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ABSTRACT We propose a new approach to calculate the populations of the 
different ionic states and ionization stages that may exist in a plasma in ther­
modynamic equilibrium. A self-consistent scheme is solved for each ionization 
stage, which couples die local density of free electrons and the atomic structure 
of this stage. 

INTRODUCTION 
The calculation of equilibrium populations of the various species in a plasma is 
a necessary step to study opacities, radiation transfer or thermodynamic quantities. 
When the density is so high that the mean ionic volume is of the order of a few 
Bohr radii, Saha equation breaks down and models must be refined to take into 
account density effects like pressure ionization. Current models include free energy 
minimization (Graboske et al. 1969, Dappen 1980, Dappen et al. 1987) and av­
erage-atom approaches (Rozsnyai 1975, Feng et al. 1981, Davis and Blaha 1982). 
The first one leaves the bound states essentially unperturbed. Though very useful for 
a quick analysis of the equilibrium of such complicated systems, die average-atom 
approach leads to a fictitious ion with a non-integer number of bound electrons and 
to a one-electron energy spectra not relevant to the actual one. To proceed up to 
the individual populations of the different ionization stages is further hazardous. The 
model presented in this paper treats separately each degree of ionization. It has die 
advantage to lead at die same time to the equilibrium populations and to spectroscopic 
energies. 

A MODEL PARTICULARIZING THE IONIZATION STAGES 
The equilibrium of a pure plasma of a given element with nuclear charge Z is com­
pletely defined by two tiiermodynamic parameters, e.g. its temperature T and its 
total electron number density JVeiec. We use instead of JVeiec its associated intensive 
parameter fi, the electronic chemical potential. 

The free electron number density iVfree is a bad thermodynamic parameter for 
dense plasmas. It is indeed impossible to assign to all die electrons in these plasmas 
a definite bound or free character, because of those electrons delocalized on a few 
ionic sites (the hopping electrons, Dharma-Wardana and Perrot 1992). However, 
looking at a given nucleus, one might find bound ionic structures with N electrons 
strongly localized around this nucleus. These //-electronic states are similar to those 
of the isolated ion. The Coulombic interaction between them is very strong and 
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must be solved through a Hamiltonian. On the contrary, their interaction with the 
other free (delocalized) electrons is weaker and might be treated through an averaged 
spherically symetric potential (energy) V£^. We hence obtain for each ionization 
stage with N bound electrons the energies Exa and the antisymmetrical N-electronic 
wavefunctions W^a by solving (in a.u. here and after): 

HNWNa = 
N / „o v \ N 1 

$Na = ENaVNa . (1) 

From the states ^Na> we get the mean bound electron density n^iind *°r t^us ionization 
stage by: 

e-ENJT * 
"bLundW = E 1 ^ — • E / l ^ - ( r i •••'.•-!.'.r.-+i •.•rN)|2dR,- (2) 

where dR, = d r i . . .dr ,_idr,+i . . . d r ^ and ZN = ^,Qe~ENr,^T is the partition 
function. Boltzmann statistics has to be used because we consider a system with a 
given (small) integer number N of particules. The mean potential due to these bound 
electrons V^>und is obtained from Poisson equation: A V ^ ^ j = - 4 x n ^ d. 

f̂ree *s m the same w a y connected to the mean free electron density ngee around 
the ion by the Poisson equation: AV£ee = -4xn^e e . A free electron is in this 
region in the potential due to the nucleus, to the bound electrons and to the other 
free electrons V£ee. We should normally use different bound potentials, one for each 
bound state !?#<*• We instead use their thermal average F ^ j due to computational 
constraint. We calculate the density of free electrons through: 

(~T " 7 + VhN°™d + V{™) ^Ni = c ™ ^ " (3) 

t°° i 
"LW = I & ! + ^ V M ) E 6(£ - ^.)l^,(r)|2 (4) 

We use here Fermi-Dirac statistics because the free electron gas is an open system 
of assumed independent particules. An improvement would be to add exchange and 
correlation potentials (Dharma-Wardana and Perrot 1982). 

This set of equations is solved self-consistently for each ionization stage. From 
the total potentials V& = -Z/r + V»oxmd 

+ f̂ree w e 8e t A16 radii °f neutrality R^ 
by dV£jdr(RN) = 0. This null gradient condition allows to match the different 
ionization stages potentials and spheres in the whole plasma volume. The chemical 
potential fj, defines the reference energy from which V£t(RN) is positionned (see (3) 
and (4)). The probability PN of a given ionization stage is given by: 

pN = eiN/TZN/E. where E = £ z»NlTZN (5) 
N 

from which all quantities may be deduced: mean volume, ionic density, mean ion­
ization charge, "free" electronic density... 
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PRACTICAL PROBLEMS AND PHYSICAL DISCUSSION 
As written this set of equations is numerically unsolvable because of the great number 
of levels involved in the bound structure. It can however be shown that the majority 
of the //-electron wavefunctions W^a solution of HN are quite unperturbed, so that 
their energies need not be computed at each step but are simply shifted by the amount 
(^NalV^l^Na)- Moreover the $V„ are built using a LS-coupling multiconngura-
tionnal scheme from one-electron bound wavefunctions <PNi(*) = •f>i/'('")I7n(0, f)/r 

in such a way that configuration interaction is for most states negligible (Massacrier 
and Dubau 1990, 1991). As a consequence (2) is summed in a straighter way as a 
sum of one-electron wave-functions. Concerning Zjv, precise energies are needed in 
the lower part of the spectrum. This contribution is directly summed retaining the 
term splitting. The highest states contribute mainly through their huge number. They 
are totally summed with energies estimated from the one-electron spectrum. 

A word must be said on the external boundary conditions imposed on the bound 
wavefunctions. Tightly bound states are not sensitive to them. The situation becomes 
much more confuse for the higher states which tend to extend on neighbouring ions. 
Our simplified point of view consists in solving the Schrodinger equation for y>jvi 
with two boundary conditions: P%(RN) = 0 and rdP%/dr(RN) = P%(RN)- We 
interpret the resulting two energies as the lower and upper bounds of an energy band 
(Rozsnyai 1972). It gives an idea of the sharpness of bound states and becomes 
noticeable only for those states close to the ionization limit. For bands sitting astride 
the limit, we decrease the degeneracy of this state by the amount of this band energy 
still in the bound part of the energy spectrum. Though crude this approach has the 
further advantage to avoid step-like behaviours of the partition functions, an important 
problem lenghtly studied (Hummer and Mihalas 1988). 

CONCLUSION 
Our model totally takes into account the strong interaction of bound electrons in 
each ionization stage and gives in a coherent way the populations and the energies 
of bound states. Its flexicibity allows to easily adapt it to treat mixtures or examine 
given levels. Improvements might be sought to the calculation of the free electron 
density and effects due to neighbouring ions included in V ^ . Detailed results will 
be presented in a further paper. 
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