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Abstract We present an abstract approach to the construction of holomorphic functional calculi for
unbounded operators and apply it to the special case of sectorial operators. In effect, we obtain a calculus
for a much larger class of functions than was known before, including certain meromorphic functions.
We discuss the role of topology. Then we prove in detail a composition rule (f ◦ g)(A) = f(g(A)) which
is the main result of the paper. This is done in such a way that the proof can easily be transferred to
functional calculi for other classes of operators.
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1. Introduction

The theory of functional calculus deals with the idea of ‘inserting’ an operator A acting
on a Banach space X into certain complex-valued functions defined on a subset of C.
The reason why this idea is so appealing is that certain well-known and important con-
structions can be read in this way. Take, for example, a strongly continuous semigroup
(T (t))t�0, which is frequently written in the form

T (t) = etA (t � 0),

where A is the infinitesimal generator of the semigroup T . It seems as if T (t) is obtained by
somehow inserting the operator A into the complex-valued function etz. Other examples
are the fractional powers Aα = (zα)(A) (Re α > 0) or the logarithm log A = (log z)(A)
of a sectorial operator A (see Definition 2.1).

Historically, the above examples emerged individually within the theory of evolution
equations, with a separate definition for each of them. In special cases, such as self-adjoint
operators on Hilbert spaces, they could be embedded into a general scheme of inserting
operators into functions, comprising formulae like

(f + g)(A) = f(A) + g(A) and (fg)(A) = f(A)g(A). (1.1)
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This general scheme, called functional calculus, has proved to be an invaluable tool.
Dunford and Riesz had the idea to use the Cauchy-integral formula

f(a) =
1

2πi

∫
Γ

f(w)
1

w − a
dw (1.2)

and base on it the construction of a functional calculus in the Banach space setting by
defining

f(A) :=
1

2πi

∫
Γ

f(w)R(w, A) dw (1.3)

(see [7, Section VII.3]). However, the operator A under consideration still had to be
bounded and the function f had to be holomorphic on a neighbourhood of the spectrum
σ(A). Bade in [3] overcame this restriction in the special case of ‘strip type’ operators
(cf. also [10]). Summarized abstractly, Γ is allowed to touch the spectrum of A at certain
‘singular’ points (such as infinity in the case of an unbounded operator) and the decay of
f at those points is fast enough to compensate the growth of the resolvent there. Then
an ‘elementary’ functional calculus is defined by (1.3). Afterwards a certain extension
procedure is applied to include more general functions. McIntosh in [16] adapted this
construction to the case of sectorial operators (see also [4]). The so-constructed calculus
includes holomorphic semigroups, fractional powers and logarithms, and plays an impor-
tant role in evolution equations and operator theory (see [2,6,13,14] and the references
therein).

The purpose of the present paper is twofold. First, we examine to some extent how
(mainly holomorphic) functional calculi can be constructed, which results about them
can be proved and which problems can arise. (We do not claim exhaustive treatment
of these questions.) For illustration we use the model case of sectorial operators. The
above-mentioned method for extending an ‘elementary’ functional calculus to a wider
class of functions is given an axiomatic treatment (in § 3). In effect, the basic rules of
functional calculi (Theorem 3.6) appear as easy corollaries of the abstract results. The
abstract approach allows one also to include even certain meromorphic functions, whence
the functional calculi presented here are ‘larger’ than those which appear already in the
literature. (This extension to meromorphic functions finally leads to a proof of a spectral
mapping theorem in [12].)

Secondly, we formulate, prove and illustrate a composition rule

(f ◦ g)(A) = f(g(A)) (1.4)

for our model functional calculus (Theorem 7.1). Together with the formulae (1.1) it paves
the way for really calculating by means of the functional calculus (cf. Example 7.6). As far
as we know, a proof for a general composition rule has not yet appeared in the literature
(at least not in this generality). Let us also mention that the proof is generic so that
similar proofs can be furnished for other functional calculi.

Let us fix some notation. For any open set Ω ⊂ C we denote by O(Ω) (M(Ω), H∞(Ω))
the space of all holomorphic (meromorphic, bounded holomorphic) functions on Ω.
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For 0 < ω � π let Sω := {z ∈ C | z �= 0 and |arg z| < ω} denote the open sector
symmetric about the positive real axis with opening angle ω. To also cover the case
ω = 0 we define S0 := (0,∞).

By ‘operator’ we always mean linear operator. For an operator A on a Banach space
X, we denote by D(A) its domain, by N(A) its kernel and by R(A) its range. We denote
by L(X) the set of all bounded, fully defined operators on X. If A ∈ L(X), the number
r(A) := sup{|λ| | λ ∈ σ(A)} is the spectral radius of A. Given operators A, B on a
Banach space we denote by A + B its sum with the domain D(A + B) = D(A) ∩ D(B)
and by AB its product with the domain D(AB) = {x ∈ D(B) | Bx ∈ D(A)}. Other
notation and also basic results from operator theory can be found in [11, Appendix A].

2. First step: elementary functional calculus

As we have indicated in § 1, the construction of a functional calculus can be seen as
composed of two major steps. The first step consists in constructing an ‘elementary’
functional calculus while in the second step this ‘elementary’ calculus is extended to a
larger function class. The latter procedure will be axiomatized in the next section. Here
we will review a common method for obtaining an elementary calculus.

Given an operator A on a Banach space X one looks for a class E of functions (defined
on the spectrum of A) and a method

Φ : (f �→ f(A)) : E −→ L(X)

of associating a bounded operator f(A) := Φ(f) with each function f ∈ E . Since a
calculus is for calculation, it seems reasonable to have equations (1.1), i.e. E should
be an algebra and the mapping Φ should be a homomorphism of algebras. Moreover,
the mapping Φ should have some strong connection with the operator A, otherwise our
intended notation f(A) = Φ(f) would not be appropriate. (One could have, for example,
Φ[(λ − z)−1] = R(λ, A) for some λ ∈ 	(A).)

A common way of obtaining such an elementary calculus is by means of a Cauchy
integral:

Φ(f) = f(A) =
1

2πi

∫
Γ

f(z)R(z, A) dz, (2.1)

with Γ positively surrounding σ(A) and the representation (1.2) for a ∈ σ(A). If A is
not bounded and/or f is not holomorphic on a whole neighbourhood of σ(A), then f has
to decay nicely near the singular points (according to the growth of R(·, A)). For such f

one can then hope to prove that the definition of f(A) is independent of the chosen Γ .
We will illustrate these remarks with a well-known example.

Definition 2.1. Let 0 � ω < π. An operator A on a Banach space X is called sectorial
of angle ω (in short, A ∈ Sect(ω)) if σ(A) ⊂ Sω and

M(A, ω′) := sup{‖λR(λ, A)‖ | λ /∈ Sω′} < ∞

for all ω < ω′ < π. The number

ωA := min{ω | A ∈ Sect(ω)}

is called the spectral angle (or sectoriality angle) of A.
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An operator A on a Banach space X is sectorial of some angle if and only if (−∞, 0) ⊂
	(A) and M(A) := supt>0 ‖t(t + A)−1‖ < ∞ (see [17, Proposition 1.2.1]). If A ∈ Sect(ω)
is injective, then also A−1 ∈ Sect(ω). This is due to the fundamental identity

λ(λ + A−1)−1 = I − 1
λ

(
1
λ

+ A

)−1

, (2.2)

which holds for all 0 �= λ ∈ C (in the sense of multivalued operators). For other basic
properties of sectorial operators see [17] or [11].

We will construct first an ‘elementary’ functional calculus for sectorial operators. Let
us define

E0(Sϕ) :=
{

f ∈ H∞(Sϕ)
∣∣∣∣
∫

∂Sω′

|f(z)| |dz|
|z| < ∞ for all 0 � ω′ < ϕ and lim

z→0,∞
f(z) = 0

}

and

H∞
0 (Sϕ) := {f ∈ O(Sϕ) | ∃C, s > 0 such that |f(z)| � C min(|z|s, |z|−s)}.

Obviously, H∞
0 (Sϕ) ⊂ E0(Sϕ) and both are ideals in the algebra H∞(Sϕ). If A ∈ Sect(ω),

ω < ϕ < π and f ∈ E0(Sϕ), we define

f(A) := Φ(f) :=
1

2πi

∫
Γ

f(z)R(z, A) dz, (2.3)

where Γ is the positively oriented boundary of a sector Sω′ , with ω < ω′ < ϕ being
arbitrary. (Cauchy’s theorem shows that f(A) is independent of ω′.)

Proposition 2.2. The so-defined mapping Φ : E0(Sϕ) −→ L(X) has the following
properties.

(i) Φ is a homomorphism of algebras.

(ii) If T ∈ L(X) commutes with the resolvent of A, it also commutes with each operator
Φ(f), f ∈ E0(Sϕ).

(iii) For λ /∈ Sϕ and f ∈ E0(Sϕ) we have

R(λ, A)Φ(f) = Φ(f)R(λ, A) =
(

f(z)
λ − z

)
(A).

(iv)
(

z

(λ − z)(µ − z)

)
(A) = AR(λ, A)R(µ, A) for λ, µ /∈ Sϕ.

Proof. Assertions (i) and (iii) follow from the resolvent identity and Cauchy’s theo-
rem. Assertion (ii) is straightforward. To prove (iv), first deform the path in such a way
that it avoids 0, then shift it to the left. Eventually, only the residues in λ and µ will
‘survive’. �
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As mentioned in § 1 one wants to define f(A) for more general functions f by

f(A) := e(A)−1(ef)(A)

provided e(A), (ef)(A) are already defined and e(A) is injective. Unfortunately, if A is
not injective, e(A)x = 0 for every e ∈ E0(Sϕ) and every x ∈ N(A). Hence we cannot
proceed in the intended way. To handle this difficulty we enlarge the algebra E0(Sϕ) by
the function (1 + z)−1. It is easy to see that

E(Sϕ) := E0(Sϕ) ⊕ C
1

1 + z

is in fact an algebra.
We can extend Φ from E0(Sϕ) to E(Sϕ) simply by defining

Φ

(
1

1 + z

)
:= (1 + A)−1.

Then Φ : E(Sϕ) −→ L(X) is an algebra homomorphism (one needs (i), (iii) and (iv)
of Proposition 2.2 to prove this). We then see that Proposition 2.2 remains valid with
E0(Sϕ) replaced by E(Sϕ). Moreover,

Φ

(
1

λ − z

)
= R(λ, A)

for each λ /∈ Sϕ.
To sum up (and in more abstract terms), we end up with a commutative algebra

E := E(Sϕ) (without 1!) and an algebra homomorphism Φ : E −→ L(X) such that
Φ(f) is injective for some f ∈ E . The algebra E can be viewed as a subalgebra of the
algebra M(Sϕ) of all meromorphic functions on the sector Sϕ. We now can construct
the extension as intended. This will be the content of the following section.

3. An abstract framework

In this section we will describe abstractly how to extend a certain basic functional calculus
to a wider class of functions. Bearing in mind the situation at the end of the last section,
the reader will easily grasp the meaning of the following definition.

Definition 3.1. An abstract functional calculus (AFC) over the Banach space X is a
triple (E ,F , •), where

(i) F is a commutative algebra with 1,

(ii) E is a subalgebra of F (without 1, in general), and

(iii) • : (e �→ e•) : E −→ L(X) is a homomorphism of algebras.

We say that the AFC is non-degenerate or proper, if the set

{e ∈ E | e• is injective}

is not empty.
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Take f ∈ F . If there is e ∈ E such that ef ∈ E and e• is injective, we call f regularizable
by E and e a regularizer for f . In this case we define

f• := (e•)−1(ef)•. (3.1)

Lemma 3.2. The definition (3.1) yields a closed operator on X and is independent
of the regularizer e.

Proof. Let h ∈ E be a second regularizer for f and define A := (e•)−1(ef)• and
B := (h•)−1(hf)•. Because e•h• = (eh)• = (he)• = h•e•, we have (e•)−1(h•)−1 =
(h•)−1(e•)−1. Now it follows that

A = (e•)−1(ef)• = (e•)−1(h•)−1h•(ef)• = (h•)−1(e•)−1(hef)•

= (h•)−1(e•)−1e•(hf)• = (h•)−1(hf)• = B.

�

Note that 1 is regularizable if and only if the AFC is proper. In this case

Fr := {f ∈ F | f is regularizable}

clearly is a subalgebra of F which contains E . Moreover, we have extended the original
representation E −→ L(X) to a map

(f �→ f•) : Fr −→ {closed operators on X}.

(Since the AFC is proper, E ⊂ Fr. If e, f ∈ E with e• injective, one has (e•)−1(ef)• =
(e•)−1e•f• = f•. This shows that the map on Fr is indeed an extension of the original.)

Sometimes we will call the original mapping • : E −→ L(X) the primary (functional)
calculus (PFC) and the extension defined above the extended (functional) calculus. The
algebra Fr is called the domain of the AFC (E ,F , •). We collect some basic properties.

Proposition 3.3. Let (E ,F , •) be a proper abstract functional calculus over the
Banach space X. Then the following assertions hold.

(i) If T ∈ L(X) commutes with each e•, e ∈ E , then it commutes with each f•, f ∈ Fr.

(ii) One has 1 ∈ Fr and 1• = I.

(iii) Given f, g ∈ Fr, one has

f• + g• ⊂ (f + g)•,

f•g• ⊂ (fg)•,

with D(f•g•) = D((fg)•) ∩ D(g•).

(iv) If f, g ∈ Fr such that fg = 1, then f• is injective with (f•)−1 = g•.
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(v) Let f ∈ Fr and F be a subspace of D(f•). Assume that there is a sequence (en)n ⊂ E
such that en• → I strongly as n → ∞ and R(en•) ⊂ F for all n ∈ N. Then F is a
core for f•.

Proof. (i). Let T ∈ L(X) commute with every e•, e ∈ E . Take f ∈ Fr and a regularizer
e ∈ E for f . Then we have

Tf• = T (e•)−1(ef)• ⊂ (e•)−1T (ef)• = (e•)−1(ef)•T = f•T.

(ii). Since the AFC is proper, there exists e ∈ E such that e• is injective. Clearly, e

regularizes 1. Moreover, we have 1• = e−1
• (e1)• = e−1

• e• = I.

(iii). Take f, g ∈ Fr and let e1, e2 ∈ E be regularizers for f, g, respectively. Then
e := e1e2 is a regularizer for both f and g, hence for f + g. Also efg = (e1f)(e2g) ∈ E ,
whence e is also a regularizer for fg. We have

f• + g• = e−1
• (ef)• + e−1

• (eg)• ⊂ e−1
• [(ef)• + (eg)•]

= e−1
• (e(f + g))• = (f + g)•

and

f•g• = e−1
1• (e1f)•e

−1
2• (e2g)• ⊂ e−1

1• e−1
2• (e1f)•(e2g)•

= [e2•e1•]−1(efg)• = e−1
• (efg)• = (fg)•.

To prove the assertions concerning the domains, let x ∈ D((fg)•) ∩ D(g•). Note
that since (e1f)• commutes with e2• it also commutes with e−1

2• . By assumption,
y := (e2g)•x ∈ D(e−1

2• ), whence also (e1f)•y ∈ D(e−1
2• ) and

(e1f)•g•x = (e1f)•e
−1
2• y = e−1

2• (e1f)•y = e−1
2• (efg)•x ∈ D(e−1

1• )

by assumption and the identity e−1
• = e−1

1• e−1
2• . Consequently, g•x ∈ D(f•), whence

x ∈ D(f•g•).

(iv). Assume f, g ∈ Fr with fg = 1. By (ii) and (iii) we have g•f• ⊂ (fg)• = 1• = I

and D(g•f•) = D(I) ∩ D(f•) = D(f•). Interchanging f and g proves the statement.

(v). Let x ∈ D(f•) and define y := f•x. With xn := en•x and yn := en•y we have
xn → x, xn ∈ F and f•xn = f•en•x = en•f•x = yn → y. �

In general one cannot expect equality in (iii) of Proposition 3.3. However, if we define

Fb := {f ∈ Fr | f• ∈ L(X)},

we obtain the following.

Corollary 3.4. Let E ,F , X be as above.

(i) For f ∈ Fr, g ∈ Fb the identities

f• + g• = (f + g)• and f•g• = (fg)•

hold.
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(ii) The set Fb is a subalgebra with 1 of F and the map

(f �→ f•) : Fb −→ L(X)

is a homomorphism of algebras with 1.

(iii) If f ∈ Fb is such that f• is injective, then

(f•)−1g•f• = g•

holds for all g ∈ Fr.

Proof. (i). By (iii) of Proposition 3.3 we have f• + g• ⊂ (f + g)• and (f + g)• − g• ⊂
(f + g − g)• = f•. Since g• is assumed to be bounded, D((f + g)•) = D(f•). This readily
implies f• +g• = (f +g)•. The second assertion is immediate from (iii) of Proposition 3.3
since we have D(g•) = X.

The statement in (ii) follows from (i).

(iii). We can find e ∈ E which regularizes both f and g. Now we compute

f−1
• g•f• = f−1

• e−1
• (eg)•f• = f−1

• e−1
• f•(eg)• = e−1

• f−1
• f•(eg)• = e−1

• (eg)• = g•.

Here we used (ii) and the identity e−1
• f−1

• = f−1
• e−1

• , which is true since e• and f• are
both bounded and injective. �

Using this new information we can improve on (iv) of Proposition 3.3.

Corollary 3.5. Let E , F , X be as above. Suppose f ∈ Fr, g ∈ F such that fg = 1.
Then

g ∈ Fr ⇐⇒ f• is injective.

In this case, we have g• = f−1
• .

Proof. One direction of the biimplication is simply (iv) of Proposition 3.3. Assume
that f• is injective and let e ∈ E be a regularizer for f . Then fe ∈ E , (fe)g = e ∈ E and
(fe)• = f•e• is injective. This means that fe is a regularizer for g! �

Let us illustrate the results from above by looking at our principal example. Namely,
let A ∈ Sect(ω) be a sectorial operator on a Banach space X and consider the (E ,F , Φ),
where E := E(Sϕ), F := M(Sϕ), and Φ is the mapping constructed in § 2. We already
know that this yields a proper AFC. Let us write M(Sϕ)A := Fr for the regularizable
functions and H(A) := Fb for those which give rise to bounded operators. Moreover,
we write as usual f(A) instead of Φ(f) in this context. Then we obtain the following
theorem.

Theorem 3.6. Let 0 � ω < ϕ < π, A ∈ Sect(ω) and f ∈ M(Sϕ)A. Then the following
assertions hold.

(i) If T ∈ L(X) commutes with A, it also commutes with f(A). If f(A) ∈ L(X), then
f(A) commutes with A.
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(ii) 1(A) = I and (z)(A) = A.

(iii) Let also g ∈ M(Sϕ)A. Then

f(A) + g(A) ⊂ (f + g)(A) and f(A)g(A) ⊂ (fg)(A).

Furthermore, D((fg)(A)) ∩ D(g(A)) = D(f(A)g(A)) and one has equality in the
above relations if g ∈ H(A).

(iv) The mapping (f �→ f(A)) : H(A) −→ L(X) is a homomorphism of algebras.

(v) One has f(A) = g(A)−1f(A)g(A) if g ∈ H(A) and g(A) is injective.

(vi) Let λ ∈ C. Then

1
λ − f(z)

∈ M(Sϕ)A ⇐⇒ λ − f(A) is injective.

In this case (λ − f(z))−1(A) = (λ − f(A))−1. In particular, λ ∈ 	(f(A)) if and only
if (λ − f(z))−1 ∈ H(A).

Proof. This is more or less a restatement of Proposition 3.3 and Corollaries 3.4 and
3.5. For (ii) note that (1+z)−2 regularizes z, whence (z)(A) = (1+A)2(z(1+z)−2)(A) =
(1 + A)2A(1 + A)−2 = A by Proposition 2.2. �

With the help of Theorem 3.6 it can be shown that the symbol r(A) with r being a
rational function with poles in the right half-plane has its usual meaning (cf. [11]).

We return to the abstract treatment. Suppose (E ,F , •) is a proper AFC over the
Banach space X. Call a subalgebra D ⊂ Fb admissible if the set {f ∈ D | f• is injective}
is not empty. In this case (D,F) is another proper AFC. Let us denote

〈D〉 := {f ∈ F | there is d ∈ D such that df ∈ D and d• is injective}

the regularizable elements of this AFC. We call 〈D〉 the domain generated by D and D
its generator. In this terminology, Fr = 〈E〉. The next proposition shows in particular
that 〈D〉 is always a subalgebra of Fr whence nothing is gained by passing from E to Fb.

Proposition 3.7. Let (E ,F , •) be a proper AFC on the Banach space X and let D
be an admissible subalgebra of Fb. If f ∈ F and g ∈ 〈D〉 such that g• is injective and
gf ∈ 〈D〉, then already f ∈ 〈D〉.

Proof. By assumption there are regularizing elements d1, d2 ∈ D for g, fg, respec-
tively. Letting d := d1d2 we see that d regularizes both g and fg. Since (d•)−1(dg)• = g•
is injective, the operator (dg)• also is. Hence, dg regularizes f , whence f ∈ 〈D〉. �

A generator of the AFC is an admissible subalgebra D such that 〈D〉 = Fr.

Corollary 3.8. Let (E ,F , •) be a proper AFC over the Banach space X. Let D, D′

be admissible subalgebras of Fb such that D′ ⊂ 〈D〉. Then 〈D′〉 ⊂ 〈D〉. In particular, an
admissible subalgebra D of Fb is a generator of the AFC if and only if E ⊂ 〈D〉.
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Proof. This follows immediately from Proposition 3.7. �

As an application, consider the case of a sectorial operator A. If A is not injective, the
AFC (H∞

0 (Sϕ),M(Sϕ), Φ) is not proper. However, if A is injective, then H∞
0 (Sϕ) is in

fact a generator of the AFC (E(Sϕ),M(Sϕ), Φ).
It should be clear that abstract functional calculi over the Banach space X are the

objects of a category. We describe the morphisms of this category. Let (E ,F , •) and
(E ′,F ′, •) be proper AFCs over the Banach space X. A morphism

Ψ : (E ,F , •) −→ (E ′,F ′, •)

between these AFCs consists of a homomorphism of algebras Ψ : F −→ F ′ with Ψ(E) ⊂ E ′

and Ψ(e)• = e• for all e ∈ E . Not surprisingly, the extension procedure is functorial, as
the next proposition shows.

Proposition 3.9. Let Ψ : (E ,F , •) −→ (E ′,F ′, •) be a morphism of proper AFCs on
the Banach space X. Then Ψ(Fr) ⊂ (F ′)r with Ψ(f)• = f• for every f ∈ Fr.

Proof. Let f ∈ Fr and let e ∈ E be a regularizer for f . Since Ψ(e)• = e• is injective
and Ψ(e)Ψ(f) = Ψ(ef) ∈ Ψ(E) ⊂ E ′, the element Ψ(e) is a regularizer for Ψ(f). Moreover,
Ψ(f)• = [Ψ(e)•]−1[Ψ(e)Ψ(f)]• = (e•)−1Ψ(ef)• = (e•)−1(ef)• = f•. �

Remark 3.10. The above lemma may seem, at first glance, to be another bit of
abstract nonsense. However, it is of great use, mostly in the case when F ′ is in fact a
superalgebra of F and Ψ is just the inclusion mapping. In such a situation Proposition 3.9
implies that for a consistent extension of an AFC one has to take care only of the primary
calculus, whereas consistency of the extended calculus is then automatic.

We give some applications. Take a sectorial operator A as in § 2 with the additional
condition that 0 ∈ 	(A). Then functions need not be defined on the whole of Sϕ but may
be undefined on a small ball B round 0. Our original class F = M(Sϕ) can be embedded
into F ′ := M(Sϕ \ B) and the primary calculus Φ defined on E(Sϕ) can be consistently
extended to those f ∈ H∞(Sϕ \ B) which decay ‘sufficiently fast’ at infinity, in order to
make the corresponding Cauchy-integral converge. The mapping ‘Ψ ’ from Proposition 3.9
is the just ordinary inclusion.

A similar extension is possible if A is sectorial and bounded. Then functions need
not be defined near ∞. As a matter of fact, one can think of other spectral properties
(like separation of the spectrum into disjoint closed subsets) which lead to other kinds
of extensions.

Let us turn to another application. Let A ∈ Sect(ω) as in § 2. Then up to now we
have a proper AFC (E(Sϕ),M(Sϕ), Φ) for each ω < ϕ < π. Let us write Φ = Φϕ for the
moment to emphasize dependence on ϕ. Now, since all functions are meromorphic, we
have natural inclusions

E0(Sϕ) ↪→ E0(Sψ) and M(Sϕ) ↪→ M(Sψ)

for (ω < ψ < ϕ < π). Clearly, Φψ|E(Sϕ) = Φϕ, whence Proposition 3.9 is applicable.
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Finally, we can form the inductive limits

E [Sω] :=
⋃

ω<ϕ<π

E(Sϕ) and M[Sω] :=
⋃

ω<ϕ<π

M(Sϕ)

and obtain a proper AFC (E [Sω],M[Sω], Φ). Clearly, we have

M[Sω]A =
⋃

ω<ϕ<π

M(Sϕ)A.

(We refrain from proving an abstract result on inductive limits of AFCs here.)

4. Regularizable functions

Whereas the construction of an elementary functional calculus is usually done for cer-
tain classes of operators (like we did with sectorial operators), the extension procedure
described in the last section takes into account individual (spectral) properties of the
given operator. Here a difficulty arises. Namely, in general it is not so clear which ele-
ments e ∈ E [Sω] give rise to injective operators e(A), i.e. which can serve as regularizers.
Thus the domain M[Sω]A in general will be unknown. Therefore, it is of considerable
interest to specify subclasses of M[Sω]A. The first is a negative result.

Lemma 4.1. Let A ∈ Sect(ω) and ω < ϕ < π. Let e ∈ E(Sϕ) and λ ∈ σp(A) with
e(λ) = 0. Then e(A) is not injective.

Proof. Suppose first that λ �= 0. Then

h :=
e

λ − z
∈ E(Sϕ)

again, whence e(A) ⊃ h(A)(λ − A). If λ = 0, then e ∈ E0(Sϕ) and e(A)x = 0 for every
x ∈ N(A) by direct computation (cf. [12, Proposition 3.1]). �

The next result gives a necessary condition for a function f ∈ M(Sϕ) to be regulariz-
able in case A is not injective.

Lemma 4.2. Let A ∈ Sect(ω) with N(A) �= 0. Take ϕ > ω and f ∈ M(Sϕ)A. Then
there is c ∈ C such that∫

∂Sω′ ,|z|�ε

|f(z) − c| |dz|
|z| < ∞ (0 � ω′ < ϕ).

Proof. Let e ∈ E(Sϕ) be a regularizer for f , i.e. ef ∈ E(Sϕ) and e(A) is injective.
Since e(A)x = e(0)x for all x ∈ N(A), e(0) �= 0. This clearly implies that f has a finite
limit c := f(0) at 0 and

f(z) − f(0) =
1

e(z)
[(ef)(z) − (ef)(0) − f(0)(e(z) − e(0))]

whence the assertion follows. �
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The last lemma leads one to expect that non-injective operators A need special treat-
ment in many situations. In particular in the proof of the composition rule in § 7 non-
injectivity of A forces one to consider a restricted calculus, i.e. functions with a stronger
regularity at 0 are needed. Define

Eres(Sϕ) := H∞
0 (Sϕ) ⊕ C

1
1 + z

.

which is a subalgebra of E(Sϕ), and define Eres[Sω] =
⋃

ω<ϕ<π Eres(Sϕ). Consider the
AFC (Eres[Sω],M[Sω], Φ), which we will call the restricted calculus in the sequel. If A is
injective, the domain of this restricted calculus (i.e. the set of regularizable functions)
is the same as for the AFC (E [Sω],M[Sω], Φ), since then H∞

0 is already a generator
(cf. § 3). However, if A is not injective, one obtains indeed a smaller calculus, as the
following proposition shows.

Proposition 4.3. Let 0 < ϕ < π and f ∈ O(Sϕ). Then the following assertions are
equivalent:

(i) f ∈ Eres(Sϕ);

(ii) f ∈ H∞(Sϕ) and there are c ∈ C, α > 0 such that

f(z) = O(|z|−α) (z ∈ Sϕ, z → ∞),

f(z) − c = O(|z|α) (z ∈ Sϕ, z → 0).

Let A ∈ Sect(ω) with ω < ϕ and N(A) �= 0. For f ∈ M(Sϕ) regularizable by Eres(Sϕ)
there is c ∈ C and α > 0 such that

f(z) − c = O(|z|α) (z ∈ Sϕ, z → 0).

Proof. The first part is straightforward. Let e ∈ Eres(Sϕ) be a regularizer for f ,
i.e. ef ∈ Eres(Sϕ) and e(A) is injective. Since e(A)x = e(0)x for all x ∈ N(A), e(0) �= 0.
Hence, by the first part of the proposition, f has a finite limit c := f(0) at 0 and

f(z) − f(0) =
1

e(z)
[(ef)(z) − (ef)(0) + f(0)(e(z) − e(0))]

whence the assertion follows. �

In the sequel we will use the abbreviation

M[Sω]res,A

to denote the functions f ∈ M[Sω] which are regularizable within the restricted calculus
(Eres[Sω],M[Sω], Φ).

It is time to present some positive results. Since resolvents are injective operators,
powers of (1+ z)−1 are always good regularizers. This shows that holomorphic functions
with at most polynomial growth at ∞ and having the limit property at 0 which appears in
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Lemma 4.2 are always regularizable even within the restricted calculus. If A is injective,
powers of z(1+z)−2 regularize every function with at most polynomial growth at ∞ and
0. This is well known in the literature (see [1]).

However, we can do much better, even in the non-injective case.

Lemma 4.4. Let A ∈ Sect(ω), ω < ϕ < π and α > 0 such that αϕ < π/2. Then

f(z) := e−tzα ∈ Eres(Sϕ) and f(A) is injective

for every t > 0.

Proof. The first assertion follows from Lemma 4.3. To prove the second, we reduce
the problem to the case ϕ < π/2, α = 1. Namely, setting B := Aα it is known that
B ∈ Sect(αω) (see [17] or [11]). Applying the composition rule (see Theorem 7.1 below)
we obtain f(A) = e−tz(B) =: e−tB .

One can now show that (e−tB)t>0 is a uniformly bounded, holomorphic semigroup
(see [11, Chapter II] or [15]). By means of the Fubini theorem one shows that the
representation

1
1 + z

=
∫ ∞

0
e−te−tz dt

carries over to operators: (1 + B)−1 =
∫ ∞
0 e−te−tB dt. Now, if x ∈ N(e−tB) for some

t > 0, this holds even for all t > 0, by the semigroup property and holomorphy. Hence
(1 + B)−1x = 0, and therefore x = 0. �

Proposition 4.5. Let A ∈ Sect(ω), ω < ϕ < π and f ∈ O(Sϕ). Suppose the two
following conditions are satisfied.

(i) There exist β > 0 and c ∈ C such that f(z) − c = O(|z|β) for z → 0.

(ii) There exist α, t > 0 with αϕ < π/2 and f(z) = O(et Re zα

) for z → ∞.

Then f ∈ M(Sϕ)res,A, i.e. f(A) is defined within the restricted calculus.
The same conclusion holds if A is injective and both f and f(1/z) satisfy condition (ii).

Proof. The first part follows easily from Lemma 4.4 and Lemma 4.3 using as regular-
izer the function e(z) := e−szα

with s > t. When A is injective one can use a regularizer
of the form e(z) := e−s1zα1−s2z−α2 (and use Corollary 7.5). �

5. Algebraic versus topological extension

We want to emphasize the fact that our abstract extension procedure from § 3 is purely
algebraic. The topology is hidden in the construction of the primary calculus (e.g. by
means of a Cauchy integral as in our concrete example). Nevertheless, one could think
of extending the primary calculus to a larger primary calculus by topological means,
according to the following pattern:

if (en)n ⊂ E , f ∈ H, en → f and en• → T , then define f• := T . (5.1)
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Here we suppose that there is a subalgebra H ⊂ F suitably topologized and with E ⊂ H.
Moreover, we fix any reasonable topology on L(X) (e.g. the strong operator topology)
in order to give meaning to the convergence en• → T .

A moment’s reflection shows that, for Definition (5.1) to be reasonable, the following
axiom is required:

(Top) : en → 0, en ∈ E =⇒ en• → 0. (5.2)

Given this, one then obtains via Definition (5.1) a consistent extension of the original
AFC (E ,F , •) to the larger AFC (Ẽ ,F , •), where

Ẽ :=
{

f ∈ H
∣∣∣ ∃(en)n ⊂ E , en → f, T := lim

n
en• exists

}
.

In the following we want to examine if such a procedure can be (and should be) done in
our model case, the functional calculus for sectorial operators.

Let us first say some words on the topology which could be reasonably used. Let A be
a sectorial operator on a reflexive space X with non-trivial kernel N(A) �= 0, and let P

be the projection onto R(A) along N(A). Defining fn := nz/(1 + nz) we have fn → 1
pointwise and the sequence (fn)n is uniformly bounded on each sector Sϕ with ϕ < π.
However, fn(A) → P �= I strongly. Hence boundedly pointwise convergence is not a good
topology to use for the extension.

The following proposition shows that uniform convergence on sectors Sϕ with ω < ϕ

is a possible choice. We will see in a moment that this indeed leads to a really larger
calculus if A is not injective.

Proposition 5.1. Let A ∈ Sect(ω), ω < ϕ < π, (en)n ⊂ Eres(Sϕ) with en → 0
uniformly on Sϕ. If en(A) → T ∈ L(X) strongly, then T = 0.

Proof. We have en = fn + cn/(1 + z) for some fn ∈ H∞
0 (Sϕ) and cn ∈ C. Since

cn := limz→0 en(z) and the convergence is uniform, cn → 0 and limn fn(A) = T . Fix
n ∈ N. Since fn ∈ H∞

0 (Sϕ) there is α > 0 such that still h := fn(z)z−α ∈ H∞
0 (Sϕ).

Hence fn(A) = Aαh(A), whence R(fn(A)) ⊂ R(Aα) ⊂ R(A) (see [17] or [11]). Conse-
quently, R(T ) ⊂ R(A).

Now we show that also R(T ) ⊂ N(A). Let x = Ay ∈ R(A). Then

(1 + A)−2Tx = lim
n

(1 + A)−2fn(A)Ay = lim
n

1
2πi

∫
Γ

z

(1 + z)2
fn(z)R(z, A)y dz = 0.

This implies Tx = 0. If x ∈ D(A) we have fn(A)x ∈ D(A) with Afn(A)x = fn(A)Ax.
Since A is closed, Tx ∈ D(A) with ATx = TAx = 0. Hence TD(A) ⊂ N(A). Because
X = D(A) + R(A), we conclude R(T ) ⊂ N(A).

In summary, we arrive at R(T ) ⊂ R(A) ∩ N(A). However, R(A) ∩ N(A) = 0 holds for
every sectorial operator (cf. [11, Chapter I]). �

The last result shows that Axiom (Top) is satisfied when we use the restricted calculus
Eres with H := H∞(Sϕ) and the topology of uniform convergence on Sϕ. If A is injective,
all of H∞(Sϕ) is already regularized by H∞

0 (Sϕ), so we do not gain anything new by the
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topological extension. If A is not injective, we recover all of E , i.e. the original calculus.
(For f ∈ E0(Sϕ) consider the approximants fn(z) = (nz/(1 + nz))f(z).) However, the
following example shows even more.

Example 5.2. Assume µ ∈ M(0,∞) is a finite (complex) Borel measure on (0,∞)
and consider the function

f(z) := µ�(z) :=
∫

(0,∞)

t

t + z
µ(dt). (5.3)

It is easy to see that f ∈ H∞(Sϕ) for each 0 < ϕ < π. Within the so-called Hirsch
calculus (see [17, Chapter 4]) one defines

f(A) :=
∫

(0,∞)
t(t + A)−1µ(dt),

which certainly is a reasonable definition. When A is injective one can easily show that
this is in perfect agreement with our functional calculus. If A is not injective, µ� /∈
M(Sϕ)A in general. Take, for example, a sequence (an)n�2 with

an � 0, a :=
∑
n�2

an < ∞,
∑
n�2

an log(n + 1) = ∞.

and define µ :=
∑

n�2 anδ1/n. Then µ is a positive measure with total mass a. For f

defined by (5.3) we have
∫ 1

0
|f(t) − f(0)|dt

t
=

∫ 1

0

∣∣∣∣
∑
n�2

an
−t

1/n + t

∣∣∣∣dt

t
=

∑
n�2

∫ 1

0

an

1/n + t
dt

=
∑
n�2

an

(
log

(
1
n

+ 1
)

− log
1
n

)

=
∑
n�2

an log(n + 1) = ∞.

Hence the function µ� is not contained in E [Sω], i.e. f(A) is not defined by our functional
calculus in the case when A is not injective. However,

µ�(z) = lim
n→∞

fn(z) with fn(z) :=
∫

(1/n,n)

t

t + z
µ(dt)

and this convergence is uniform on every sector Sϕ (0 < ϕ < π). The functions fn are
contained in Eres(Sϕ) and

fn(A) =
∫

(1/n,n)
t(t + A)−1µ(dt),

as is easily proved. Thus the Hirsch calculus can be covered by our AFC

( ˜Eres(Sϕ),M(Sϕ), Φ).
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Unfortunately, topological extensions have considerable drawbacks. A spectral map-
ping theorem as it is proved in [12] seems to be out of reach if one uses the topologically
extended calculus. Also it seems that a nice composition rule (which is the topic of § 7)
will fail in that case.

6. Adjoints

In this section we examine the relation between the functional calculi for A and its adjoint
A′. We begin with an abstract consideration.

Let (E ,F , •) be a proper abstract functional calculus over the Banach space X. Then
by e∗ := (e•)′ a homomorphism

∗ : (e �→ e∗) : E −→ L(X ′)

is defined. Hence, (E ,F , ∗) is an abstract functional calculus over X ′, the so-called dual
(functional) calculus. This AFC is proper if and only if there is e ∈ E such that R(e•) = X.
It is now natural to ask, for which f ∈ F the identity f∗ = (f•)′ holds. We obtain the
following result.

Proposition 6.1. Let (E ,F , •) be an AFC with dual calculus (E ,F , ∗) and let f ∈ F .
Suppose there is a •-regularizer e ∈ E for f with the following property.

There exists (fn)n ⊂ Fb such that

(i) fn• → I strongly on X,

(ii) R(fn•) ⊂ R(e•).

Then R(e•) is dense in X, is a core for f• and f∗ = (f•)′.

Proof. It is immediately clear from (i) and (ii) that R(e•) is dense in X. Hence, e is a
regularizer for f in the dual calculus. Let x ∈ D(f•) and y := f•x. Then xn := fn•x → x

and xn ∈ R(e•) ⊂ D(f•). Moreover, f•xn = f•fn•x = fn•y → y. Since x ∈ D(f•) was
arbitrary, we see that R(e•) is a core for f•. This means that (ef)•e

−1
• = f•. Then

f∗ = (e∗)−1(ef)∗ = [(e•)′]−1[(ef)•]′ = [e−1
• ]′[(ef)•]′ = [(ef)•e

−1
• ]′

= [(ef)•e
−1
• ]′ = (f•)′,

where we have used some elementary rules for computations with adjoints (see [11,
Appendix A]). �

Let us return to sectorial operators. Suppose A ∈ Sect(ω) and D(A) = X. This extra
condition ensures that A′ is again single valued, whence also A′ ∈ Sect(ω).

Lemma 6.2. Let A ∈ Sect(ω) with D(A) = X. Then the PFC for A′ is the dual of
the PFC for A, i.e. f(A′) = f(A)′ for every f ∈ E [Sω].
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Proof. Since [(1 + A)−1]′ = (1 + A′)−1 we can assume f ∈ E0[Sω] without loss of
generality. Hence

f(A) =
1

2πi

∫
Γ

f(z)R(z, A) dz

for a certain Γ . Thus

f(A)′ =
(

1
2πi

∫
Γ

f(z)R(z, A) dz

)′
=

1
2πi

∫
Γ

f(z)R(z, A)′ dz

=
1

2πi

∫
Γ

f(z)R(z, A′) dz = f(A′).

�

Combining this result with Proposition 6.1 we can prove the identity f(A)′ = f(A′)
for certain classes of functions f .

Proposition 6.3. Let A ∈ Sect(ω) with D(A) = X, ω < ϕ < π and f ∈ O(Sϕ).
Assume that f satisfies the conditions (i) and (ii) of Proposition 4.5. Then f(A)′ = f(A)′.

The same conclusion holds if R(A) = X and both f , f(1/z) satisfy the condition (ii)
of Proposition 4.5.

Proof. In the first case one can pick a regularizer e of the form e(z) := e−szα

with
s > 0, α > 0 and αϕ < π/2. Choose α < β < π/2ϕ and define fn(z) := e−(1/n)zβ

.
Then B := Aβ is still densely defined, whence fn(A) = e−(1/n)B → I strongly (see [15]
or [11]). Moreover, eszα−(1/n)zβ ∈ E(Sϕ), whence R(e(A)) ⊃ R(fn(A)) for all n. Hence
Proposition 6.1 is applicable. The second assertion is proved similarly. �

7. The composition rule

In all that follows, we use only the AFC (Eres[Sω],M[Sω], Φ), not the original calculus
and not its topological extension. We will study the so-called composition rule by which
we mean an identity of the form

(f ◦ g)(A) = f(g(A)). (7.1)

It is this identity which we consider the most fundamental, making the functional calculus
‘work’. As a matter of fact, the rule as it stands does not make sense, unless we require
some additional hypotheses. Basically, we make the following requirements:

(i) g maps a sector into another sector;

(ii) A is sectorial;

(iii) g(A) is defined by the restricted calculus and is also sectorial.

More precisely, we obtain the following result.
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Theorem 7.1. Let 0 � ω < ϕ < π, A ∈ Sect(ω) and g ∈ M(Sϕ)res,A. Assume that
g(A) ∈ Sect(ω′) with g(Sϕ) ⊂ Sω′ ∪{∞}. Take f ∈ M[Sω′ ]res,g(A). Then f ◦g ∈ M(Sϕ)A

and the composition rule
(f ◦ g)(A) = f(g(A))

holds.

Note that by the open mapping theorem, if g has the required mapping property
(namely, g(Sϕ) ⊂ Sω′ ∪ {∞}), g cannot have zeros or poles within Sϕ, unless g = 0 is
constant. Hence if g �= 0, then g and g−1 are both holomorphic on Sϕ and g(Sϕ) ⊂ Sψ

for every ω < ψ < π.

Lemma 7.2. Let ω, ϕ, A and g �= 0 be as above. If f ∈ M[Sω′ ], then f ◦ g ∈ M(Sϕ).
If f ∈ Eres[Sω′ ], then f ◦ g ∈ H∞(Sϕ)res,A.

Proof. The first statement is clear by the remarks preceding this lemma. Obviously,
also f ◦ g ∈ H∞(Sϕ) holds for every f ∈ E [Sω′ ].

If A is injective, there is nothing more to show. Suppose A is not injective. Then by
Lemma 4.2 the function g must have a limit at 0 with g(z) − g(0) = O(|z|α) for some
α > 0 as z → 0. Since f ∈ Eres, the function f ◦g will have a similar limit behaviour at 0.
Hence f ◦ g is regularizable by (1 + z)−1, and the lemma is proved. �

Lemma 7.3. Let ω, ϕ, A, g be as above. Suppose the composition rule f(g(A)) =
(f ◦ g)(A) is true for every f ∈ Eres[Sω′ ]. Then it is true for every f ∈ M[Sω′ ]res,g(A).

Proof. Let f ∈ M[Sω′ ]res,g(A) and let e ∈ Eres be a regularizer for f with respect
to g(A). From Lemma 7.2 it follows that f ◦ g ∈ M(Sϕ). Lemma 7.2 together with
the hypothesis implies that (e ◦ g)(A) = e(g(A)) is bounded and injective. Moreover,
(f ◦ g)(e ◦ g) = (ef) ◦ g and [(ef) ◦ g](A) = (ef)(g(A)) ∈ L(X). Now an appeal to
Proposition 3.7 shows that f ◦ g ∈ M(Sϕ)res,A. Moreover,

(f ◦ g)(A) = (e ◦ g)(A)−1[(e ◦ g)(f ◦ g)](A) = e(g(A))−1[(ef) ◦ g](A)

= e(g(A))−1(ef)(g(A)) = f(g(A)).

�

We take the final step.

Lemma 7.4. Let ω, ϕ, A, g be as above. Then the composition rule f(g(A)) =
(f ◦ g)(A) is true for every f ∈ Eres[Sω′ ].

Proof. Let f ∈ Eres[Sω′ ]. Then there is a constant c ∈ C and f1 ∈ H∞
0 [Sω′ ] such

that f = c/(1 + z) + f1. If f = c/(1 + z), then the assertion is contained in (vi) of
Theorem 3.6. Hence we can assume without restriction that f ∈ H∞

0 . For λ /∈ Sω′ the
function (λ − g(z))−1 certainly is bounded and holomorphic on Sϕ. Now

f(g(A)) =
1

2πi

∫
Γ ′

f(λ)R(λ, g(A)) dλ =
1

2πi

∫
Γ ′

f(λ)
(

1
λ − g(z)

)
(A) dλ,

where Γ ′ surrounds the sector Sω′ . We consider two cases:
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(i) A is injective;

(ii) A is not injective.

The first case is easier to handle. If A is injective, we can use τ(z) := z(1 + z)−2 as a
regularizer, let Γ surround Sω within Sϕ and compute

f(g(A)) = τ(A)−1τ(A)f(g(A)) = τ(A)−1 1
2πi

∫
Γ ′

f(λ)τ(A)R(λ, g(A)) dλ

= τ(A)−1 1
2πi

∫
Γ ′

f(λ)
(

z

(1 + z)2(λ − g(z))

)
(A) dλ

= τ(A)−1 1
(2πi)2

∫
Γ ′

∫
Γ

f(λ)
z

(1 + z)2(λ − g(z))
R(z, A) dz dλ

(1)
= τ(A)−1 1

2πi

∫
Γ

f(g(z))z
(1 + z)2

R(z, A) dz

= τ(A)−1(f(g(z))τ(z))(A) = (f ◦ g)(A).

Equality (1) is an application of Cauchy’s integral theorem. Before, one has to interchange
the order of integration. To justify this, note that the function

f(λ)
(λ − g(z))(1 + z)2

=
λ

λ − g(z)
f(λ)

λ

1
(1 + z)2

is product integrable on Γ × Γ ′ since the first factor is uniformly bounded.
To cover the second case, assume that A is not injective. Then by Lemma 4.2, g must

have a finite limit c := g(0) at 0 which is approached at least polynomially. Define
g1(z) := g(z)− g(0) and choose a regularizer e ∈ E for g1. Then eg1 ∈ H∞

0 . Furthermore,
for λ /∈ Sω′ the bounded function [(λ − g(z))−1 − (λ − c)−1] is also regularized by e. Thus
we compute

f(g(A)) = e(A)−1e(A)f(g(A)) = e(A)−1 1
2πi

∫
Γ ′

f(λ)e(A)R(λ, g(A)) dλ

= e(A)−1 1
2πi

∫
Γ ′

f(λ)
(

e(z)
λ − g(z)

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ ′

f(λ)
(

g1(z)e(z)
(λ − g(z))(λ − g(0))

+
e(z)
λ − c

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ ′

f(λ)
(

(g1e)(z)
(λ − g(z))(λ − c)

)
(A) +

f(λ)
λ − c

e(A) dλ

= e(A)−1 1
2πi

∫
Γ ′

f(λ)
(

(g1e)(z)
(λ − g(z))(λ − c)

)
(A) dλ

+ e(A)−1 1
2πi

∫
Γ ′

f(λ)
λ − c

dλ e(A).
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The second summand equals f(c) by Cauchy’s theorem. The first satisfies

e(A)−1 1
2πi

∫
Γ ′

f(λ)
(

(g1e)(z)
(λ − c)(λ − g(z))

)
(A) dλ

= e(A)−1 1
2πi

∫
Γ ′

f(λ)
1

2πi

∫
Γ

(g1e)(z)
(λ − c)(λ − g(z))

R(z, A) dz dλ

(1)
= e(A)−1 1

2πi

∫
Γ

(
1

2πi

∫
Γ ′

f(λ)
[

1
λ − g(z)

− 1
λ − c

]
dλ

)
e(z)R(z, A) dz

(2)
= e(A)−1 1

2πi

∫
Γ

(f(g(z)) − f(c))e(z)R(z, A) dz

(3)
= e(A)−1[(f(g(z)) − f(c))e(z)](A)

= e(A)−1((f ◦ g)(A) − f(c))e(A) = (f ◦ g)(A) − f(c),

where we used Fubini’s theorem in (1) and Cauchy’s theorem in (2). To justify the
application of Fubini’s theorem in (1) one has, after estimating the resolvent, to consider
the function

F (λ, z) :=
f(λ)(g1e)(z)

(λ − c)(λ − g(z))z

and prove its product integrability. The representation

F (λ, z) =
(

f(λ)
λ

)(
λ

(λ − c)(λ − g(z))

)(
(g1e)(z)

z

)

shows that c �= 0 is harmless: λ/(λ−g(z)) is uniformly bounded because of the conditions
g(z) ∈ Sω′ and λ ∈ Γ ′. (Recall that (eg1) ∈ H∞

0 .) If c = 0 (hence g1 = g), we write

F (λ, z) =
(

f(λ)
λ

)(
1

λ − g(z)

)(
(ge)(z)

z

)

=
(

f(λ)
λ1+α

)(
λαg(z)1−α

λ − g(z)

)(
g(z)αe(z)

z

)
.

(Recall that g has no poles in Sϕ.) Here, 0 < α < 1 is chosen in such a way that the first
factor remains integrable. Then, the middle term is still uniformly bounded. It is easily
seen that also egα ∈ H∞

0 , whence F is integrable. �

Corollary 7.5. Let A ∈ Sect(ω) be injective and f ∈ M[Sω]. Then

f ∈ M[Sω]A−1 ⇐⇒ f(z−1) ∈ M[Sω]A

and in this case f(A−1) = f(z−1)(A).

Proof. Note that, since both A and A−1 are injective, restricted and original calculus
are the same. Assume f ∈ M[Sω]A−1 and let ψ > ω such that f ∈ M(Sψ). Choose ω <

ϕ < ψ and set ω′ := ϕ. Clearly, A−1 ∈ Sect(ω′), g(z) := z−1 ∈ M(Sϕ)A and g(Sϕ) ⊂ Sω′ .
Applying Theorem 7.1 yields f(z−1) ∈ M(Sϕ)A and f(z−1)(A) = f(A−1). Interchanging
the roles of A and A−1 proves correct the other implication. �
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Example 7.6. Let us illustrate the use of the composition rule. By elementary calcu-
lations one sees that for A ∈ Sect(ω) and ε > 0 also A + ε, A(A + ε)−1 ∈ Sect(ω). The
composition rule and (iii) of Theorem 3.6 yield

[(A + ε)−1]α = [(A + ε)α]−1 = (A + ε)−α and [A(A + ε)−1]α = Aα(A + ε)−α

for Re α > 0. This shows readily D((A+ ε)α) ⊂ D(Aα). (The other inclusion is also easy,
see [11].) Another instance of the composition rule is

e−tzα

(A) = e−tz(Aα) = e−tAα

,

where 0 < α < π/2ω. Here one uses the fact that Aα ∈ Sect(αω) for 0 < α < π/ω, an
easy functional calculus proof of which can be found in [11]. Taking this for granted, the
power law

(Aα)β = Aαβ (0 < α < π/ω, Re β > 0)

is also just another application of the composition rule. If A is injective, one can define
log A := (log z)(A) and obtains the identities

log(A−1) = − log A and log(Aα) = α log A (0 < α < π/ω).

Remark 7.7. Actually, a slightly more general version of the composition rule is true.
Namely, if A is injective, we can admit f ∈ Mg(A) and do not have to restrict to f ’s
from Mres,A. This is clear by browsing through the proofs. Actually, this remark would
be superfluous if we could guarantee that g(A) is injective if A is. However, we do not
know if this is true (cf. [12, Corollary 6.6]).

8. Concluding remarks

The considerations of this paper show paradigmatically how (holomorphic) functional
calculi can be constructed, which results about them can be expected (like the composi-
tion rule) and how they can be proved. The author has carried out such a construction
for so-called strip type operators, to cover logarithms of injective sectorial operators
(see [9], [10] or [11]). Also, ‘half-plane-type’ operators, with the spectrum contained
in a half-plane and the resolvent bounded on the complement, seem to be interesting
(semigroup generators!) and of course a functional calculus can be constructed along the
lines given here. In fact, the whole setting of [5] and the calculus for ‘almost sectorial
operators’ constructed in [18] also fall under this scheme.

However, the Phillips calculus for semigroup generators and other ‘real’ constructions
as in [8] or [19] are not covered. In fact, a general theory of functional calculus, whatever
this means precisely, covering and connecting nicely all known sorts of calculi seems to
be far away. All we can achieve up to now is to construct functional calculi for special
classes of operators, then prove coherence and composition rules for each pair of them.
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