolved, subgrid-scale (SGS), wavy surface.

Effective roughness lengths have been deduced from a variety of field experimental
data sets in atmospheric flows. In Raupach, Antonia & Rajagopalan (1991), a detailed
review of rough-wall boundary-layer flows is presented, including estimates of z0 for
flow over various types of plant canopies (these were compiled from earlier works
by Garratt 1977 and Jarvis, James & Landsberg 1976). Raupach (1994) presents a
simple model for roughness length z0 and displacement height d estimation based
on existing non-hydrodynamic information such as the canopy height and frontal
area index. Shaw & Schumann (1992) use LES to study atmospheric boundary layer
(ABL) flows over a deciduous forest canopy, where local pressure drag forces from
the canopy are imposed with a canopy stress model.

Brown, Hobson & Wood (2001) perform LES of neutrally buoyant ABL flow over
rolling hills with homogeneous roughness distribution and compare the numerical
results with wind-tunnel results; later, in a related work, Allen & Brown (2002)
investigated flow over topographic features similar to those considered in Brown
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290 W. Anderson and C. Meneveau

et al. (2001), but in which the height of the ‘ridges’ changes sufficiently to induce
flow separation. A number of studies have also focused on spatially heterogeneous
distributions of roughness. For instance, Avissar & Pielke (1989) develop paramet-
erizations for the SGS influence of surface heterogeneity in mesoscale numerical
simulations. Other studies on such spatially heterogeneous roughness distributions
include Hobson, Wood & Brown (1999), Bou-Zeid, Meneveau & Parlange (2004) and
Bou-Zeid, Parlange & Meneveau (2007). Chow & Street (2009) use the advanced
regional prediction system (ARPS) LES code for simulations of flow over a hill.

As reviewed above, most prior efforts have been devoted to surfaces with roughness
characterized by a single or few length scales. The geometric form of many natural
surfaces is multiscale and fractal-like, such as evolved fluvial landscapes (Rodriguez-
Iturbe et al. 1994), the wind-driven ocean surface and tree canopies. In recent years,
there has been growing interest in interactions of turbulence with objects characterized
by a wide hierarchy of length scales. Examples include the studies of properties of
turbulence decaying in the wake downstream of fractal objects (Queiros-Conde &
Vassilicos 2001; Staicu et al. 2003; Hurst & Vassilicos 2007; Seoud & Vassilicos
2007), and numerical simulations of fractal tree-like shapes in high-Reynolds-number
boundary layers (Chester & Meneveau 2007; Chester, Meneveau & Parlange 2007).

In this paper, we address the question of modelling flow over surfaces described by a
height field h(x, y) that displays a very broad range of length scales and features (x and
y correspond to the streamwise and transverse directions in simulation of the mean
flow, respectively), a problem that has received little attention by the community.
Specifically, LES of flow over multiscale surfaces when roughness elements span
scales in a range that includes both resolvable and unresolved scales. That is to
say, applications without the existence of a clearly defined ‘scale separation’. Natural
fluvial landscapes temporally evolve through erosive processes leading to fractal-like
branching geometries (Rodriguez-Iturbe et al. 1994; Rodriguez-Iturbe & Rinaldo
1997). Numerically, one can generate a fluvial landscape surface by solution of
a modified version of the Kardar–Parisi–Zhang (KPZ) equation. Starting with a
surface that features a dominant gradient with an additional field of low-amplitude
white noise superimposed, and letting erosive forces dynamically change the surface
based on simple rules, a network of channels will evolve. Evolved fluvial landscapes
display scale-similarity over a broad range of length scales, and accordingly can be
described by power laws, typically with a −2 spectral slope (Passalacqua et al. 2006).
The tremendous range of length scales present in fluvial landscapes presents special
challenges for numerical investigations, just as it does in turbulent flows at common
(engineering and environmental) Reynolds numbers.

Synthetic multiscale fractal-like surfaces can also be generated conveniently by
cumulative superposition of random-phase Fourier modes (RFM), whose amplitudes
vary with wavenumber (based on pre-defined spectral exponent) to ensure that
the final surface exhibits prescribed power-law spectra. Such synthetic surfaces are
attractive for systematic studies focusing on the effect of spectral exponent on the
characterization of roughness, and identification of landscape statistics that may
be useful for estimation of hydrodynamic length-scale parameterizations (such as the
root-mean-square, r.m.s., of the height distribution). Figure 1(a) shows a sample RFM
surface of this kind with spectral exponent βs = −2. In this work, we will consider
rough surfaces characterized by power-law height spectra with various exponents (in
some cases, to be statistically similar to natural examples).

The essence of LES relies on spatial filtering of flow field variables and subsequent
parameterization of dynamically important information removed during filtering. In
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Figure 1. Multiscale landscape built with random-phase Fourier modes and representative
spectral exponent βs = −2: (a) unfiltered surface on a 1024 × 1024 grid-point resolution and
(b) filtered surface on 32 × 32 resolution.

the case of surfaces with wide ranges of scales, this process imposes a spatial filtering
operation on the bounding surface. For example, in the case of LES of ABL flows,
the rough terrain could be composed of spatial length scales ranging from kilometres
down to millimetres, and the flow scales range from the meteorologic mesoscale to
(diffusive) length scales. The LES filter width, ∆, may be of the order of 10–50 m, i.e.
falling in between the relevant range of scales for both the terrain and the turbulent
flow in the ABL. We propose a formulation based on decomposing the surface height
distribution h(x, y) = h̃(x, y) + hSGS(x, y) into a resolved filtered height h̃(x, y) and
the difference, the subgrid or subfilter height distribution, hSGS(x, y), containing the
smaller-scale height fluctuations. Filtering is denoted by a (.̃ . .) and is understood to be
a spatial (two-dimensional, 2D) filter at length scale ∆ comparable to the scale used to
filter the LES fields (velocity, pressure, etc.) in the bulk of the flow. Figure 1(b) shows
the RFM sample surface (figure 1a), filtered at a scale ∆ =L/N = 2πH/N for N = 32.

It is reasonable to assume that the effects of the resolved height distribution h̃(x, y)
can be treated with existing numerical methods, such as terrain-following (body-fitted)
coordinate systems (Gal-Chen & Sommerville 1975a ,b; Wan & Porté-Agel 2010), the
immersed boundary method (Iaccarino & Verzicco 2003; Mittal & Iaccarino 2005) or
unstructured meshes for turbulent flows interacting with complex geometry (Mavriplis
1997). In this work, horizontally resolved variations in height will be represented using
the surface-gradient-based drag (SGD) model, described in Anderson & Meneveau
(2010). The SGD model is a variant of the immersed boundary method based on
an imposed body force proportional to the local gradient of the surface that is
normal to the local flow. The focus of this paper is on the development of a dynamic
physics-based model for the high-pass-filtered range of landscape wavenumbers (i.e.
hSGS(x, y)), instead of using empirical models that may not adequately represent the
landscape effects in LES.

When all roughness elements are unresolved, the classical approach is to model
roughness effects by using a hydrodynamic roughness scale in the context of the
logarithmic law for rough boundary layers. At high Reynolds numbers when viscous
drag on roughness elements can be neglected (fully rough), the concept of equivalent
sand-grain roughness height ks arises in the expression U (z)/u∗ = κ−1 ln(z/ks) + B∗,
where U (z) is the mean streamwise velocity at height z, u∗ is the friction velocity, κ is
the von Kármán constant, ks is an effective roughness, and B∗ ≈ 8.5. In geophysical
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292 W. Anderson and C. Meneveau

contexts, the equivalent expression U/u∗ = κ−1 ln(z/z0) is often used, both relations
being connected through z0 = ks exp(−B∗κ). It is generally possible a posteriori to
deduce an equivalent roughness length from measured or simulated velocity profiles.
However, as stressed in Schultz & Flack (2009), to use only geometric properties
of the surface height distribution to predict a priori an equivalent roughness length
remains an open problem of significant challenge and importance.

Various formulations have been proposed. Perhaps the most straightforward is
to express the hydrodynamic roughness length in terms of the r.m.s. of the height
fluctuations. In experiments of turbulent pipe flow where the amplitude of roughness
heights followed an approximately Gaussian distribution, Zagarola & Smits (1998)
report the relation ks = 3σh, and thus z0 ≈ 0.1σh for κ ≈ 0.4 and B∗ = 8.5. Extensive
experiments on flow over pyramidally shaped roughness elements by Schultz & Flack
(2009) show that the characteristic slope of the surface can affect the results, up to a
critical value above which the slope becomes irrelevant. Very recently, Flack & Schultz
(2010) use an extensive compilation of experimental data for flows in the fully rough
regime over surfaces with various types of roughness elements. They use the data to
identify which surface geometry moments are most relevant as scaling parameters,
and find that σh and skewness of the surface height probability distribution function,
sk , display strongest correlation with the experimentally recorded values of ks . An
empirical relation is presented:

ks ≈ 4.43σh (1 + sk)
1.37 . (1.1)

For surfaces with zero skewness, (1.1) reduces to ks ≈ 4.43σh, and therefore z0 ≈ 0.15σh.
In the context of geophysical flows, Garratt (1977) report (after Smith & Carson 1977)
the approximate relation z0 ≈ 0.2σ 2

h /λs , where λs is the average distance between
dominant orographic modes. For ABL flows over homogeneous terrain, Brutsaert
(2005) mentions z0 = h0/10, where h0 is a characteristic height of the roughness
elements; Tsai & Tsuang (2005) report experimental data which support this value
(i.e. z0 ≈ 5–10 % of mean surface element height) for ABL flows over urban roughness
elements where obstacles are close together, and also over rice fields with urban
roughness elements more sparsely distributed. They also report values for surface
r.m.s. which suggest z0 ≈ 0.01σh − 0.2σh. There are a number of other proposals for
functional relations between geometric and hydrodynamic roughnesses. This suggests
that expressing hydrodynamic roughness as the product of a universal non-dimensional
pre-factor and a surface geometric statistic is by itself unlikely to be successful, and
that some type of surface- and flow-dependent determination is necessary.

Now consider the LES context, when a low-pass-filtered range of landscape
fluctuations is resolved. A generalization of the classical approach of setting z0

proportional to the overall height r.m.s. is to set the SGS roughness height z0,∆

proportional to the local r.m.s. of the unresolved part of the height fluctuations, i.e.

z0,∆ = ασ∆
h , where σ∆

h (x, y) = (h̃2 − h̃2)1/2 (1.2)

is the local r.m.s. within a ∆ × ∆ subarea. The challenge still remains to specify
physically meaningful values for α, which will be denoted as the (dimensionless)
roughness parameter. For surfaces with broadband height fluctuations, the lack of
scale separation implies that the flow at scales slightly larger than the filter scale may
interact with the largest unresolved surface features in complicated ways. As already
concluded above for the case of fully unresolved roughness elements, it is unlikely
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Figure 2. Illustrative sketch showing a one-dimensional transect of a multiscale surface over
which turbulent flow is simulated using LES. The bold line shows the height of the surface,
filtered at scale ∆. Streamlines of the unfiltered (u) and filtered (ũ) velocity fields are also
shown. The SGS part of the surface defines a local r.m.s. value σ∆

h .

that a single universal value of α would apply to different surfaces, even in the context
of LES with parts of the surface resolved.

In this paper, a self-consistency condition is proposed to dynamically determine α

based on filtering surface forces at various scales and requiring that the total drag force
(momentum flux) be independent of filter scale or resolution. This self-consistency
condition is inspired by the Germano identity (Germano 1992) traditionally used to
determine model parameters for closing SGS stresses in the bulk of the flow (Germano
et al. 1991). We call this the dynamic surface roughness (DSR) model. It is developed
in § 2. Section 3 presents the LES code and simulation details, while § 4 presents the
various rough surfaces to be used in LES tests. Results and self-consistency tests are
presented in § 5. Concluding remarks and future perspectives are summarized in § 6.

2. Dynamic surface roughness model
A surface described with multiscale height distribution h(x, y) contains fluctuations

over a large range of length scales. In real environmental terrains, such fluctuations
range over many orders of magnitudes, from millimetres to kilometres. We assume
that when simulating flow over a multiscale surface, h(x, y) will be defined to some
very high resolution, ∆s (e.g. the geospatial resolution available in a GIS database).
This scale is assumed to be significantly finer than the LES resolution, ∆, with which
one is able to simulate the flow. Our attempt to represent hydrodynamic effects of
the full range of surface scales, from the LES horizontal domain size, L, to ∆s ,
relies upon spatially filtering the surface at the LES grid-filter width. The filtered
height distribution is h̃ = G∆ ∗ h, where (∗) denotes spatial convolution and G∆ is a
horizontal filter with characteristic length scale, ∆, comparable with (or equivalent to)
the horizontal grid-spacing to be used in LES. Figure 2 illustrates a sample transect
from a rough surface, where we indicate both the unfiltered (u, h) and filtered (ũ, h̃)
simulation variables (where (.̃ . .) denotes filtering at LES resolution, ∆). Fine-grained
(direct numerical) simulations would be required to resolve the small-scale pressure
and viscous drag effects associated with the smallest-scale velocity features, indicated
by dashed streamlines.

The total force acting on the fluid due to the surface is given by

Fi = −
∫

S

p̃w ñi dS + ρ

∫
S

τw,∆
ij ñj dS, (2.1)

where ñi is the unit normal vector to the filtered surface h̃(x, y) and p̃w is the
resolved wall pressure. The (kinematic) wall stress τw,∆

ij represents pressure drag
forces associated with the unresolved SGS roughness modes all the way down to
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the smallest scale ∆s . It is assumed that the Reynolds number is sufficiently large
to ensure that viscous drag at scales ∆s and larger may be neglected (fully rough
surfaces).

In order to model the momentum fluxes associated with the SGS height fluctuations,
we invoke the equilibrium log-law assumption which, for neutrally stratified flow,
expresses the kinematic wall stress tensor in terms of the resolved velocity nearest to
the surface according to

τw,∆
i3 (x, y) = −

⎡⎢⎢⎣ κU∆(x, y)

log

(
∆z/2 − d

z0,∆

)
⎤⎥⎥⎦

2

ũi(x, y, ∆z/2)

U∆(x, y)
, (2.2)

where i =1, 2, and ũi(x, y, ∆z/2) is the local instantaneous velocity at the first grid-
point above the surface (z = ∆z/2, for a staggered grid computational model), d is the
displacement height (Kaimal & Finnigan 1994) and will be set equal to the resolvable
height field d(x, y) = h̃(x, y), and κ is the von Kármán constant (κ = 0.4). Also, z0,∆

is the hydrodynamic roughness length, and

U∆(x, y) ≡
[
ũ1 (x, y, ∆z/2)2 + ũ2 (x, y, ∆z/2)2

]1/2
(2.3)

is the local instantaneous resolved horizontal velocity magnitude at scale ∆, at the
first vertical grid point. As an aside, we note that when computing the stress that will
be substituted into the LES ((3.2), § 3), the velocity field in (2.2) and (2.3) is test-filtered

(i.e. ũi(∆z/2) → ̂̃ui(∆z/2), i = 1, 2, where (̂̃. . .) denotes test-filtering at a scale 2∆). As
shown in Bou-Zeid, Meneveau & Parlange (2005), this approach is advantageous to
remove excessive velocity fluctuations that decrease the accuracy of the log law.

As summarized in § 1, the main challenge is to model the roughness length by
specifying an appropriate roughness parameter α in the expression z0,∆ = ασ∆

h . In
order to regularize the expression in the limit of negligible roughness (σ∆

h =0) when
substituting in the logarithm, a slightly different expression is used, namely

z0,∆ =
[
z2

0,s +
(
ασ∆

h

)2]1/2
, (2.4)

where z0,s is a roughness associated with scales even smaller than those to which
h(x, y) is originally prescribed at scale ∆s (it could also be proportional to the viscous
roughness length, i.e. z0,s = c ν/u∗ for finite-Reynolds-number flows where viscous
drag effects would be present). The expression (2.4) is formed such that the variances
of the heights at various scales are additive. The roughness parameter α is in principle
unknown, allowing the hydrodynamic roughness to differ from the known, local SGS
geometric height r.m.s. at scale ∆. One expects α to depend on flow physics and
geometric properties of the surface. In this work, only cases in which z0,s � ασ∆

h

will be considered, so that the precise value of z0,s is not physically important but
numerically convenient.

The main step in determining the roughness parameter α is based on rewriting
(2.1) at scale 2∆, i.e. at a ‘test-filter’ scale. Based on the requirement that the total
drag force must be independent of the resolution chosen to formulate the model, the
following identity must hold:

−
∫

S

p̃w ñi dS + ρ

∫
S

τw,∆
ij ñj dS = −

∫
S

̂̃pw ̂̃ni dS + ρ

∫
S

τw,2∆
ij

̂̃nj dS. (2.5)
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Replacing the assumed model for the total drag (2.1) at two scales, considering instead
equivalence of total wall stress, and assuming that the resolved height distribution
has small enough slopes so that τw,∆

i3 is the dominant wall stress component, the
self-consistency condition emerges:

1

ρ
〈p̃wñi〉+-

⎡⎢⎢⎣ κU∆

log

(
∆z/2 − h̃

z0,∆

)
⎤⎥⎥⎦

2

ũi

U∆. =
1

ρ

〈̂̃pw ̂̃ni

〉
+-

⎡⎢⎢⎢⎢⎣ κU 2∆

log

(
∆z/2 − ˆ̃h

z0,2∆

)
⎤⎥⎥⎥⎥⎦

2

̂̃ui

U 2∆.,

(2.6)
where 〈· · ·〉 indicates two-dimensional plane-averaging. All velocities are written at
the height of the first grid point above the surface (e.g. z =∆z/2 in a staggered grid
code) and the roughness heights at the two scales are given, respectively, by

z0,∆ =
[
z2

0,s +
(
ασ∆

h

)2]1/2
and z0,2∆ =

[
z2

0,s +
(
ασ 2∆

h

)2]1/2
. (2.7)

The implicit assumption has been made that the parameter α is scale-invariant
(Meneveau & Katz 2000). Also, note that condition (2.6) is enforced in the
dominant flow direction (e.g. i = 1), but other options exist, such as least-square-
error minimization over the two vector components. Also, to capture possible spatial
variations, one could perform the averaging over smaller subregions of the surface.
For the present initial applications and tests, a planar averaging will be performed,
appropriate for statistically homogeneous surfaces and flows considered here.

If the resolved pressure forces acting on the surface are known during the simulation,
then (2.6) provides an equation that can be solved for the unknown model parameter
α since all other variables in (2.6) are known. If the resolved pressure forces acting on
the surface are simulated using an immersed boundary method or a surface-gradient
approach (see § 3) in which the forces are prescribed using a body force, f ∆

i , near the
surface, then in (2.6) a term proportional to 〈f ∆

i 〉 replaces 〈p̃wñi〉/ρ at scale ∆, and

〈f 2∆
i 〉 replaces 〈̂̃pw ̂̃ni〉/ρ at scale 2∆.
When filtering at scale ∆, forces are composed of resolved pressure forces acting on

the height fluctuations and contributions from the SGS height variations proportional
to the local r.m.s. If the same surface is now filtered at the larger test-filter scale
2∆, the resolved pressure forces are smaller than at scale ∆, due to the smoothed
height fluctuations. However, the unresolved local height r.m.s. is larger since more
fluctuations are now subgrid, and thus one expects the SGS drag to be larger. The DSR
model relies on the condition that there should exist a single roughness parameter α for
which the total force (the sum of resolved and SGS drag) is the same at filter and test-
filter scales. The next section describes the LES code used in tests of the DSR model.

3. Large-eddy simulation details
The LES code (Albertson & Parlange 1999) solves the incompressible high-

Reynolds-number momentum equation in rotational form and the boundary layer is
forced with a constant pressure gradient in the streamwise direction:

∂ũi

∂xi

= 0, (3.1)

∂ũi

∂t
+ ũj

(
∂ũi

∂xj

− ∂ũj

∂xi

)
= − 1

ρ

∂p̃

∂xi

− ∂τij

∂xj

− 1

ρ
Πδi1 + f ∆

i . (3.2)
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In (3.2), p̃ is the modified pressure, f ∆
i is a body force (for example, to represent

horizontally resolved height fluctuations using an immersed boundary or surface-
gradient model, see below), Π is the imposed constant streamwise pressure-gradient
forcing, and therefore in steady-state conditions for fully developed flow,

u2
∗ = − 1

ρ
ΠH, (3.3)

where u∗ is the friction velocity and H is the height of the computational domain.
Here τij is the SGS stress tensor (τij = ũiuj −ũi ũj ). In this paper, we consider neutrally
stratified flow without the presence of a scalar. Incompressibility is enforced by the
pressure Poisson equation, solution of which yields a pressure correction on the
velocity field at every time step. Variants of this code have been used extensively in
past research efforts, for example Porté-Agel, Meneveau & Parlange (2000), Bou-Zeid
et al. (2005), Chamecki, Meneveau & Parlange (2009) and Anderson & Meneveau
(2010).

The code uses a staggered grid formulation, with the first vertical computational
level for ũi (i = 1, 2) placed at height ∆z/2 from the ground. The code employs pseudo-
spectral discretization and evaluation of derivatives in the horizontal directions,
while in the vertical direction derivatives are evaluated with centred second-order
finite-differencing. The advection term is de-aliased with the 3/2 rule (Orszag 1970).
At the domain top, we impose the stress-free boundary condition by imposing
∂ũi/∂x3|z/H = 1 = 0 (i =1, 2) and non-penetration condition for the vertical velocity
(ũ3|z/H =1 = 0). The horizontal boundary conditions on the vertical faces of the domain
are periodic, owing to the use of spectral methods in the horizontal directions. The
horizontal domain dimensions are Lx =Ly = L = 2πH . The number of computation
points in each direction are denoted as Nx = Ny =Nz = N (z corresponds to the
vertical). The domain is discretized such that ∆x =Lx/Nx and ∆y = Ly/Ny . As the
streamwise and transverse grid size is equal, from this point we simplify by specifying
∆ =∆x = ∆y . For each of the surfaces to be considered (see § 4), we run LES with
N = 32, 64 and 128. The base hydrodynamic roughness is z0,s/H = 1 × 10−9 (i.e. small
enough to be simultaneously negligible while preventing numerical instability for the
case of σ∆

h = 0 or α = 0, in (2.2)).
The deviatoric part of the SGS stress tensor is expressed using the eddy-viscosity

concept as

τij − 1
3
δij τkk = −2νt S̃ij , (3.4)

where νt is the turbulent eddy-viscosity and S̃ij is the resolved strain-rate tensor.

The well-known Smagorinsky model, νt =[CS∆]2|S̃|, where CS is the Smagorinsky
coefficient (Smagorinsky 1963), has seen several improvements. Early studies used
location-, discretization-, and flow-dependent prescriptions for CS (Lilly 1966;
Deardorff 1970; Mason & Callen 1986; Piomelli, Moin & Ferziger 1988) for
simulations in which the turbulence was not fully homogeneous. Germano et al.
(1991) developed a dynamic tuning-free approach to computing the Smagorinsky
coefficient, which was based on filtering the flow variables at two resolutions: ∆ and
2∆, and assuming scale similarity between the information at these resolutions. This
approach has been further generalized and applied to other SGS parameterizations
(Kosović 1997; Chow et al. 2000) and to account for scale dependencies (Porté-Agel
et al. 2000; Bou-Zeid et al. 2005). The SGS model used in this work is the Lagrangian
scale-dependent dynamic model, as introduced in Bou-Zeid et al. (2005).
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Simulations are run with non-dimensional time step, �t∗ = �tu∗/H =1.8 × 10−4,
0.9 × 10−4 and 2.25 × 10−5 for simulations spatially resolved with N = 32, 64 and 128,
respectively. System variables are non-dimensionalized with domain height, H , and
friction velocity, u∗. All LES are run until the flow field stabilizes with respect to
various simulation statistics including temporal evolution of kinetic energy.

3.1. Horizontally resolved drag force using surface-gradient method

For the application encountered here, where a Cartesian-structured grid is used and
the smoothed surface, h̃, falls below the height of the first vertical grid point, ∆z/2, the
SGD model is used to represent an immersed drag force f ∆

i (see (3.2)) corresponding
to form drag, as recently shown in Anderson & Meneveau (2010). For simplicity, here
we consider cases with equivalent mesh size in the streamwise and transverse directions
(∆ = ∆x = ∆y). The flow in the cell volume nearest to the surface is obstructed by an

area normal to the horizontal flow that is equal to the component of ∇h̃ ∆ in the
direction of the flow. The corresponding incoming linear momentum flux due to the
resolved flow is thus ρ ũ(ũ · ∇h̃) ∆2, and the method relies on adding the volume force
near the boundary that will cancel this momentum flux. Dividing by density and local
mesh volume, �V = ∆2∆z, the volume force to be applied to the grid points nearest
to the surface (∆z/2 in our staggered mesh code) becomes

f ∆
i (x, y, ∆z/2) = −ũiR

(
ũk

∂h̃

∂xk

)
1

∆z

, (3.5)

where ∂h̃/∂xk are the horizontal components of the surface gradient (k =1, 2), and
the velocities are evaluated at height z = ∆z/2; R(x) is the ramp function, defined as
R(x) = x if x � 0 or 0 if x < 0. We consider incoming flow in both the streamwise and
transverse directions and specify that the obstacle only causes hydrodynamic drag
when the flow component is normal into the obstacle; otherwise, we assume that there
is no resolved drag force since on downstream facing surfaces, often involving flow
separation, the force is much smaller. In the applications to be considered, we neglect
forcing in the vertical direction, i.e. we set f ∆

3 = 0. The SGD model has been tested
in Anderson & Meneveau (2010) by comparing with a number of data sets in the
literature for surfaces with a variety of shapes (Nakayama & Sakio 2002; Bhaganagar
et al. 2004; Kanda, Moriwaki & Kasamatsu 2004; Coceal et al. 2007; Xie, Coceal &
Castro 2008), and good agreement was reported.

In the context of this surface-gradient approach, the DSR model (2.6) can be
rewritten by replacing the surface integral of pressure force by a volume integral of

the body force (i.e.
∫ ∆z

0
f ∆

i (z) dz ≈ f ∆
i (∆z/2)∆z); thus,

〈
ũiR

(
ũk

∂h̃

∂xk

)〉
+-

⎡⎢⎢⎣ κU∆(x, y)

log

(
∆z/2 − h̃

z0,∆

)
⎤⎥⎥⎦

2

ˆ̃ui

U∆.
=

〈̂̃uiR

(̂̃uk

∂̂̃h
∂xk

)〉
+-

⎡⎢⎢⎢⎢⎣ κU 2∆(x, y)

log

(
∆z/2 − ˆ̃h

z0,2∆

)
⎤⎥⎥⎥⎥⎦

2

̂̃ui

U 2∆.. (3.6)
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Note that in rewriting the SGS drag term at both scales, we follow the approach

of Bou-Zeid et al. (2005) by using the test-filtered velocity in the log law (thus, (̂̃. . .)
denotes filtering at twice the test-filter width, 4∆), and U 2∆ is defined according to

U 2∆(x, y) ≡
[̂̃u1

(
x, y,

∆z

2

)2

+ ̂̃u2

(
x, y,

∆z

2

)2
]1/2

. (3.7)

Unlike in applications of the Germano identity to the standard Smagorinsky model
(Germano et al. 1991), where algebraic manipulation leads to the well-known explicit
expression for CS (thereby simplifying dynamic computations), here the unknown
α enters inside a transcendental function (logarithm). This makes solution more
challenging. The bisection solution-finding algorithm is used at each time step of the
LES to solve α (the bisection method solution interval limits, [a, b], are initially set
to a = 0 and b = 1, and solutions are always found in this interval in our simulations).
With α computed, the effective roughness can subsequently be computed with (2.4)
and substituted into (2.2) (i =1, 2), for subsequent use at the next time step.

Simulations are initialized from a logarithmic mean velocity profile to which random
numbers (white noise) are added with a prescribed kinetic energy profile. These
attenuate quickly and physically realistic turbulence develops. To preserve numerical
stability of the DSR model, an initialization period of 1000 time steps is used in
which the SGS roughness parameter is ‘statically’ specified as α = 0.3 (we have found
this measure to be somewhat conservative and in most cases it could be relaxed; in
any case, we add that 1000 time steps represents approximately 0.5 % of the total
number of LES time steps necessary to converge the flow). Once the dynamic model
is activated and the dynamic α values are used at the next time step, results show that
the parameter converges to its final value rapidly. This is found even for cases where
the dynamic (solution) α is several orders of magnitude different from the initial static
value. Furthermore, it has been independently verified that using different values of
static α for initialization: (i) makes negligible difference to the subsequent dynamic
evolution of α and (ii) does not affect the rate of convergence of α.

4. Rough surface cases
In order to test the DSR model in LES of flow over surfaces with scale-invariant

height distribution, we consider isotropic synthetic surfaces built using the random
Fourier modes (RFM) method with power-law height spectra. The surfaces are
constructed as follows:

h(x) =
∑

k

ck1/2(βs−1)ei(k·x+ϕ). (4.1)

In the above, c is an amplitude (adjusted as described below), βs is the spectral
slope, and ϕ is a random phase shift between 0 and 2π and chosen from a uniform
distribution for each horizontal wavenumber k. In this work, RFM surfaces are built
with spectral slopes βs = −1.2 (most rough), −1.6, −2.0, −2.4 and −3 (most smooth).
The choice of these βs values serves two purposes: (i) to build landscapes that cover
a range of statistics that are similar to those often encountered in geophysical flows,
such as evolved fluvial landscapes where βs = −2.0 is common (Passalacqua et al.
2006) or the developed wind-driven ocean surface where βs = −3.0 has been reported
(Phillips 1958); and (ii) to provide a framework for parametric tests on the dependence
between βs and the SGS roughness parameter, α. Applying Orey’s formula (Orey
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1970; Mandelbrot 1982) that relates fractal dimension D of a self-affine surface to the
spectral exponent, D = (7+βs)/2, the range −3.0 � βs � −1.2 corresponds to a range
of surface fractal dimensions of 2 � D � 2.9. Note that we do not consider rougher
surfaces (βs larger than −1.2) to avoid approaching βs = −1, which is ill-defined. This
issue arises because [σ∆

h ]2 =
∫ ∞

π/∆
Eh(k)dk and thus the SGS height variance would

diverge with small-scale cutoff for βs � −1. Also, the corresponding fractal dimension
would indicate a ‘space-filling’ surface (D = 3), which reaches the limit of validity of
Orey’s formula.

It is useful to recall that the spectral density of the gradients of the height (surface
slope) is k2Es(k) and therefore it scales with an exponent 2 + βs . Since the variance
of the gradient is the integral of the spectrum, for any βs � − 3 the variance of the
gradient will be dominated by the small scales (ultraviolet divergence). Thus, even for
the smoothest surfaces considered here, the most dominant contributions to gradients
occur at the smallest scales. This is consistent with the assumption that the drag
forces consist of pressure (form) drag at all scales, down to the smallest scales.

In the numerical experiments, synthetic landscapes are built using high resolution,
using Nx × Ny = 1024 × 1024. These fine-grained surfaces are processed in order to
obtain (unfiltered) surfaces that all have the same mean height and variance. The
processing is accomplished as follows. Starting with the unfiltered height distribution
h(x, y) obtained from (4.1), the mean height is subtracted and the result is divided
by its overall r.m.s. and multiplied by 1

4
∆min

z , where ∆min
z is the vertical mesh spacing

of the highest resolution case we consider, with N = 128. The height distribution now
has zero mean and r.m.s of 1

4
∆min

z . In order to ensure that (typically) all peaks and
valleys fall within ± 1

4
∆min

z , the heights are divided again by a factor of ξ = 2.75. We
finally add 1

4
∆min

z . Thus, all (unfiltered) surfaces have the same mean height and r.m.s.,
irrespective of βs . For inclusion as boundary condition in LES, we apply a spatial
box filter of size ∆ to create the h̃ surfaces which can be horizontally resolved in the
LES computational mesh (with the SGD model). It is then tested that the resulting
surfaces all satisfy 0 < h̃ < ∆z/2 at every point in the domain, for the N = 128 case.
The two coarser resolutions, N = 32 and 64, trivially comply with this constraint since
∆z/2 for these N is four times and double the value for N = 128, respectively. In the
context of LES of the ABL, if the domain height corresponds to 1.5 km (such as in
typical LES of micro-meteorological processes), the grid scales ∆ =2πH/N used here
would correspond to 300, 150 and 75 m, approximately.

Figure 3 shows images of the synthetic surfaces generated. For visualization
purposes the vertical and horizontal scaling is not the same (vertical direction has
been very much stretched to see the roughness elements). We show the two extreme
cases considered, with figure 3(a) illustrating a very rough surface with βs = −1.2 and
figure 3(b) showing the smoothest surface considered, with βs = −3.0. An intermediate
roughness case for βs = −2.0 has already been shown in figure 1. The range of spectral
slopes −1.2 � βs � − 3 considered in this paper offers a meaningfully wide range that
encompasses realistic terrains around the often observed βs = −2 case (for evolved
fluvial landscapes). Radial height spectra measured directly from the synthetic surfaces
are shown in figure 4. By design, the RFM surfaces must exhibit height power-law
spectra, Eh(k) ∼ kβs .

Figure 5 presents important statistical and extreme-value properties of the RFM
surfaces as a function of βs , for the three LES resolutions considered. By construction,
the average filtered height 〈h̃〉/H is constant across the range of spectral slopes
considered. The maximum and minimum values of h̃/H do not change significantly
across βs , though we note an increase in maximum h̃/H between the N =32 and
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Figure 3. Visualization of the fine-grained (1024 × 1024) multiscale landscape built with the
RFM method: (a) βs = −1.2 and (b) βs = −3.0.
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Figure 4. Radial spectra of RFM surfaces for spectral exponent values indicated in the figure.
Energy normalized by square of the global r.m.s. of the fine-grained surface, σ 2

G. Vertical arrows
indicate LES grid-filter wavenumbers π/∆ for the three spatial resolutions considered in this
work.

N = 128 surfaces in figures 5(a) and 5(c), respectively. This is expected, as decreasing
filter width ∆ reduces smoothing and results in more surface topography modes being
resolved. To this extent, we note the significant change in the plane-averaged norm of
the resolved surface streamwise first-order derivative 〈|∂1h̃|〉 between resolutions (note
that the transverse gradient 〈|∂2h̃|〉 is of similar magnitude, consistent with the surface
isotropy imposed by the construction method, (4.1)). Similarly, the plane-averaged
normalized r.m.s. 〈σ∆

h 〉/H varies as expected across the different resolutions, being
largest for N = 32 (figure 5a) and decreasing with finer resolution.

5. Large-eddy simulation results
Results from LES with the DSR model are presented for flow over the five

different RFM surfaces. Mean velocity profiles are shown in § 5.2 and some important
representative second-order velocity statistics are reported in § 5.3
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Figure 5. Statistical and extreme values of the synthetic RFM surfaces as a function of
spectral slope βs and resolution for different LES resolutions: (a) N = 32, (b) N = 64 and
(c) N = 128. �, mean height (〈h̃〉/H ); dashed line, maximum value of the filtered height

(max[h̃]/H ); solid line, minimum value of the filtered height (min[h̃]/H ); +, mean of the SGS
r.m.s. (〈σ∆

h 〉/H ); ∗, mean magnitude of the resolved slope (〈|∂1h̃|〉).

5.1. SGS roughness parameter

As outlined in § 3.1, the DSR model evaluates the SGS roughness parameter α during
LES with the bisection method. For the N = 32 cases, figure 6 illustrates how the two
components of the drag force (drag based on log law, (2.2), and resolved force due to
SGD model contribution, (3.5)) vary with respect to α, and how the solution occurs
when the total wall stress, −〈τ T

13〉, is equivalent at the grid- and test-filter scale. The
total (superscript T ) kinematic wall stress at scale ∆ is, in this application, defined
according to

−
〈
τ∆,T
13 (α)

〉
= −

〈
f ∆

1

〉
∆z −

〈
τw,∆
13 (α)

〉
=

〈
ũ1R

(
ũk

∂h̃

∂xk

)〉
+-

⎡⎢⎢⎣ κU∆(x, y)

log

(
∆z/2 − h̃

z0,∆

)
⎤⎥⎥⎦

2

ˆ̃u1

U∆.. (5.1)

A similar equation is written at scale 2∆ (the right-hand side of (3.6)) and thus the
dynamic approach can also be written as 〈τ∆,T

13 (α)〉 = 〈τ 2∆,T
13 (α)〉. In practice and in

this paper, planar averaging is used without time averaging. More spatially localized
versions of the model can be envisioned, but in this first application we opt for the
simplest approach of horizontal averaging; we also note that this is somewhat similar
to Germano et al. (1991), who used planar averaging to maintain numerical stability
when dynamically evaluating CS in LES of turbulent channel flow. This approach is
consistent with the surfaces and flows considered with planar statistical homogeneity.

The SGS part of the total stress depends on the α value. Shown in figure 6 is
the instantaneous total plane-averaged wall stress evaluated from simulation at a
particular time, for three of the surface spectral slopes considered. The stress shown
here is evaluated as a function of the parameter α. With increasing α, the roughness
and the wall stress 〈τw,∆

13 (α)〉 increases. The total stress at scale 2∆ may also be

evaluated as a function of α. Here 〈τw,2∆
13 (α)〉 is larger than at scale ∆ and also

increases with α, and more quickly. However, the resolved part of the stress is smaller.
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Figure 6. Value of individual and total wall stress components (SGS and resolved) as a
function of the roughness parameter α. Results are shown for both grid-filter scale ∆ and

test-filter scale 2∆. Lines and symbols: solid line, 〈τT,∆
13 〉; dashed line, 〈τT,2∆

13 〉; dot-dashed line,

〈τw,∆
13 〉; dotted line, 〈τw,2∆

13 〉; �, 〈f ∆
1 〉∆z; �, 〈f 2∆

1 〉∆z. The insets show the total wall stress
difference whose zero crossing indicates the value of α that yields self-consistency across scales
where the mean total stresses at two scales are equal. Different plots correspond to different
spectral slopes, namely (a) βs = −1.2, (b) βs = −2.0 and (c) βs = −3.0. These profiles are from
the N = 64 cases.

As a result, for a particular value of α both curves cross, and this is the solution for
α sought using the bisection algorithm, at each time step of the simulation. The α

value found as a solution is then used to evaluate the wall stress during the next time
step.

Since the simulations reach statistically steady conditions, the correct solution
for each case shown in figure 6 is when −〈τ T

13〉/u2
∗ ≈ 1, indicating that the total

stress balances the imposed pressure gradient. One can also appreciate that the
contribution from the SGD model increases for decreasing spectral slope (smoother
surfaces), consistent with the expectation that drag effects of smoother surfaces are
more strongly affected by the gradient ∇h̃ (3.5) than by the SGS portion. In some
cases (e.g. figure 6a), the solution of 〈τ T,∆

13 〉 = 〈τ T,2∆
13 〉 is difficult to observe and the

insets show more clearly where the solution occurs. Corresponding plots for the other
βs cases considered and those at other resolutions (N = 32 and N = 128) are very
similar (and omitted here for brevity).

Figure 7 shows time series of α during the simulation, for the LES using N = 64
resolution. The corresponding surface spectral slopes are indicated in the legend
while Nt denotes LES time step. The figure shows that α converges very quickly,
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Figure 7. Typical time series of the SGS roughness parameter as a function of time step for
N =64 LES and the five spectral slopes, following activation of the dynamic model after 1000
time steps. Only the first 20 000 time steps are shown. The time step is δt = 1.8 × 10−4H/u∗.
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Figure 8. Time-averaged SGS roughness parameter α as a function of the surface spectral
exponent (〈· · ·〉t denotes temporal average).

much faster than the velocity field, to the final value around which it fluctuates, as
soon as the dynamic model is activated (Nt > 1000). No undesirable instabilities are
observed and the behaviour of the model is extremely robust. As a result, no clipping
of the parameter α is required. In large part this robust behaviour is related to the
planar-averaging process. In terms of the values of the parameter, it is observed
that for each decrement of βs by −0.4, α decreases by approximately an order of
magnitude.

For all cases, the temporally averaged α are shown in figure 8 as a function of
spectral exponent and for the three resolutions considered. Temporal averages are
taken for the final 30 % of the simulation (typically over 70 000 time steps). A strong
dependence of α on spectral slope is evident, while dependence on resolution is quite
small. This serves as an a posteriori verification of the scale-invariance assumption, in
which it was assumed that α should not depend upon filter scale owing to the lack of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

13
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.137


304 W. Anderson and C. Meneveau

characteristic scale in a multiscale surface with power-law spectrum interacting with
a very high Reynolds number turbulent flow.

5.2. Mean velocity profiles

In order to validate the dynamic approach, comparisons to high-resolution data
would be desirable. Due to the challenges of finding experimental or field data at
Reynolds numbers high enough and of sufficient accuracy for flow over rough surfaces
with known power-law surface height spectrum, a computational approach is chosen
for testing the accuracy of the DSR model. To use simulation data, one would
like to perform simulations with high resolution and compare with LES at coarse
resolutions. Using DNS with viscous effects included to simulate a reference case
with sufficient range of scales against which LES could be meaningfully compared
would be prohibitive: a numerical simulation would need to resolve length scales
ranging from the flow viscous scale and corresponding surface height fluctuations
(i.e. sub ∆s), to surface length scales defining the largest height fluctuations that
would be at least several orders of magnitude larger than ∆s . Conversely, one may
consider high-resolution LES in which some of the roughness is modelled using an
effective roughness height, i.e. specifying a particular value of z0 or α. For instance,
one may perform N3

1 LES and compare with N3
2 LES (with N2 � N1) and test

whether the mean velocity profiles coincide, i.e. if the SGS surface parameterization
in the coarse-scale LES effectively captures the additional drag that arises from the
height fluctuations between the N1 and N2 resolutions. Instead of specifying some
particular value of α for the fine-scale LES, one may use the dynamically computed
α value. Such comparison then reverts to comparing the dynamic LES at various
resolutions and testing whether the mean velocity (shift, �U ) is independent of the
LES resolution. Then, one may also test whether such independence is observed when
using non-dynamic, arbitrarily specified values of α.

In fact, to fully motivate the DSR model in the context of achieving resolution-
independent predictions, it is firstly of interest to perform ‘no-model’ simulations by
setting α =0 in (2.4). Drag is then exclusively imposed by resolvable roughness modes
(through the SGD model, f ∆

i , (3.5)), and increasing resolution (N) increases the range
of roughness modes resolved by the SGD drag model. Results are shown in figure 9.
As expected, vertical profiles of streamwise velocity are subjected to increased drag
with increasing resolution and no resolution-independent mean velocity profiles are
obtained. This disagreement (or resolution-dependence) between velocity profiles for
different N clearly highlights the need for a model for the unresolved roughness
effects.

Figure 10 shows the plane- and time-averaged streamwise (i = 1) velocity profiles for
LES with drag effects modelled with the DSR model. Runs with different resolutions
are indicated using different symbols. There are five groups of curves, each with three
lines for the three resolutions considered. The different βs are indicated at the far right
of the plot. As a reference, also shown is the log law to be expected with only the
base-line roughness z0,s (dashed line). As can be expected, the velocity profile shifts
downwards for increasing βs , indicating more drag imposed with rougher surfaces.
Comparisons of the mean velocity profiles focus on the more universal log-layer
region, at z/H � 0.15. Further away from the surface the details of the mean profile
depend on the boundary condition used in the upper parts of the domain. For
instance, we observe that the present simulations based on ‘half-channel boundary
conditions’ yield less of a wake behaviour as compared to that in developing turbulent
boundary layers.
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Figure 9. Non-dimensional mean streamwise velocity profiles in semi-logarithmic scale for
the RFM surface for βs = −1.2 with no model for unresolved roughness modes. Increasing
resolution increases the range of resolved roughness modes (modelled with f ∆

i , (3.5)), as
expected. Lines and symbols: dotted line, logarithmic profile (1/κ)log(z/z0) for z0 = z0,s; �,
LES with N = 32; �, LES with N =64; �, LES with N = 128.
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Figure 10. Non-dimensional mean streamwise velocity profiles in semi-logarithmic scale for
RFM surfaces with spectral slopes indicated on right of the figure, using the dynamic roughness
model; dotted line, logarithmic velocity for z0,∆ = z0,s; �, N = 32; �, N = 64; �, N = 128.

In comparing the results for different resolutions, quite good agreement in the
velocity profiles can be observed for each of the different roughness cases. The
model adjusts to changing resolutions by exchanging resolved drag with unresolved
drag. The dynamically obtained α is the (unique) value that causes such consistent
behaviour, precisely because it has been obtained from the self-consistency condition
applied to the total mean wall stress. Hence, the velocity shift in the log layer
is approximately independent of the resolution. Minor differences (typically less
than 8 %–10 %) are still visible between resolutions, but these differences are much
smaller than those obtained when using α =0 (figure 9). In figure 11, we show what
happens if for the βs = −1.2 and βs = −3.0 surfaces we use a static (non-dynamic)
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Figure 11. Non-dimensional mean streamwise velocity profiles in semi-logarithmic scale for
RFM surface for (a) βs = −1.2 and (b) βs = −3.0, but using a non-dynamic (static) value of
α = 0.001 in (a) and α = 0.1 in (b). Results show significant dependence on resolution when
a static α specified is different from that obtained by the dynamic condition, highlighting the
importance of using the correct value of α for a given surface. Dotted line, logarithmic profile
(1/κ)log(z/z0) for z0 = z0,s; solid line, logarithmic profile for z0 = z0,G = (z2

0,s +(ασG)2)1/2, where

σG = (〈h2〉 − 〈h〉2)1/2 is the overall r.m.s. of the rough surface and again, α = 0.001 in (a), and
α = 0.1 in (b); �, LES using N = 32; �, LES with N =64; �, LES with N = 128.

α different from that obtained by application of the dynamic approach. For βs = −1.2
and βs = −3.0, we impose α = 0.001 and α = 0.1, respectively, for each of the
resolutions. It can be observed that velocity profiles no longer agree at different
resolutions. Since the α value prescribed for the βs = −1.2 case is too small compared
to the dynamic value, as one coarsens the grid, the SGS part of the drag is
less than it should be and the velocity profile continues to shift upwards. Stated
differently, refining the grid does not lead to a converged solution and the profiles
shift downwards. Conversely, for the βs = −3 case, in which the specified α is too
large compared to the dynamic value, refining the grid yields continuing upward shifts
of the mean velocity, and again there is no indication of convergence as a function
of scale. In both cases, if the entire roughness was modelled using the equilibrium
log law with a roughness scale z0,G = (z2

0,s + (ασG)2)1/2, one could obtain the log law

〈ũ1(z)〉/u∗ = (1/κ) log(z/z0,G) indicated by a solid line. Here σG =(〈h2〉 − 〈h〉2)1/2 is the
overall r.m.s. of the rough surface. As can be observed, the various LES differ more
and more from this value at increasing resolution. This is a clear indication that the
prescribed values of α are unrealistic.

Alternatively, a comparison with the global roughness height that models the entire
roughness can be made using the dynamically computed α to construct a log-law
profile with z0,G = (z2

0,s + (〈α〉t σG)2)1/2. In figure 12 this global log law (solid lines) is
compared to the N =128 LES. The agreement is very good (the largest discrepancy
occurs for the βs = −3.0 case for which there is a 5 % difference). This result gives
strong indication that the dynamically computed α is the appropriate value, since
it leads to a resolution-invariant value of the total wall stress. This finding may be
particularly useful in the context of mesoscale atmospheric modelling, where typical
horizontal spatial resolutions are comparable to the size of the entire horizontal
domain considered here (e.g. several kilometres). It is also useful to recall that if one
plots the mean velocity profiles as a function of z/z0,G (instead of as a function of
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Figure 12. Non-dimensional mean streamwise velocity profiles for RFM surfaces with spectral
slopes indicated on right of the figure. Symbols and lines: �, LES using N = 128; solid lines,
logarithmic velocity profile (1/κ)log(z/z0,G), with z0,G = (z2

0,s +(〈α〉t σG)2)1/2 evaluated using the
time average of the dynamically computed roughness parameter α; dashed line, logarithmic
profile (1/κ) log (z/z0) for z0 = z0,s .
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Figure 13. Vertical distribution of normalized velocity variances from N = 64 LES for surfaces
with spectral exponent: (a) βs = −1.2 and (b) βs = −3.0. The variance quantity is denoted by
the index in the legend.

z/H as done in figure 12), the results for the different surface roughnesses would all
collapse closely into a single universal curve. This follows from the good agreement
between LES and theoretical lines shown in figure 12, both in terms of the intercept
(meaning good agreement with z0,G) and the slope (meaning that the LES produces
a value of κ ∼ 0.4, the assumed theoretical value).

5.3. Second-order moments

Vertical profiles of variance and normalized shear stress are shown in figures 13
and 14, respectively. We show only results for the two spectral slopes, βs = −1.2
and −3.0. Results for the surfaces with intermediate βs values are very similar.
The variance profiles are very similar to prior LES results reported for flow over
rough surfaces, for example in Andrén et al. (2007), Porté-Agel et al. (2000) and
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Figure 14. Vertical distribution of normalized shear stresses for the N = 64 case for surfaces
with spectral exponent: (a) βs = −1.2 and (b) βs = −3.0. Shown are the resolved shear stress
(solid line), the mean SGS shear stress (dashed) and their sum (dotted line).

Anderson, Basu & Letchford (2007). As can be seen, near the surface the streamwise
variance increases slightly for the smoother surface, consistent with the expectation
that a smoother surface damps the fluctuating motions to a smaller degree than a
more rough surface. Still, the difference is small, which is not surprising considering
that even though the spectral exponent varies among the surfaces, the unfiltered
surface height variance is kept constant. The spanwise and wall-normal variances
are essentially the same for both βs values, except for some differences very near
the wall. The shear stresses also show essentially no difference between very rough
or very smooth surfaces. We conclude that there are very few effects of the surface
spectral exponent on the variance profiles once these have been normalized with the
friction velocity (or imposed pressure gradient). It is worth commenting on the fact
that the normalized shear stress at the wall does not reach −1. This is due to the
additional momentum loss associated with the resolved drag force represented by the
SGD model, as discussed next.

The normalized stress results in figure 14 motivate a discussion of the total wall
stress −〈τ T

13〉 (5.1) at the surface, z/H = 0. Figure 15 shows the mean wall stress (5.1) for
four of the surfaces with different spectral slopes, as a function of the LES resolution,
expressed in terms of the horizontal resolution, ∆x/H . First, we observe that in all
cases the total wall stress is approximately equivalent to the total system forcing, as
expected if the simulation is statistically stationary (top profile in each of the figures
with data points indicated by crosses). Results demonstrate that the contribution from
the SGS log law (�) and resolved surface-gradient (�) terms decrease and increase,
respectively, as resolution is increased. Also, and as one may expect, we observe that
the resolved surface-gradient component is greatest for the steepest spectral slope.
Since the overall r.m.s. of the surface is fixed, increasing spectral slope reduces the
fractional contribution from the SGS modes of the surface; increasing resolution
(decreasing ∆) transfers dynamically important surface information from the SGS to
resolved scale. These trends can be seen in figure 5. Still, it is remarkable that in all
cases the largest contributor to the surface drag force is the SGS (log-law expression).
The resolved part, while very important in the determination of the dynamic α, has
a smaller contribution to the surface drag.
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Figure 15. Plane-averaged total wall stress components at z/H =0 for (a) βs = −1.2,
(b) βs = −1.6, (c) βs = −2.0 and (d ) βs = −2.4. Wall stress components shown correspond
to �, 〈τw

13〉; �, 〈f ∆
1 〉∆z; ×, 〈τT

13〉. The x-axis denotes horizontal grid resolution.

Another remarkable trend is the rapid decrease of α for the decreasing spectral
exponent of the surface, as seen in figure 8. Recall that the overall variance of the
surfaces is fixed. Therefore, making the surface smoother by varying the exponent
βs effectively reduces the slope of the surface. For power-law height spectra, the
characteristic slope depends on resolution (since 〈(∇h)2〉 ∼

∫
k2Eh dk diverges at large

wavenumbers for any β � −1). Therefore, it is not possible to meaningfully define
a characteristic slope as was used e.g. in the work of Schultz & Flack (2009).
Yet, in terms of trends, decreasing βs decreases the surface slope. Our results of
rapidly decreasing α and hydrodynamic roughness length for the smoother surfaces
(with smaller surface slopes) are therefore qualitatively consistent with the results of
Schultz & Flack (2009), who found the same trend for single-scale roughness elements
(as long as the slope is smaller than ∼0.35).

6. Discussion and conclusions
A dynamic roughness model has been developed for high-Reynolds-number

turbulent flows over multiscale, fractal-like surfaces with power-law height spectra;
this problem is often encountered in geophysical flows. For representation in an
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LES, the surfaces must be spatially filtered at the LES filter width. Drag effects
associated with surface modes exceeding the filter width are here represented by an
immersed boundary force that models the pressure drag using information from the
topographic surface gradient ∇h̃. Previously, Anderson & Meneveau (2010) tested this
approach extensively for flows over a variety of horizontally resolved surfaces (i.e. that
did not require non-trivial SGS contributions from unresolved roughness), finding
favourable results. For the applications considered here, which include non-trivial
SGS surface fluctuations below the filter width, an effective hydrodynamic roughness
length is invoked in the context of local equilibrium log laws. The roughness length
is parameterized through the product of height r.m.s. and an (initially unknown)
roughness parameter α. Since the local r.m.s. varies spatially, the effective roughness
length is spatially varying. The total wall stress is expressed through combination
of the pressure drag and the log-law-based model, where the only unknown is the
SGS roughness parameter, α. The parameter is evaluated under a self-consistency
condition inspired by the Germano identity. It is applied to the plane-averaged total
wall stress at two resolutions (grid- and test-filter width) and requires the total force
to be independent of spatial resolution. Such exact self-consistency conditions provide
valuable information to constrain models and/or evaluate parameters in computer
simulations of multiscale flow processes.

The approach is tested systematically in LES of high-Reynolds-number flow over
various rough, fractal-like surfaces. These surfaces have a wide range in height
fluctuations and roughness, as characterized by the spectral exponent. In the absence
of experimental or DNS validation data that can be readily compared with such
cases at the appropriate resolutions, we opt to test the approach by means of LES
at various resolutions. It is shown that if α is chosen incorrectly, simulating the
same basic surface at varying resolutions yields different mean velocities, whereas if
the dynamically obtained α is chosen, approximately resolution-independent results
are obtained. The invariance to resolution shows that it is the correct result since one
can imagine increasing the resolution further to ever smaller scales without changing
the mean velocity. We remark that once the correct value of α has been determined,
tests using this same value in a static implementation yield good results as well. The
relative contributions of the resolved and SGS parts of the total wall stress display
the expected trends with resolution and surface roughness.

Further applications of the dynamic roughness model to fluvial landscape surfaces
obtained from digital elevation maps or from simulations of erosion processes (e.g.
using the KPZ equation) will be reported elsewhere. Such more realistic natural
landscapes are often not statistically isotropic. For instance, in fluvial landscapes,
valleys and ridges can have preferred directions. The dynamic approach can also
be expected to be applicable for such anisotropic surfaces, as long as the degree of
anisotropy at resolved and subgrid scales is comparable. Further tests are needed to
establish the applicability of the dynamic approach for anisotropic surfaces.

Besides assuming the validity of the equilibrium logarithmic scaling law, an
important conceptual requirement for application of the DSR model is that the
computational mesh grid- and test-filter must be applied in the landscape’s ‘self-
similar’ range, where the height statistics exhibit scale-invariant behaviour. As
summarized in the Introduction, realistic landscapes are often characterized with
power-law height spectra over a wide range of scales, which implies scale-invariance
of the second-order statistical features of the surface. For applications where scale-
invariance does not hold, one could envision further generalizations of the proposed
dynamic approach. For instance, a scale-dependent version of the dynamic model can
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be developed, in which α is allowed to depend on ∆ according to some functionality
that itself has parameters to be determined dynamically. As found in Porté-Agel
et al. (2000) for the case of the Smagorinsky model in LES of turbulence, or in
Passalacqua et al. (2006) for modelling unknown terms in KPZ simulations of eroding
fluvial landscapes, scale-dependent implementation of the dynamic model involving
filtering at additional scales (e.g. test–test–filtering, 4∆) yields more accurate results.
Furthermore, for spatially non-homogeneous surfaces (e.g. with patches of differing
roughness), a more local implementation that does not average the wall stresses over
the entire surface may be called for.

Applications of the approach may also be envisioned to determine roughness
lengths for scalar fluxes such as potential temperature and humidity. Finally, the basic
approach of assuming proportionality between the hydrodynamic roughness length
and the r.m.s. of the SGS height is only one of many possibilities. As summarized
in the Introduction, other expressions have been proposed to relate hydrodynamic
roughness to geometric properties of the surface, such as including the average
distance between dominant peaks. Other expressions based on peak–valley maxima,
ten-point height (Bradshaw 2000), surface mean slope (Schultz & Flack 2009), surface
skewness (Flack & Schultz 2010), etc. have also been proposed. The dynamic approach
could also be applied to such expressions for determining unknown parameters which
are inevitably necessary when relating hydrodynamic and geometric descriptions of
roughness.
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Jiménez, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36, 173–196.

Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows: Their Structure and
Measurement. Oxford University Press.

Kanda, M., Moriwaki, R. & Kasamatsu, F. 2004 Large-eddy simulation of turbulent organized
structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol. 112,
343–368.
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Passalacqua, P., Porté-Agel, F., Foufoula-Georgiou, E. & Paola, C. 2006 Application of dynamic
subgrid-scale concepts from large-eddy simulations to modeling landscape evolution. Water
Resour. Res. 42, W06D11.

Phillips, O. M. 1958 The equilibrium range in the spectrum of wind-generated waves. J. Fluid
Mech. 4, 426–434.

Piomelli, U., Moin, P. & Ferziger, J. H. 1988 Model consistency in large eddy simulation of
turbulent channel flows. Phys. Fluids 31, 1884–1891.
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