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Abstract

This paper investigates properties of the class of graphs based on exchangeable point pro-
cesses. We provide asymptotic expressions for the number of edges, number of nodes,
and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse,
almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost
extremely sparse regime. We show that, under mild assumptions, both the global and
local clustering coefficients converge to constants which may or may not be the same.
We also derive a central limit theorem for subgraph counts and for the number of nodes.
Finally, we propose a class of models within this framework where one can separately
control the latent structure and the global sparsity/power-law properties of the graph.
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1. Introduction

The ubiquitous availability of large, structured network data in various scientific areas
ranging from biology to social sciences has been a driving force in the development of statis-
tical network models [23, 30]. Vertex-exchangeable random graphs, also known as W-random
graphs or graphon models [1, 15, 19, 28], offer in particular a flexible and tractable class of
random graph models. It includes many models, such as the stochastic block-model [31], as
special cases. Various parametric and nonparametric model-based approaches [25, 26, 33] and
nonparametric estimation procedures [14, 16, 41] have been developed within this framework.
Although the framework is very flexible, it is known that vertex-exchangeable random graphs
are dense [28, 32]; that is, the number of edges scales quadratically with the number of nodes.
This property is considered unrealistic for many real-world networks.
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1212 F. CARON ET AL.

FIGURE 1. Illustration of the graph model based on exchangeable point processes. Left: A unit-rate
Poisson process (θi, ϑi), i ∈N, on (0, α] ×R+. Right: For each pair i ≤ j, set Zij = Zji = 1 with probability
W(ϑi, ϑj). Here, W is indicated by the red shading (darker shading indicates higher value). Similar to [12,
Figure 5].

To achieve sparsity, rescaled graphon models have been proposed in the literature [4, 5,
8, 41]. While these models can capture sparsity, they are not projective; additionally, standard
rescaled graphon models cannot simultaneously capture sparsity and a clustering coefficient
bounded away from zero (see Section 5).

These limitations have been overcome by another line of works initiated by [9, 12, 38]. They
showed that, by modelling the graph as an exchangeable point process, one can naturally extend
the classical vertex-exchangeable/graphon framework to the sparse regime, while preserving
its flexibility and tractability. In such a representation, introduced by [12], nodes are embedded
at some location θi ∈R+, and the set of edges is represented by a point process on the plane,∑

i,j

Zijδ(θi,θj), (1)

where Zij = Zji is a binary variable indicating whether there is an edge between node θi and
node θj. Finite-size graphs are obtained by restricting the point process (1) to points (θi, θj) such
that θi, θj ≤ α, with α a positive parameter controlling the size of the graph. Focusing on a par-
ticular construction as a case study, [12] showed that one can obtain sparse and exchangeable
graphs within this framework; it also pointed out that exchangeable random measures admit
a representation theorem due to [22], giving a general construction for such graph models.
The papers [18, 37] developed sparse graph models with (overlapping) community structure
within this framework. The papers [9, 38] showed how such a construction naturally gener-
alises the dense exchangeable graphon framework to the sparse regime, and analysed some of
the properties of the associated class of random graphs, called graphex processes. (The paper
[38] introduced the term graphex and referred to the class of random graphs as Kallenberg
exchangeable graphs, but the term graphex processes is now more commonly used.) Further
properties were derived by [10, 20, 21, 39]. Following the notation of [38], and ignoring addi-
tional terms corresponding to stars and isolated edges, the graph is then parametrised by a
symmetric measurable function W : R2+ → [0, 1], where for each i ≤ j,

Zij | (θk, ϑk)k=1,2,... ∼ Bernoulli{W(ϑi, ϑj)}, (2)

where (θk, ϑk)k=1,2,... is a unit-rate Poisson process on R
2+. See Figure 1 for an illustration of

the model construction. The function W is a natural generalisation of the graphon for dense
exchangeable graphs [9, 38], and we refer to it as the graphon function.
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(a) (b) (c)

FIGURE 2. Illustration of some of the asymptotic results developed in this paper, applied to the gen-
eralised graphon model defined by Equations (41) and (46) with σ0 = 0.2 and τ0 = 2. (a) Empirical
degree distribution for a graph of size α = 1000 (red) and asymptotic degree distribution (dashed blue;
see Corollary 1). (b) Average local (blue) and global (red) clustering coefficients for 10 graphs of grow-
ing sizes. Limit values are represented by dashed lines (see Propositions 5 and 6). (c) Local clustering
coefficient for nodes of a given degree j, for a graph of size α= 1000. The limit value is represented by
a dashed line (see Proposition 6).

This paper investigates asymptotic properties of the general class of graphs based on
exchangeable point processes defined by Equations (1) and (2). Our findings can be sum-
marised as follows.

(i) We relate the sparsity and power-law properties of the graph to the tail behaviour of
the marginal of the graphon function W, identifying four regimes: (a) a dense regime,
(b) a sparse (almost dense) regime without power-law behaviour, (c) a sparse regime
with power-law behaviour, and (d) an almost extremely sparse regime. In the sparse,
power-law regime, the power-law exponent is in the range (1, 2).

(ii) We derive the asymptotic properties of the global and local clustering coefficients, two
standard measures of the transitivity of the graph.

(iii) We give a central limit theorem for subgraph counts and for the number of nodes in the
graph.

(iv) We introduce a parametrisation that allows us to model separately the global sparsity
structure and other local properties such as community structure. Such a framework
enables us to sparsify any dense graphon model, and to characterise its sparsity
properties.

(v) We show that the results apply to a wide range of sparse and dense graphex processes,
including the models studied by [12, 18, 37].

Some of the asymptotic results are illustrated in Figure 2 for a specific graphex process in
the sparse, power-law regime.

The article is organised as follows. In Section 2 we give the notation and the main
assumptions. In Section 3, we derive the asymptotic results for the number of nodes, degree
distribution, and clustering coefficients. In Section 4, we derive central limit theorems for
subgraphs and for the number of nodes. Section 5 discusses related work. In Section 6 we
provide specific examples of sparse and dense graphs and show how to apply the results of the
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previous section to those models. In Section 7 we describe a generic construction for graphs
with local/global structure and adapt some results of Section 3 to this setting. Most of the proofs
are given in the main text, with some longer proofs in the appendix, together with some techni-
cal lemmas and background material. Other, more technical proofs are given in supplementary
material [13].

Throughout the document, we use the expressions Xα ∼ Yα and Xα = o(Yα) respec-
tively for Xα/Yα → 1 and Xα/Yα → 0. Both Xα � Yα and Xα = O(Yα) are used to express
lim sup Xα/Yα <∞. The notation Xα � Yα means both Xα � Yα and Yα � Xα hold. All unspec-
ified limits are when α tends to infinity. When Xα and/or Yα are random quantities, the
asymptotic relation is meant to hold almost surely.

2. Notation and assumptions

2.1. Notation

Let M =∑i δ(θi,ϑi) be a unit-rate Poisson random measure on (0,+∞)2, and let
W : [0,+∞)2 → [0, 1] be a symmetric measurable function such that limx→∞ W(x, x) and
limx→0 W(x, x) both exist (by (3), this implies that limx→∞ W(x, x) = 0) and

0<W =
∫
R

2+
W(x, y)dxdy<∞,

∫ ∞

0
W(x, x)dx<∞. (3)

Let (Uij)i,j∈N2 be a symmetric array of independent random variables, with Uij ∼ U(0, 1)
if i ≤ j and Uij = Uji for i> j. Let Zij = 1Uij≤W(ϑi,ϑj) be a binary random variable indicating
whether there is a link between i and j, where 1A denotes the indicator function.

Restrictions of the point process
∑

ij Zijδ(θi,θj) to squares [0, α]2 then define a growing fam-
ily of random graphs (Gα)α≥0, called a graphex process, where Gα = (Vα, Eα) denotes a graph
of size α ≥ 0 with vertex set Vα and edge set Eα , defined by

Vα = {θi | θi ≤ α and ∃θk ≤ α s.t. Zik = 1} , (4)

Eα = {{θi, θj} | θi, θj ≤ α and Zij = 1
}

. (5)

The connection between the point process and graphex process is illustrated in Figure 3. The
conditions (3) are sufficient (though not necessary) conditions for |Eα| (hence |Vα|) to be
almost surely finite, and for the graphex process to be well defined [38, Theorem 4.9]. Note
crucially that the graphs Gα have no isolated vertices (that is, no vertices of degree 0), and that
the number of nodes |Vα| and the number of edges |Eα| are both random variables.

We now define a number of summary statistics of the graph Gα . For i ≥ 1, let

Dα,i =
∑

k

Zik1θk≤α .

If θi ∈ Vα , then Dα,i ≥ 1 corresponds to the degree of the node θi in the graph Gα of size α;
otherwise Dα,i = 0. Let Nα = |Vα| and Nα,j be the number of nodes and the number of nodes
of degree j, j ≥ 1, respectively,

Nα =
∑

i

1θi≤α1Dα,i≥1, Nα,j =
∑

i

1θi≤α1Dα,i=j, (6)
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(a) (b)

(d) (e)

(c)

FIGURE 3. Illustration of the connection between the point process on the plane and the graphex process.
(a) Point process

∑
ij Zijδ(θi,θj) on the plane. (b–e) Associated graphs Gα for (b) α ∈ [1, 3), (c) α ∈ [3, 3.5),

(d) α ∈ [3.5, 5), and (e) α= 5. Note that the graph is empty for α < 1.

and N(e)
α = |Eα| the number of edges

N(e)
α = 1

2

∑
i �=j

Zij1θi≤α1θj≤α +
∑

i

Zii1θi≤α . (7)

For i ≥ 1, let

Tα,i = 1

2

∑
j,k|j �=k �=i

ZijZjkZik1θi≤α1θj≤α1θk≤α . (8)

If θi ∈ Vα , Tα,i corresponds to the number of triangles containing node θi in the graph Gα;
otherwise Tα,i = 0. Let

Tα = 1

3

∑
i

Tα,i = 1

6

∑
i �=j �=k

ZijZjkZik1θi≤α1θj≤α1θk≤α (9)

denote the total number of triangles and

Aα =
∑

i

Dα,i(Dα,i − 1)

2
= 1

2

∑
i �=j �=k

ZijZjk1θi≤α1θj≤α1θk≤α (10)

the total number of adjacent edges in the graph Gα . The global clustering coefficient, also
known as the transitivity coefficient, is defined as

C(g)
α = 3Tα

Aα
(11)

if Aα ≥ 1 and 0 otherwise. The global clustering coefficient counts the proportion of closed
connected triplets over all the connected triplets, or equivalently the fraction of pairs of nodes
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connected to the same node that are themselves connected, and is a standard measure of the
transitivity of a network [30, Section 7.9]. Another measure of the transitivity of the graph is
the local clustering coefficient. For any degree j ≥ 2, define

C(�)
α,j =

2

j(j − 1)Nα,j

∑
i

Tα,i1Dα,i=j (12)

if Nα,j ≥ 1 and 0 otherwise. Then C(�)
α,j corresponds to the proportion of pairs of neighbours of

nodes of degree j that are connected. The average local clustering coefficient is obtained by

C
(�)
α = 1

Nα − Nα,1

∑
j≥2

Nα,jC
(�)
α,j (13)

if Nα − Nα,1 ≥ 1 and C
(�)
α = 0 otherwise.

2.2. Assumptions

We will make use of the following three assumptions. Assumption 1 characterises the
behaviour of the small-degree nodes. Assumption 2 is a technical assumption to obtain the
almost sure results. Assumption 3 characterises the behaviour of large-degree nodes.

A central quantity of interest in the analysis of the asymptotic properties of graphex pro-
cesses is the marginal generalised graphon function μ : (0,∞) →R+, defined for x> 0 by

μ(x) =
∫ ∞

0
W(x, y)dy. (14)

The integrability of the generalised graphon W implies that μ is integrable. Ignoring loops
(self-edges), the expected number of connections of a node with parameter ϑ is proportional
to μ(ϑ). Therefore, assuming μ is monotone decreasing, its behaviour at infinity controls the
small-degree nodes, while its behaviour at zero controls the large-degree nodes.

For mathematical convenience, it will be easier to work with the generalised inverse μ−1 of
μ. The behaviour at zero of μ−1 then controls the small-degree nodes, while the behaviour of
μ−1 at infinity controls large-degree nodes.

The following assumption characterises the behaviour of μ at infinity or, equivalently, of
μ−1 at zero. We require μ−1 to behave approximately as a power function x−σ around zero,
for some σ ∈ [0, 1]. This behaviour, known as regular variation, has been extensively studied
(see, e.g., [6]) and we provide some background on it in Appendix C.

Assumption 1. Assume μ is non-increasing, with generalised inverse μ−1(x) = inf{y> 0 |
μ(y) ≤ x}, such that

μ−1(x) ∼ �(1/x)x−σ as x → 0, (15)

where σ ∈ [0, 1] and � is a slowly varying function at infinity: for all c> 0, limt→∞
�(ct)/�(t) = 1.

Examples of slowly varying functions � include functions converging to a strictly positive
constant, and powers of logarithms. Note that Assumption 1 implies that, for σ ∈ (0, 1), μ(t) ∼
�(t)t−1/σ as t → ∞ for some slowly varying function �. We can differentiate four cases, as will
be formally derived in Corollary 1:
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(i) Dense case: σ = 0 and limt→∞ �(t)<∞. In this case, limx→0 μ
−1(x)<∞, and hence

μ has bounded support. The other three cases are all sparse cases.

(ii) Almost dense case: σ = 0 and limt→∞ �(t) = ∞. In this case μ has full support and
super-polynomially decaying tails.

(iii) Sparse case with power law: σ ∈ (0, 1). In this case μ has full support and polynomially
decaying tails (up to a slowly varying function).

(iv) Very sparse case: σ = 1. In this case μ has full support and very light tails. In order for
μ−1 (and hence W) to be integrable, we need � to go to zero sufficiently fast.

Now define, for x, y> 0,

ν(x, y) =
∫ ∞

0
W(x, z)W(y, z)dz. (16)

The expected number of common neighbours of nodes with parameters (ϑ1, ϑ2) is proportional
to ν(ϑ1, ϑ2).

The following assumption is a technical assumption needed in order to obtain the almost
sure results on the number of nodes and degrees. The paper [38] made a similar assumption to
obtain results in probability; see the discussion section for further details.

Assumption 2. Assume that there exist C1, a> 0 and x0 ≥ 0 such that for all x, y> x0,

ν(x, y) ≤ C1μ(x)aμ(y)a, μ(x0)> 0,

{
a>max

(
1
2 , σ

)
if σ ∈ [0, 1),

a = 1 if σ = 1.
(17)

Remark 1. Assumption 2 is trivially satisfied when the function W is separable, W(x, y) =
μ(x)μ(y)/W. Assumptions 1 and 2 are also satisfied if

W(x, y) = 1 − e−f (x)f (y)/f (18)

for some positive, non-increasing, measurable function f with f = ∫∞
0 f (x)dx<∞ and gener-

alised inverse f −1 satisfying f −1(x) ∼ �(1/x)x−σ as x tends to 0. In this case, μ is monotone
non-increasing. We have

μ{f −1(x)} =
∫ ∞

0

{
1 − e−xf (y)/f̄ }dy = x

∫ ∞

0
e−xu/f̄ f −1(u)/f̄ du ∼ x

as x tends to 0 by dominated convergence. Hence f {μ−1(x)} ∼ x as x tends to 0 and
f −1[f {μ−1(x)}] ∼ �(1/x)x−σ . Assumption 2 follows from the inequality W(x, y) ≤ f (x)f (y)/f .
Other examples are considered in Section 6.

The following assumption is used to characterise the asymptotic behaviour of both small-
and large-degree nodes.

Assumption 3. Assume μ−1(t) = ∫∞
t f (x)dx where f is continuous on (0,∞) and the following

hold:

(a) f (x) ∼ τx−τ−1�2(x) as x → ∞,

(b) f (x) ∼ x−σ̃−1�̃2(1/x) as x → 0,

where τ > 0, σ̃ ≤ 1, and �2, �̃2 are slowly varying functions.
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Note that Assumption 3 implies that μ−1(x) ∼ x−τ �2(x) as x → ∞, and μ(t) ∼ �2(t)t−1/τ as
t → 0, for some slowly varying function �2. Assumption 3 also implies Assumption 1 with
σ = max (σ̃ , 0), �(x) = 1

σ
�̃2(x) if σ̃ �= 0, and �(x) = o(�̃2(x)) if σ̃ = 0.

Finally, we state an assumption on ν(x, y), the quantity proportional to the expected number
of common neighbours of two nodes with parameters x and y, defined in Equation (16). This
technical assumption is used to prove a result on the asymptotic behaviour of the variance of
the number of nodes (Proposition 3) and the central limit theorem for sparse graphs enunciated
in Section 4.3.

Assumption 4. Assume that there exist 0<C0 ≤ C1 and x0 ≥ 0 such that for all x, y> x0,

C0μ(x)μ(y) ≤ ν(x, y) ≤ C1μ(x)μ(y).

Assumption 4 holds when W is separable, as well as in the model of [12] under some
moment conditions (see Section 6.5). Obviously, Assumption 4 implies that Assumption 2 is
satisfied with a = 1.

3. Asymptotic behaviour of various statistics of the graph

3.1. Asymptotic behaviour of the number of edges, number of nodes, and degree
distribution

In this section we characterise the almost sure and expected behaviour of the number of
nodes Nα , number of edges N(e)

α , and number of nodes with j edges Nα,j. These results allow
us to provide precise statements about the sparsity of the graph and the asymptotic power-law
properties of its degree distribution.

We first recall existing results on the asymptotic growth of the number of edges. The growth
of the mean number of edges has been shown by [38], and the almost sure convergence follows
from [9, Proposition 56].

Proposition 1. (Number of edges [9, 38].) As α goes to infinity, almost surely

N(e)
α ∼ E(N(e)

α ) ∼ α2W/2. (19)

The following two theorems provide a description of the asymptotic behaviour of the terms
Nα,Nα,j in expectation and almost surely.

Theorem 1. For σ ∈ [0, 1], let �σ be slowly varying functions defined as

�1(t) =
∫ ∞

t
y−1�(y)dy and �σ (t) = �(t)
(1 − σ ) for σ ∈ [0, 1). (20)

Under Assumption 1, for all σ ∈ [0, 1],

E(Nα) ∼ α1+σ �σ (α). (21)

If σ = 0 then for j ≥ 1
E
(
Nα,j

)= o{α�(α)}.
If σ ∈ (0, 1) then for j ≥ 1

E
(
Nα,j

)∼ σ
(j − σ )

j! α1+σ �(α).
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Finally, if σ = 1, then

E
(
Nα,j

)∼
⎧⎨⎩α

2�1(α), j = 1,

α2

j(j−1)�(α), j ≥ 2.

Theorem 1 follows rather directly from asymptotic properties of regularly varying func-
tions [17], recalled in Lemmas B.2 and B.3 in the appendix. Details of the proof are given in
Appendix A.1. Note that �(α) = o(�1(α)); hence, for σ = 1, E

(
Nα,j

)= o{E(Nα,1)} for all j ≥ 2.
The paper [38] shows that, under Assumption 2 with a = 1, we have, in probability,

Nα ∼ E(Nα),
∑
k≥j

Nα,k ∼ E

⎛⎝∑
k≥j

Nα,k

⎞⎠ for j ≥ 1.

The next theorem shows that the asymptotic equivalence holds almost surely under
Assumptions 1 and 2. Additionally, combining these results with Theorem 1 allows us to char-
acterise the almost sure asymptotic behaviour of the number of nodes and the number of nodes
of a given degree. The proof of Theorem 2 is given in Section 3.2.

Theorem 2. Under Assumptions 1 and 2, we have almost surely as α tends to infinity

Nα ∼ E(Nα),
∑
k≥j

Nα,k ∼ E

⎛⎝∑
k≥j

Nα,k

⎞⎠ for j ≥ 1. (22)

Combining this with Theorem 1, we obtain that, for all σ ∈ [0, 1],

Nα ∼ α1+σ �σ (α).

Moreover, for j ≥ 1, if σ = 0 then Nα,j = o{α�(α)}, while if 0<σ < 1 then

Nα,j ∼ σ
(j − σ )

j! α1+σ �(α).

If σ = 1, then Nα,1 ∼ α2�1(α) and for all j ≥ 2 we also have Nα,j = o{α2�1(α)}.
The following result is a corollary of Theorem 2 which shows how the parameter σ relates

to the sparsity and power-law properties of the graphs. We denote by �# the de Bruijn conjugate
(see Definition C.2 in the appendix) of the slowly varying function �.

Corollary 1. (Sparsity and power-law degree distribution.) Assume Assumptions 1 and 2. For
σ ∈ [0, 1], almost surely as α tends to infinity,

N(e)
α ∼ W

2
N2/(1+σ )
α �∗σ (Nα), �∗σ (y) =

[{
�1/(1+σ )
σ (y1/1+σ )

}#
]2

.

The function �∗σ (y) is slowly varying and the graph is dense if σ = 0 and limt→∞ �(t) = C<∞,

as N(e)
α /N2

α → C2W/2 almost surely. Otherwise, if σ > 0 or σ = 0 and limt �(t) = ∞, the graph

is sparse, as N(e)
α /N2

α → 0. Additionally, for σ ∈ [0, 1), for any j = 1, 2, . . .,

Nα,j
Nα

→ σ
(j − σ )

j!
(1 − σ )
(23)
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almost surely. If σ > 0, this corresponds to a degree distribution with power-law behaviour, as,
for j large,

σ
(j − σ )

j!
(1 − σ )
∼ σ


(1 − σ )j1+σ .

For σ = 1, Nα,1/Nα → 1 and Nα,j/Nα → 0 for j ≥ 2; hence the nodes of degree 1 dominate in
the graph.

Remark 2. If σ = 0 and limt→∞ �(t) = ∞, the graph is almost dense; that is, N(e)
α /N2

α → 0

and N(e)
α /N2−ε

α → ∞ for any ε > 0. If σ = 1, the graph is almost extremely sparse [8], as

N(e)
α /Nα → ∞ and N(e)

α /N1+ε
α → 0 for any ε > 0.

The above results are important in terms of modelling aspects, since they allow a precise
description of the degrees and number of edges as a function of the number of nodes. They can
also be used to conduct inference on the parameters of the statistical network model, since the
behaviour of most estimators will depend heavily on the behaviour of Nα , N(e)

α , and possibly
Nα,j. For instance the naive estimator of σ given by

σ̂ = 2 log Nα

log N(e)
α

− 1 (24)

is almost surely consistent. Note that, following an earlier version of the present paper,
[29] proposed an alternative estimator for σ , with better statistical properties. Indeed, under
Assumptions 1 and 2, using Theorems 1 and 2, we have almost surely N2

α ∼ α2+2σ �σ (α)2 and

N(e)
α ∼ α2W/2. Hence

log
N2
α

N(e)
α

∼ 2σ log(α) + log
(
�σ (α)22/W

)
and the result follows as log �σ (α)/ log α→ 0.

All of the above results concern the behaviour of small-degree nodes, where the degree j is
fixed as the size of the graph goes to infinity. It is also of interest to look at the number of nodes
of degree j as both α and j tend to ∞. We show in the next proposition that this is controlled
by the behaviour of the function f , introduced in Assumption 3, at 0 or ∞.

Proposition 2. (Power law for high-degree nodes.) Assume that Assumption 3 holds. Then
when j → ∞, log α = o(j), and j/α→ c0 ∈ [0,∞], we have

E
(
Nα,j

)∼ f (j/α).

Note that Proposition 2 implies that when j/α→ ∞,

E
(
Nα,j

)∼ τα1+τ �2(j/α)

j1+τ ,

which corresponds to power-law behaviour with exponent 1 + τ . If j/α→ 0 then

E
(
Nα,j

)∼ α1+σ̃ �̃2(α/j)

j1+σ̃ .
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This is similar to the asymptotic results for j fixed, stated in Theorem 1, noting that


(j − σ )

j! ∼ j−1−σ

as j → ∞. Finally, if j/α→ c0 ∈ (0,∞), then E
(
Nα,j

)∼ f (c0) ∈ (0,∞).

Proof. Under Assumption 3, we have μ−1(t) = ∫∞
t f (x)dx with

f (x) ∼ τx−τ−1�2(x) as x → ∞, f (x) ∼ τx−σ−1�̃2(x) as x → 0.

From [38, Theorem 5.5] we have, assuming that W(x, x) = 0 for the sake of simplicity,

E
(
Nα,j

)= α

∫ ∞

0
e−αμ(ϑ) (αμ(ϑ))j

j! dϑ

= α

∫ ∞

0
e−αx (αx)j

j! f (x)dx

= E[f ((j + 1)Xj/α)],

where Xj is a gamma random variable with rate j + 1 and inverse scale j + 1. We split the above
expectation into Xj < 1/2, Xj ∈ [1/2, 3/2], and Xj > 3/2. The idea is that the third and the first
expectations are small because Xj concentrates fast to 1, while the middle expectation (Xj ∈
[1/2, 3/2]) uses the fact that f ((j + 1)Xj/α) ≈ f ((j + 1)/α). More precisely, using Stirling’s
approximation, for every ε > 0 there exists c> 0 such that

E[f ((j + 1)Xj/α)1Xj<1/2] = (j + 1)j+1


(j + 1)

∫ 1/2

0
f ((j + 1)x/α)xje−(j+1)xdx

�
√

j
∫ 1/2

0

(
1 +

(
(j + 1)x

α

)−1−σ̃−ε)
e−j(x−log x−1)dx

� e−cj

(
1 +

(
j

α

)−1−σ̃−ε)
= o(1),

since α/j = o(ecj) for any c> 0. The expectation over Xj > 3/2 is treated similarly. We
now study the expectation over [1/2, 3/2]. We have that if j/α→ ∞, then uniformly in
x ∈ [1/2, 3/2], under Assumption 3,∣∣∣∣ f ((j + 1)x/α)

f ((j + 1)/α)
− x−1−τ

∣∣∣∣= o(1),

and similarly when j/α→ 0, with τ replaced by σ̃ ; if j/α→ c0 ∈ (0,∞), then uniformly in
x ∈ [1/2, 3/2], ∣∣∣∣ f ((j + 1)x/α)

f ((j + 1)/α)
− f (c0x)

f (c0)

∣∣∣∣= o(1).

Moreover, since Xj converges almost surely to 1, we finally obtain that

E

[
f ((j + 1)Xj/α)

f ((j + 1)/α)
1Xj∈[1/2,3/2]

]
→ 1,

which terminates the proof. �
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3.2. Proof of Theorem 2

The proof follows similarly to that of [38, Theorem 6.1], by bounding the variance. The
paper [38] showed that var(Nα) = o(E(Nα)2) and var

(
Nα,j

)= o(E
(
Nα,j

)2) and used this result
to prove that (22) holds in probability; we need a slightly tighter bound on the variances to
obtain the almost sure convergence. This is stated in the next two propositions.

Proposition 3. Let Nα be the number of nodes. We have

var(Nα) = E(Nα) + 2α2
∫
R+
μ(x){1 − W(x, x)}e−αμ(x)dx

+ α2
∫
R

2+
{1 − W(x, y)}{1 − W(x, x)}{1 − W(y, y)}{

eαν(x,y) − 1 + W(x, y)
}

e−αμ(x)−αμ(y)dxdy. (25)

Under Assumptions 1 and 2, with σ ∈ [0, 1], slowly varying function �, and positive scalar a
satisfying (17), we have

var(Nα) = O
{
α3+2σ−2a�σ (α)2}, (26)

where the slowly varying functions �σ are defined in Equation (20). Additionally, under
Assumptions 1 and 4, we have, for any σ ∈ [0, 1] and any slowly varying function �,

var(Nα) � α1+2σ �2
σ (α). (27)

Sketch of the proof. We give here the ideas behind the proof, deferring its completion
to Section A.1 of the supplementary material [13]. Equation (25) is immediately obtained
using the Slivnyak–Mecke and Campbell theorems. Applying the inequality ex − 1 ≤ xex and
Lemmas B.2 and B.6 to the right-hand side of Equation (25), we obtain the upper bound of
Equation (26). Finally, if Assumption 4 holds, then Assumption 2 holds as well with a = 1.
Combining this with Assumption 1, we can therefore specialise the upper bound of Equation
(26) to the case a = 1 : O(α1+2σ �2

σ (α)). The lower bound with the same order is found using
the inequality ex − 1 ≥ x and Lemmas B.2 and B.3. �

Proposition 3 and Theorem 1 imply in particular that, under Assumptions 1 and 2,

var(Nα) = O
{
E(Nα)2α−κ}

for some κ > 0. Here Nα is a positive, monotone increasing stochastic process. Using
Lemma B.1 in the appendix, we obtain that Nα ∼ E(Nα) almost surely as α tends to ∞.

Proposition 4. Let Nα,j be the number of nodes of degree j. Then, under Assumptions 1 and 2,
with σ ∈ [0, 1], slowly varying function �, and positive scalar a satisfying (17), we have

var
(
Nα,j

)= O
{
α3+2σ−2a�σ (α)2}.

where the slowly varying functions �σ are defined in Equation (20). In the case σ = 0 and
a = 1, we have the stronger result

var
(
Nα,j

)= o
{
α�(α)2}.

Sketch of the proof. While the complete proof of Proposition 4 is given in Section A.2 in
the supplementary material [13], we explain here its main passages. We start by evaluating
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the expectation of N2
α,j and Nα,j conditional on the unit-rate Poisson random measure M =∑

i δ(θi,ϑi):

E
(
N2
α,j | M

)− E
(
Nα,j | M

)
=
∑
i1 �=i2

1θi1≤α1θi2≤αP
{∑

k

1θk≤αZi1k = j and
∑

k

1θk≤αZi2,k = j | M

}

=
∑

b∈{0,1}3

j∑
j1=0

∑
i1 �=i2

1θi1≤α1θi2≤α

× P

{∑
k

1θk≤αZi1k = j and
∑

k

1θk≤αZi2,k = j and
∑

k

1θk≤αZi1kZi2k = j − j1

and Zi1i1 = b11, Zi1i2 = b12, Zi2i2 = b22 | M
}
,

where b = (b11, b12, b22) ∈ {0, 1}3. We then use the Slivnyak–Mecke theorem to obtain
E(N2

α,j) − E
(
Nα,j

)
, which can be bounded by a sum of terms of the form

α2
∫
R2

[αμ(x)]k1 [αμ(y)]k2 (αν(x, y))re−αμ(x)−αμ(y)+αν(x,y)dxdy (28)

for k1, k2, r ∈ {0, . . . , j}. For terms with r ≥ 1, we use Lemma A.1 (enunciated and proved,
using Lemmas B.2 and B.4, in Section A.2 of the supplementary material). The lemma
states that, under Assumptions 1 and 2, the integral in (28) is in O

(
αr−2ar+2σ �2

σ (α)
))=

O
(
α1−2a+2σ �2

σ (α)
))

for any r ≥ 1, k1, k2 ≥ 0. For terms with r = 0 in (28), we use the inequal-
ity ex ≤ 1 + xex, the Cauchy–Schwarz inequality, and Lemma B.4 to show that these terms are
in O

{
α3+2σ−2a�2

σ (α)
}
, which completes the proof. �

Define Ñα,j =∑k≥j Nα,k, the number of nodes of degree at least j. Note that Ñα,j is a posi-

tive, monotone increasing stochastic process in α, with Ñα,j = Nα −∑j−1
k=1 Nα,k. We then have,

using the Cauchy–Schwarz and Jensen inequalities, that

E
(
Ñα,j

)= E(Nα) −
j−1∑
k=1

E(Nα,k), var
(
Ñα,j

)≤ j

⎧⎨⎩var(Nα) +
j−1∑
k=1

var(Nα,k)

⎫⎬⎭ .

Consider first the case σ ∈ [0, 1). Since Theorem 1 implies, for j ≥ 2, α1+σ �(α) � E
(
Ñα,j

)
as

α goes to infinity, using Propositions 3 and 4, we obtain var
(
Ñα,j

)= O{α−τE
(
Ñα,j

)2} for some
τ > 0. Combining this with Lemma B.1 leads to Ñα,j ∼ E

(
Ñα,j

)
almost surely as α goes to

infinity.
The almost sure results for Nα,j then follow from the fact that, for all j ≥ 2, E

(
Ñα,j

)� E(Nα)
if σ ∈ (0, 1), E

(
Ñα,j

)∼ E(Nα) if σ = 0, and E
(
Ñα,j

)= o{E(Nα)} if σ = 1.

3.3. Asymptotic behaviour of the clustering coefficients

The following proposition is a direct corollary of [9, Proposition 56], which showed the
almost sure convergence of subgraph counts in graphex processes.
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Proposition 5. (Global clustering coefficient [9].) Assume
∫∞

0 μ(x)2dx<∞. Recall that Tα
and Aα are respectively the number of triangles and the number of adjacent edges in the graph
of size α. We have

Tα ∼ E(Tα) = α3

6

∫
R

3+
W(x, y)W(x, z)W(y, z)dxdydz,

Aα ∼ E(Aα) = α3

2

∫ ∞

0
μ(x)2dx

almost surely as α→ ∞. Therefore, if
∫∞

0 μ(x)2dx> 0, the global clustering coefficient
defined in Equation (11) converges to a constant

C(g)
α →

∫
R

3+ W(x, y)W(x, z)W(y, z)dxdydz∫∞
0 μ(x)2dx

almost surely as α→ ∞.

Note that if μ is monotone decreasing, as W <∞, we necessarily have
∫∞

a μ(x)2dx<∞
for any a> 0. Hence the condition

∫∞
0 μ(x)2dx<∞ in Proposition 5 requires additional

assumptions on the behaviour of μ at 0 (or equivalently the behaviour of μ−1 at ∞), which
drives the behaviour of large-degree nodes. If the graph is dense, μ is bounded and thus∫∞

0 μ(x)2dx<∞.

Proposition 6. (Local clustering coefficient.) Assume Assumptions 1 and 2 hold with σ ∈
(0, 1). Assume additionally that

lim
x→∞

∫
R

2+ W(x, y)W(x, z)W(y, z)dydz

μ(x)2
→ b (29)

for some b ∈ [0, 1]. Then the local clustering coefficients converge in probabiltiy as α→ ∞:

C(�)
α,j → b ∀j ≥ 2.

If b> 0, the above result holds almost surely, and the average local clustering coefficient
satisfies

lim
α→∞ C

(�)
α → b, almost surely.

In general,

lim
x→∞

1

μ(x)2

∫
W(x, y)W(x, z)W(y, z)dydz �=

∫
W(x, y)W(x, z)W(y, z)dxdydz∫

μ(x)2dx
,

and the global clustering and local clustering coefficients converge to different limits. A notable
exception is the separable case where W(x, y) =μ(x)μ(y)/W, since in this case∫

W(x, y)W(x, z)W(y, z)dydz = W
−3
μ(x)2

(∫
μ(y)2dy

)2

, b =
(∫
μ(y)2dy

)2
W

3

and ∫
W(x, y)W(x, z)W(y, z)dydzdx = W

−3
(∫

μ(y)2dy

)3

.
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Sketch of the proof. Full details are given in Appendix A.2; here we give only a sketch of
the proof, which is similar to that of Theorem 2. We have

C(�)
α,j =

2Rα,j
j(j − 1)Nα,j

, where Rα,j =
∑

i

Tα,i1Dα,i=j.

Here Rα,j corresponds to the number of triangles having a node of degree j as a vertex; triangles
having k ≤ 3 degree-j nodes as vertices are counted k times.

We obtain an asymptotic expression for E
(
Rα,j
)
, and show that var

(
Rα,j
)=

O
(
α1−2a

[
E
(
Rα,j
)]2). We then prove that Rα,j/E

(
Rα,j
)

goes to 1 almost surely. The latter is
obtained by proving that Rα,j is nearly monotone increasing by constructing an increasing
sequence αn going to infinity such that E

(
Rαn,j

)
/E
(
Rαn+1,j

)
goes to 1 and such that for all

α ∈ (αn, αn+1),

Rαn,j − R̃n,j ≤ Rα,j ≤ Rαn+1,j + R̃n,j, R̃n,j = o
(
E
(
Rαn,j

))
.

Roughly speaking, R̃n,j (defined in Equation (60)) corresponds to the sum of the number of
triangles Tαn+1i, over the set of nodes i such that Dn,i ≤ j and i has at least one connection with
some i′ such that θi′ ∈ (αn, αn+1). The result for the local clustering coefficient then follows
from Toeplitz’s lemma (see e.g. [27, p. 250]).

4. Central limit theorems

We now present central limit theorems (CLTs) for subgraph counts (numbers of edges,
triangles, etc.) and for the number of nodes Nα . Subgraph counts can be expressed as U-
statistics of Poisson random measures (up to an asymptotically negligible term). A CLT then
follows rather directly from CLT on U-statistics of Poisson random measures [35].

Obtaining a CLT for quantities like Nα is more challenging, since these cannot be reduced
to U-statistics. In this section we prove the CLT for Nα; we separate the dense and sparse cases
because the techniques of the respective proofs are very different. The proof of the sparse case
requires additional assumptions and is much more involved. We believe that the same technique
of proof can be used for other quantities of interest, such as the number Nα,j of nodes of degree
j, with more tedious computations.

4.1. CLT for subgraph counts

4.1.1. Statement of the result. Let F be a given subgraph which has neither isolated vertices
nor loops. Denote by |F| the number of nodes, {1, · · · , |F|} the set of vertices, and e(F) the set
of edges. Let N(F)

α be the number of subgraphs F in the graph Gα:

N(F)
α = k(F)

�=∑
(v1,··· ,v|F|)

∏
(i,j)∈e(F)

Zvi,vj1θvi≤α1θvj≤α,

where k(F) is a constant accounting for the multiple counts of F, which we can omit in
the rest of the discussion since it does not depend on α. Note that this statistic covers the
number of edges (excluding loops) if |F| = 2 and the number of triangles if |F| = 3 and
e(F) = {(1, 2), (1, 3), (2, 3)}. It is known in the graph literature as the number of injective
adjacency maps from the vertex set of F to the vertex set of Gα; see [9, Section 2.5].
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Proposition 7. Let F be a subgraph without loops or isolated vertices. Assume that∫∞
0 μ(x)2|F|−2dx<∞. Then

N(F)
α − E

(
N(F)
α

)√
var
(
N(F)
α

) →N (0, 1), (30)

as α goes to infinity, where

E
(
N(F)
α

)= k(F)α
|F|
∫
R

|F|
+

∏
(i,j)∈e(F)

W(xi, xj)dx1 · · · dx|F| <∞ (31)

and
var
(
N(F)
α

)∼ cFα
2|F|−1

for some positive constant cF that depends only on F.

Remark 3. If the graph is dense, then μ is a bounded function with bounded support and
therefore

∫∞
0 μ(x)pdx<∞ for any p. In the sparse case, if μ is monotone, we necessarily

have
∫∞

a μ(x)pdx<∞ for any p> 1. The condition
∫∞

0 μ(x)2|F|−2dx<∞ therefore requires
additional assumptions on the behaviour of μ at 0, which drives the behaviour of large-degree
nodes.

4.1.2. Proof. Recall that M =∑i δ(θi,ϑi). The main idea of the proof is to use the decomposition

N(F)
α − E

(
N(F)
α

)= E
(
N(F)
α |M)− E

(
N(F)
α

)+ N(F)
α − E

(
N(F)
α |M), (32)

and to show that E
(
N(F)
α |M) is a geometric U-statistic of a Poisson process, for which a CLT

has been derived by [35].
In this section, denote by K = |F| ≥ 2 the number of nodes of the subgraph F. The subgraph

counts are

N(F)
α = k(F)

�=∑
(v1,··· ,vK )

(
K∏

k=1

1θvk ≤α

)
1

|SK |
∑
π∈SK

∏
(i,j)∈e(F)

Zvπi ,vπj
,

where SK denotes the set of permutations of {1, . . . ,K}.
Using the extended Slivnyak–Mecke theorem, we have

E
(
N(F)
α

)= k(F)α
K
∫
R

K+

∏
(i,j)∈e(F)

W(xi, xj)dx1 · · · dxK . (33)

As
∫∞

0 μ(x)K−1dx<∞, [9, Lemma 62] implies that E
(
N(F)
α

)
<∞. For any K ≥ 2, define the

symmetric function

f (x1, . . . , xK) = 1

|SK |
∑
π∈SK

∏
(i,j)∈e(F)

W
(
xπi , xπj

)
;

using the condition (3) and the fact that
∫∞

0 μ(x)K−1dx<∞, it satisfies 0<∫
R

K+ f (x1, . . . , xK)dx1 . . . dxK <∞.
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We state the following useful lemma.

Lemma 1. The function f satisfies, for all xK ≥ 0,

g(xK) :=
∫
R

K−1+
f (x1, . . . , xK−1, xK)dx1 . . . dxK−1 ≤ C0 max

(
μ(xK), μ(xK)K−1)

for some constant C0.

Proof. Let π ∈ SK and rK ∈ {1, . . . ,K} be such that πrK = K. Denote by S ⊆ {1, . . . ,
K − 1} the set of indices i such that (i, rK) ∈ e(F) and i has no other connections in F. Then∫

R
K−1+

∏
(i,j)∈e(F)

W(xπi , xπj)dx1 . . . dxK−1 ≤ C1

∫
R

|S|
+

[∏
i∈S

W
(
xπi , xK

)
dxi

]
= C1μ(xK)|S| ≤ C1 max

(
μ(xK), μ(xK)K−1)

for some constant C1. �
It follows from Lemma 1 and from the fact that

∫∞
0 μ(x)dx<∞ that, if

∫∞
0 μ(x)2K−2

dx<∞, then

∫ ∞

0

(∫
R

K−1+
f (x1, . . . , xK−1, y)dx1 . . . dxK−1

)2

dy<∞.

We are now ready to derive the asymptotic expression for the variance of N(F)
α . Using the

extended Slivnyak–Mecke theorem again,

E
((

N(F)
α

)2)= E
(
E
(
(N(F)
α )2 | M

))
= k2

(F)E

⎛⎜⎝ �=∑(
v1,··· ,vK ,v′

1,...,v
′
K

) f
(
ϑv1 , . . . , ϑvK

)
f
(
ϑv′

1
, . . . , ϑv′

K

) K∏
k=1

1θvk ≤α1θv′k
≤α

⎞⎟⎠

+ k2
(F)K

2E

⎛⎜⎜⎜⎜⎜⎜⎝
�=∑(

v1,··· ,vK ,

v′
1,...,v

′
K−1

)
f
(
ϑv1 , . . . , ϑvK

)
f
(
ϑv′

1
, . . . , ϑv′

K−1
, ϑvK

)
1θvK ≤α

K−1∏
k=1

1θvk ≤α1θv′k
≤α

⎞⎟⎟⎟⎟⎟⎟⎠
+ O

(
α2K−2)

= k2
(F)K

2α2K−1
∫
R

2K−1+
f
(
x1, . . . , xK

)
f
(
x′

1, . . . , x′
K−1, xK

)
dx1, . . . dxKdx′

1 . . . dx′
K−1

+ E
(
N(F)
α

)2 + O
(
α2K−2).

It follows that

var
(
N(F)
α

)∼ k2
(F)K

2α2K−1σ 2
F
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as α tends to infinity, where

σ 2
F =

∫ ∞

0

(∫
R

K−1+
f (x1, . . . , xK−1, y)dx1 . . . dxK−1

)2

dy<∞.

We now prove the CLT. The first term of the right-hand side of Equation (32) takes the form

E
(
N(F)
α |M)= k(F)

�=∑
(v1,··· ,vK )

f
(
ϑv1 , . . . , ϑvK

) K∏
i=1

1θvi≤α . (34)

By the superposition property of Poisson random measures, we have

E
(
N(F)
α |M) d= k(F)

�=∑
(v1,··· ,vK )

f
(
ϑ̃v1, . . . , ϑ̃vK

) K∏
i=1

1θ̃vi≤1,

where the right-hand side is a geometric U-statistic [35, Definition 5.1] of the Poisson point
process

{(
θ̃i, ϑ̃i

)
i≥1

}
with mean measure αdθ̃dϑ̃ on [0, 1] ×R+. Theorem 5.2 in [35] therefore

implies that

E
(
N(F)
α | M

)− E
(
N(F)
α

)√
var
(
E
(
N(F)
α | M

)) →N (0, 1), (35)

where var
(
E
(
N(F)
α | M

))∼ var
(
N(F)
α

)∼ k2
(F)|F|2α2|F|−1σ 2

F . One can show similarly (proof omit-

ted) that var
(
N(F)
α − E

(
N(F)
α | M

))= o
(
α2|F|−1

)
. It follows from Equations (32) and (35) and

the Chebyshev inequality that

N(F)
α − E

(
N(F)
α

)√
var
(
N(F)
α

) →N (0, 1)

as α tends to infinity.

4.2. CLT for Nα (dense case)

4.2.1. Statement of the result. In the dense case, μ has bounded support. If it is monotone
decreasing, then Assumption 1 is satisfied with σ = 0, and �(t) = sup{x> 0 |μ(x)> 0} is
constant. In this case a CLT applies, as described in the following theorem.

Theorem 3. (Dense case.) Assume that Assumption 1 holds with σ = 0 and �(t) = C ∈ (0,∞),
where C = sup{x> 0 |μ(x)> 0} (dense case). Also assume that Assumption 2 holds with a = 1.
Then

Nα − E(Nα)√
αC

→N (0, 1). (36)

Moreover, E(Nα) = αC − mα,0, where

mα,0 = α

∫ C

0
e−αμ(x)(1 − W(x, x))dx = o(α). (37)

The quantity mα,0 can be interpreted as the expected number of degree-0 nodes, and is finite in
the dense case. As shown in the following examples, mα,0 can either diverge or converge to a
constant as α tends to infinity.
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Example 1. Consider μ(x) = 1x∈[0,1], μ(x) = (1 − x)21x∈[0,1], and μ(x) = (1 − x)31x∈[0,1]. We

respectively have mα,0 → 0, mα,0 ∼
√
π

2 α
1/2, and mα,0 ∼ 
(4/3)α2/3.

The above CLT for Nα can be generalised to Ñα,j =∑k≥j Nα,k, the number of nodes of
degree at least j.

Theorem 4. Assume that Assumption 1 holds with σ = 0 and �(t) = C ∈ (0,∞), where C =
sup{x> 0 |μ(x)> 0} (dense case). Also assume that Assumption 2 holds with a = 1. Then for
any j ≥ 1,

Ñα,j − E
(
Ñα,j

)
√
αC

→N (0, 1). (38)

Moreover, E
(
Ñα,1

)= E(Nα) = αC − mα,0, and for j ≥ 2, E
(
Ñα,j

)= αC − mα,0 −∑j−1
k=1 E

(
Nα,j

)
, where mα,0 is defined in Equation (37) and E

(
Nα,j

)
is defined in Equation (53).

Note that mα,0 = o(α), and for any j ≥ 1, E
(
Nα,j

)= o(α).

4.2.2. Proof. Given a point (θ, ϑ) such that ϑ >C, its degree is necessarily equal to zero, as
μ(ϑ) = 0. Write

Nα = Qα − Nα,0, where Qα =
∑

i

1θi≤α1ϑi≤C;

Qα is the total number of nodes i with θi ≤ α that could have a connection (hence such that
μ(ϑi)> 0), and

Nα,0 =
∑

i

1θi≤α1ϑi≤C1Dα,i=0

is the set of nodes i with degree 0, but for which θi ≤ α, μ(ϑi)> 0. In the dense regime, both
Qα and Nα,0 are almost surely finite. Furthermore, (Qα)α≥0 is a homogeneous Poisson process
with rate C. By the law of large numbers, Qα ∼ αC ∼ Nα almost surely as α tends to infinity.
Using Campbell’s theorem, the Slivnyak–Mecke formula, and monotone convergence, we have
E(Nα,0) = α

∫ C
0 (1 − W(x, x))e−αμ(x)dx = o(α). We also have that

E
(
N2
α,0

)− E(Nα,0) = α2
∫ C

0

∫ C

0
(1 − W(x, x))(1 − W(y, y))(1 − W(x, y))

× e−αμ(x)−αμ(y)+αν(x,y)dxdy.

Hence, using the inequality ex − 1 ≤ xex, we obtain

var(Nα,0) = α2
∫ C

0

∫ C

0
(1 − W(x, x))(1 − W(y, y))(1 − W(x, y))e−αμ(x)−αμ(y)+αν(x,y)dxdy

− α2

(∫ C

0
(1 − W(x, x))e−αμ(x)dx

)2

+ E(Nα,0)

≤ E(Nα,0) + α3
∫ C

0

∫ C

0
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy.

Using Lemma B.6 in the appendix and Assumption 2 with a = 1, we have∫ C

0

∫ C

0
ν(x, y)e−α/2μ(x)−α/2μ(y)dxdy = o

(
α−2).
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It follows that var(Nα,0) = o(α). This implies, by Chebyshev’s inequality, the CLT for Poisson
processes, and Slutsky’s theorem, that

Nα − E(Nα)√
αC

= Qα − αC√
αC

− Nα,0 − E(Nα,0)√
αC

→N (0, 1).

This concludes the proof of Theorem 3. The proof of Theorem 4 follows similarly. Note
that the case j = 1 in Theorem 4 corresponds to Theorem 3. For any j ≥ 2, Ñα,j = Qα − Nα,0 −∑j−1

k=1 Nα,k. We have, using the Cauchy–Schwarz inequality and Proposition 4,

var

⎛⎝Nα,0 +
j−1∑
k=1

Nα,k

⎞⎠≤ j

⎛⎝var(Nα,0) +
j−1∑
k=1

var(Nα,k)

⎞⎠= o(α).

This implies

Ñα,j − E
(
Ñα,j

)
√
αC

= Qα − αC√
αC

− Nα,0 +∑j−1
k=1 Nα,k − E

(
Nα,0 +∑j−1

k=1 Nα,k
)

√
αC

→N (0, 1).

4.3. CLT for Nα (sparse case)

4.3.1. Statement of the result. We now assume that we are in the sparse regime; that is, μ
has unbounded support. We make the following additional assumption in order to prove the
asymptotic normality. This holds when W is separable, as well as in the model of [12] under
some moment conditions (see Section 6.5).

Assumption 5. Assume that for any j ≤ 6 and any (x1, . . . , xj) ∈R
j
+,

∫ ∞

0

j∏
i=1

W(xi, y)dy ≤
j∏

i=1

L(xi)μ(xi),

where L is a locally integrable, slowly varying function converging to a (strictly positive)
constant, such that ∫ ∞

0
L(x)μ(x)dx<∞.

We now state the CLT for Nα under the sparse regime. Recall that in this case, when
Assumption 1 holds, we have either σ = 0 and �(t) → ∞ or σ ∈ (0, 1].

Theorem 5. (Sparse case.) Assume that μ has unbounded support (sparse regime). Under
Assumptions 1, 4, and 5, we have

Nα − E(Nα)√
var(Nα)

→N (0, 1).

Remark 4. As detailed in Proposition 3, under Assumptions 1 and 4, for any σ ∈ [0, 1] and any
slowly varying function � we have var(Nα) � α1+2σ �2

σ (α), where the slowly varying function
�σ is defined in Equation (20).
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4.3.2. Proof. The proof uses the recent results of [24] on normal approximations of nonlinear
functions of a Poisson random measure. We have the decomposition

Nα − E(Nα) = (Nα − E(Nα | M)) + (E(Nα | M) − E(Nα))

= (Nα − E(Nα | M)) + (M(hα) − E(Nα)) + fα(M),

where

fα(M) =
∑

i

1θi≤α
[

(1 − W(ϑi, ϑi))e
−αμ(ϑi) − e−M

(
gα,ϑi

)]
is a nonlinear functional of the Poisson random measure M, and

M(hα) =
∑

i

1θi≤α
[
1 − (1 − W(ϑi, ϑi))e

−αμ(ϑi)
]

is a linear functional of M with hα(θ, ϑ) = 1θ≤α
[
1 − (1 − W(ϑ, ϑ))e−αμ(ϑ)

]
. Theorem 5 is a

direct consequence of the following three propositions and of Slutsky’s theorem.

Proposition 8. Under Assumptions 1 and 4, we have

Nα − E(Nα | M) =
{

O
(
α1/2+σ/2�1/2

σ (α)
)

if σ ∈ [0, 1),

o
(
α1/2�1/2(α)

)
if σ = 0,

in probability;

hence
Nα − E(Nα | M)√

var(Nα)
→ 0 in probability.

Proposition 9. Under Assumptions 1 and 4, we have

M(hα) − E(Nα) = O
(
α1/2+σ/2�1/2(α)

)
in probability;

hence, if μ has unbounded support,

M(hα) − E(Nα)√
var(Nα)

→ 0 in probability.

The above two propositions are proved in Section B of the supplementary material [13].

Proposition 10. Assume μ has unbounded support. Under Assumptions 1, 4, and 5, we have

fα(M)√
var(Nα)

→N (0, 1).

Sketch of the proof. To prove Proposition 10 we resort to [24, Theorem 1.1] on the normal
approximation of nonlinear functionals of Poisson random measures. Define

Fα = fα(M)√
vα
, (39)

where vα = var(fα(M)) ∼ var(Nα) � α1+2σ �2
σ (α). Note that E(Fα) = 0 and var(Fα) = 1.

Consider the difference operator DzFα defined by

DzFα = 1√
vα

(fα(M + δz) − fα(M)),

https://doi.org/10.1017/apr.2022.75 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.75


1232 F. CARON ET AL.

and also

D2
z1,z2

Fα = Dz2 (Dz1 Fα) = Dz2

(
1√
vα

(fα(M + δz1 ) − fα(M))

)
= 1√

vα

(
fα(M + δz1 + δz2 ) − fα(M + δz1 ) − fα(M + δz2 ) + fα(M)

)
.

Define

γα,1 := 2

(∫
R

6+

√
E
(
Dz1 Fα

)2(
Dz2 Fα

)2√
E
(
D2

z1,z3
Fα
)2(

D2
z2,z3

Fα
)2

dz1dz2dz3

)1/2

,

γα,2 :=
(∫

R
6+
E

[(
D2

z1,z3
Fα
)2(

D2
z2,z3

Fα
)2]

dz1dz2dz3

)1/2

,

γα,3 :=
∫
R

2+
E|DzFα|3dz.

In Section B.3 of the supplementary material [13], we prove that under Assumptions 1, 4, and 5,
we have γα,1, γα,2, γα,3 → 0. The proof is rather lengthy, and makes repeated use of Hölder’s
inequality and of properties of integrals involving regularly varying functions (in particular
Lemma B.5). An application of [24, Theorem 1.1] then implies that Fα →N (0, 1). �

5. Related work and discussion

Veitch and Roy [38] proved that Equation (22) holds in probability, under slightly different
assumptions: they assume that Assumption 2 holds with a = 1 and that μ is differentiable,
with some conditions on the derivative, but do not make any assumption on the existence of
σ or �. We note that for all the examples considered in Section 6, Assumptions 1 and 2 are
always satisfied, but Assumption 2 does not hold with a = 1 for the non-separable graphon
function (40). Additionally, the differentiability condition does not hold for some standard
graphon models, such as the stochastic block-model. Borgs et al. [9] proved, amongst other
results, the almost sure convergence of the subgraph counts in graphex models (Theorem 156).
For the subclass of graphon models defined by Equation (41), [12] provided a lower bound on
the growth in the number of nodes, and therefore an upper bound on the sparsity rate, using
assumptions of regular variation similar to Assumption 1. Applying the results derived in this
section, we show in Section 6.5 that the bound is tight, and we derive additional asymptotic
properties for this particular class.

As mentioned in the introduction, another class of (non-projective) models that can pro-
duce sparse graphs are sparse graphons [4, 5, 8, 41]. In particular, a number of authors have
considered the sparse graphon model in which two nodes i and j in a graph of size n connect
with probability ρnW(Ui,Uj), where W : [0, 1]2 → [0, 1] is the graphon function, measurable
and symmetric, and ρn → 0. Although such a model can capture sparsity, it has rather different
properties from graphex models. For example, the global clustering coefficient for this sparse
graphon model converges to 0, while the clustering coefficient converges to a positive constant,
as shown in Proposition 5.

Also, graphex processes include as a special case dense vertex-exchangeable random graphs
[1, 15, 19, 28], that is, models based on a graphon on [0, 1]. They also include as a special case
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the class of graphon models over more general probability spaces [7]; see [9, p. 21] for more
details. Some other classes of graphs, such as geometric graphs arising from Poisson processes
in different spaces [34], cannot be cast in this framework.

6. Examples of sparse and dense models

We provide here some examples of the four different cases: dense, almost dense, sparse,
and almost extremely sparse. We also show that the results of the previous section apply to the
particular model studied by [12].

6.1. Dense graph

Let us consider the graphon function

W(x, y) = (1 − x)(1 − y) 1x≤1 1y≤1

which has bounded support. The corresponding marginal graphon function μ(x) = 1x≤1(1 −
x)/2 has inverse μ−1(x) = �(1/x), where �(1/x) = (1 − 2x)1x≤1/2 is slowly varying since
�(1/x) → 1. Assumptions 1 and 2 are satisfied, so by Theorem 2 and Corollary 1,

Nα ∼ α, N(e)
α ∼ α2/8, N(e)

α ∼ N2
α/8,

Nα,j
Nα

→ 0, j ≥ 1,

almost surely as α→ ∞. The function W is separable and C(g)
α → 4/9.

6.2. Sparse, almost dense graph without power-law behaviour

Consider the graphon function

W(x, y) = e−x−y,

considered by [38], which has full support. The corresponding function μ(x) = e−x has inverse
μ−1(x) = �(1/x) = log(1/x)10<x<1, which is a slowly varying function. We have �∗0(x) =
1/ log(x)2. Assumptions 1 and 2 are satisfied, and

Nα ∼ α log (α), N(e)
α ∼ α2/2, N(e)

α ∼ N2
α

2 log(Nα)2
,

Nα,j
Nα

→ 0 for all j = 1, 2, . . . .

The function W is separable, and C(g)
α → 1/4.

6.3. Sparse graphs with power-law behaviour

We consider two examples here, one separable and one non-separable. Interestingly, while
the degree distributions in the two examples have similar power-law behaviours, the clustering
properties are very different. In the first example, the local clustering coefficient converges to
a strictly positive constant, while in the second example it converges to 0.

Separable example. First, consider the function

W(x, y) = (x + 1)−1/σ (y + 1)−1/σ
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with σ ∈ (0, 1). We have μ(x) = σ (x + 1)−1/σ /(1 − σ ), μ−1(x) = x−σ (1/σ − 1)−σ − 1, �(t) ∼
(1/σ − 1)−σ , and �∗σ (t) ∼ {(1/σ − 1)−σ
(1 − σ )

}−2/(1+σ ). Assumptions 1 and 2 are satisfied.

We have Nα ∼ α1+σ
(1 − σ )(1/σ − 1)−σ , N(e)
α ∼ α2σ 2/{2(1 − σ )2}, and

N(e)
α ∼

σ 2
{

(1 − σ )

( 1
σ

− 1
)−σ}− 2

1+σ

2(1 − σ )2
N2/(1+σ )
α ,

Nα,j
Nα

→ σ
(j − σ )

j!
(1 − σ )
, j ≥ 1.

The function is separable, and for σ ∈ (0, 1) we obtain

lim
α→∞ C(g)

α =
(

1 − σ

2 − σ

)2

and lim
α→∞ C(�)

α,j =
(

1 − σ

2 − σ

)2

almost surely.

Non-separable example. Consider now the non-separable function

W(x, y) = (x + y + 1)−1/σ−1 (40)

where σ ∈ (0, 1). We have μ(x) = σ (x + 1)−1/σ , μ−1(x) = σσ x−σ − 1, �(t) ∼ σσ , and �∗σ (t) ∼
{σσ
(1 − σ )}−2/(1+σ ). Assumptions 1 and 2 are satisfied as for all (x, y) ∈R

2+,

W(x, y) ≤ (x + 1)−1/(2σ )−1/2(y + 1)−1/(2σ )−1/2 = σ−1−σμ(x)
1+σ

2 μ(y)
1+σ

2 .

We have Nα ∼ α1+σ
(1 − σ )σσ , N(e)
α ∼ α2σ 2/{2(1 − σ )}, and

N(e)
α ∼ σ 2 [
(1 − σ )σσ ]−

2
1+σ

2(1 − σ )
N2/(1+σ )
α ,

Nα,j
Nα

→ σ
(j − σ )

j!
(1 − σ )
, j ≥ 1.

We have
∫
μ(x)2dx = σ 3

2−σ . There is no analytical expression for
∫

W(x, y)W(y, z)
W(x, z)dxdydz, but this quantity can be evaluated numerically, and is non-zero, so the global
clustering coefficient converges almost surely to a non-zero constant for any σ ∈ (0, 1). For the
local clustering coefficient, we have μ(x)2 ∼ σ 2x−2/σ as x → ∞ and∫

W(x, y)W(x, z)W(y, z)dydz ≤ x−2/σ−2
∫

(y + z + 1)dydz = o
(
μ(x)2).

Hence the local clustering coefficients C(�)
α,j converge in probability to 0 for all j.

6.4. Almost extremely sparse graph

Consider the function

W(x, y) = 1

(x + 1)(1 + log(1 + x))2

1

(y + 1)(1 + log(1 + y))2
.

We have W = 1, μ(x) = (x + 1)−1(1 + log(1 + x))−2, and, using properties of inverses of reg-
ularly varying functions, μ−1(x) ∼ x−1�(1/x) as x → 0, where �(t) = log(t)−2 is a slowly
varying function. For t> 1 we have �1(t) = ∫∞

t x−1�(x)dx = 1/ log(t) and �∗1(t) ∼ log(t)/2.
Assumptions 1 and 2 are satisfied, and almost surely

N(e)
α ∼ α2/2, Nα ∼ α2

log(α)
, N(e)

α ∼ 1

4
Nα log(Nα),

Nα,1
Nα

→ 1,
Nα,j
Nα

→ 0 for all j ≥ 2.
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We have
∫
μ(x)2dx = 1

6 (2 + eEi(−1)) � 0.24, where Ei is the exponential integral; hence

C(g)
α → 0.0576 almost surely.

6.5. Model of [12]

The paper [12] studied a particular subclass of non-separable graphon models. This class
is very flexible and allows one to span the whole range of sparsity and power-law behaviours
described in Section 3. As shown by [12], efficient Monte Carlo algorithms can be devel-
oped for estimating the parameters of this class of models. Additionally, [11, Corollary 1.3]
recently showed that this class is the limit of some sparse configuration models, providing
further motivation for the study of their mathematical properties.

Let ρ be a Lévy measure on (0,+∞) and ρ(x) = ∫∞
x ρ(dw) the corresponding tail Lévy

intensity with generalised inverse ρ−1(x) = inf{u> 0|ρ(u)< x}. The paper [12] introduced the
model defined by

W(x, y) =
{

1 − e−2ρ−1(x)ρ−1(y), x �= y,

1 − e−{ρ−1(x)}2
, x = y.

(41)

The quantity w = ρ−1(x) can be interpreted as the sociability of a node with parameter x.
The larger this value, the more likely the node is to connect to other nodes. The tail Lévy
intensity ρ is a monotone decreasing function; its behaviour at zero will control the behaviour
of low-degree nodes, while its behaviour at infinity will control the behaviour of high-degree
nodes.

The following proposition formalises this and shows how the results of Sections 3 and 4
apply to this model. Its proof is given in Section 6.6.

Proposition 11. Consider the graphon function W defined by Equation (41) with Lévy measure
ρ and tail Lévy intensity ρ. Assume m = ∫∞

0 wρ(dw)<∞ and

ρ(x) ∼ x−σ �̃(1/x)as x → 0 (42)

for some σ ∈ [0, 1] and some slowly varying function �̃. Then Equation (3) and Assumptions 1
and 2 hold, with a = 1 and �(x) = (2m)σ �̃(x). Proposition 1, Theorems 1 and 2, and Corollary 1
therefore hold. If

∫∞
0 ψ(2w)2ρ(dw)<∞, where ψ(t) = ∫ (1 − e−wt)ρ(dw) is the Laplace

exponent, then the global clustering coefficient converges almost surely,

lim
α→∞ C(g)

α =
∫
R

3+
(
1 − e−2xy

)(
1 − e−2xz

)(
1 − e−2yz

)
ρ(dx)ρ(dy)ρ(dz)∫∞

0 ψ(2w)2ρ(dw)
,

and when σ ∈ (0, 1), Proposition 6 holds and for any j ≥ 2 we have

lim
α→∞ C(�)

α,j = lim
α→∞ C

(�)
α = 1 −

∫
R

2+ yze−2yzρ(dy)ρ(dz)

m2

almost surely. For a given subgraph F, the CLT for the number of such subgraphs

(Proposition 7) holds if
∫
ψ
(
2ρ−1(x)

)2|F|−2
dx<∞. Under Assumption 1, this condition

always holds if σ = 0; for σ ∈ (0, 1], it holds if ρ(x) = O
(
x−(2|F|−2)σ−ε) as x → ∞ for some

ε > 0. In this case, we have
N(F)
α − E

(
N(F)
α

)√
var
(
N(F)
α

) →N (0, 1). (43)
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Moreover, if
∫

w6ρ(dw)<∞, then Assumptions 4 and 5 also hold. It follows that
Theorems 3, 4, and 5 apply, and for any σ ∈ [0, 1] and any �,

Nα − E(Nα)√
var(Nα)

→N (0, 1). (44)

Finally, assume σ ∈ (0, 1) and �̃(t) = c> 0. If additionally

ρ(x) ∼ c0x−στ as x → ∞ (45)

for some τ > 0, c0 > 0, then Assumption 3 is also satisfied with τ > 0, �2(x) = c0
2στ cτ 
(1−σ )τ ,

and Proposition 2 applies; that is, for fixed α,

E
(
Nα,j

)∼ α1+τ τ�2(j)

j1+τ as j → ∞.

We consider below two specific choices of mean measures ρ. The two measures have similar
properties for large graph size α, but different properties for large degrees j.

Generalised gamma measure. Let ρ be the generalised gamma measure

ρ(dw) = 1/
(1 − σ0)w−1−σ0 e−τ0wdw (46)

with τ0 > 0 and σ0 ∈ (−∞, 1). The tail Lévy intensity satisfies

ρ(x) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1


(1−σ0)σ0
x−σ0 , σ0 > 0,

log(1/x), σ0 = 0,

− τ
σ0
0
σ0
, σ0 < 0,

as x → 0. Then for σ0 ∈ (0, 1) (sparse with power law),

N(e)
α � N2/(1+σ0)

α ,
Nα,j
Nα

→ σ0
(j − σ0)

j!
(1 − σ0)
, j ≥ 1.

For σ0 = 0 (sparse, almost dense), we have N(e)
α � N2

α/ log(Nα)2 and Nα,j/Nα → 0 for j ≥ 1;

for σ0 < 0 (dense), we have N(e)
α � N2

α and Nα,j/Nα → 0 for j ≥ 1, almost surely, as α tends
to infinity. The constants in the asymptotic results are omitted for simplicity of exposition,
but they can also be obtained from the results of Section 3. We have

∫
wpρ(dw)<∞ for all

p ≥ 1; hence the global clustering coefficient converges, and the CLT applies for the number
of subgraphs and the number of nodes. Note that Equation (45) is not satisfied, as the Lévy
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measure has exponentially decaying tails, and Proposition 2 does not apply. The asymptotic
properties of this model are illustrated in Figure 2 for σ0 = 0.2 and τ0 = 2 (sparse, power-law
regime).

Generalised gamma-Pareto measure. Consider the generalised gamma-Pareto measure,
introduced by [2, 3]:

ρ(dw) = 1


(1 − σ )
w−1−στ γ (σ (τ − 1), βw)dw,

where γ (s, x) = ∫ x
0 us−1e−udu is the lower incomplete gamma function, c> 0, τ > 1, σ ∈

(0, 1). The tail Lévy intensity satisfies

ρ(x) ∼ cx−σ as x → 0,

ρ(x) ∼ c0x−στ as x → ∞,

where

c = βσ (τ−1)

σ 2(τ − 1)
(1 − σ )
, c0 = 
(σ (τ − 1))

στ
(1 − σ )
.

It is regularly varying at both zero and infinity, and it satisfies (42) and (45). We therefore have,
almost surely,

N(e)
α � N2/(1+σ )

α ,
Nα,j
Nα

→ σ0
(j − σ )

j!
(1 − σ )
, j ≥ 1.

Proposition 2 applies, and for large-degree nodes,

E
(
Nα,j

)∼ τα1+τ c0

2στ cτ
(1 − σ )τ
1

j1+τ as j → ∞.

The global clustering coefficient converges if τ > 2; the CLT applies for the number of
subgraphs F if τ > 2|F| − 2, and for the number of nodes if στ > 6.

6.6. Proof of Proposition 11

The marginal graphon function is given by μ(x) =ψ(2ρ−1(x)) where ψ(t) = ∫∞
0 (1 −

e−wt)ρ(dw) is the Laplace exponent. Its generalised inverse is given by μ−1(x) = ρ(ψ−1(x)/2).
The Laplace exponent satisfies ψ(t) ∼ mt as t → 0. It therefore follows that μ−1 satisfies
Assumption 1 with �(x) = (2m)σ �̃(x). Ignoring loops, the model is of the form given by
Equation (18) with f (x) = 2mρ−1(x). Assumption 2 is therefore satisfied. Regarding the global
clustering coefficient,

∫
ψ(2w)2ρ(dw) ≤ 4

∫
w2ρ(dw)<∞, so its limit is finite. For the local

clustering coefficient, using dominated convergence and the inequality 1−e−2ρ−1(x)y

2ρ−1(x)
≤ y, we

obtain∫
W(x, y)W(y, z)W(x, z)dydz =

∫ (
1 − e−2ρ−1(x)y)(1 − e−2ρ−1(x)z)(1 − e−2yz)ρ(dy)ρ(dz)

∼ 4ρ−1(x)2
∫

yz
(
1 − e−2yz)ρ(dy)ρ(dz).
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Using the fact that μ(x) =ψ(2ρ−1(x)) ∼ 2mρ−1(x) as x → ∞, we obtain the result. Finally, if
ρ satisfies (42), then ψ(t) ∼ 
(1 − σ )�̃(t)tσ as t → ∞. Using [6, Proposition 1.5.15], we have

ψ−1(t) ∼ 
(1 − σ )−1/σ �̃#1/σ (t1/σ )t1/σ
as t → ∞, where �̃# is the de Bruijn conjugate of �̃. We obtain ψ−1(t) = �3

(
t1/σ

)
t

1
σ , where �3

is a slowly varying function with �3
(
t1/σ

)∼ �̃#1/σ
(
t1/σ

)

(1 − σ )−1/σ as t → ∞. We therefore

have μ−1(t) ∼ c02−τσ �3
(
t1/σ

)στ
tτ as t → ∞. If �̃(t) = c, then �3(t) = (c
(1 − σ ))−1/σ .

For the CLT for the number of subgraphs F to hold, we need
∫∞

0 μ(x)2|F|−2dx<∞. As

μ is monotone decreasing and integrable, we only need μ(x)2|F|−2 =ψ
(
2ρ−1(x)

)2|F|−2 to be
integrable in a neighbourhood of 0. In the dense case, ψ(t) is bounded, and the condition
holds. If ρ satisfies (42), then ψ(t) ∼ 
(1 − σ )�̃(t)tσ as t → ∞. For σ ∈ (0, 1] (sparse regime),
the condition holds if ρ(x) = O

(
x−(2|F|−2)σ−ε) as x → ∞ for some ε > 0.

We now check the assumptions for the CLT for the number of nodes. Noting again that
μ(x) ∼ 2mρ−1(x) as x → ∞, we have, using the inequality 1 − e−x ≤ x,

ν(x, y) =
∫ (

1 − e−2ρ−1(x)w)(1 − e−2ρ−1(y)w)ρ(dw)

≤ L(x)L(y)μ(x)μ(y),

where

L(x) = 2
ρ−1(x)

μ(x)

√∫
w2ρ(dw) →

√∫
w2ρ(dw)/m

as x → ∞. Using now the inequality 1 − e−x ≥ xe−x, we have

ν(x, y) ≥ 4ρ−1(x)ρ−1(y)
∫

w2e−2(ρ−1(x)+ρ−1(y))wρ(dw).

As ∫
w2e−2(ρ−1(x)+ρ−1(y))wρ(dw) →

∫
w2ρ(dw)

as min (x, y) → ∞, there exist C0 = 2
∫

w2ρ(dw) and x0 such that for all x, y> x0, ν(x, y) ≥
C0μ(x)μ(y).

More generally, if
∫

w6ρ(dw)<∞, then for any j ≤ 6,

∫ ∞

0

j∏
i=1

W(xi, y)dy ≤
j∏

i=1

L(xi)μ(xi),

where

L(x) = 2
ρ−1(x)

μ(x)
max

(
1, max

j=1,...,6

∫
wjρ(dw)

)
→ max

(
1, max

j=1,...,6

∫
wjρ(dw)

)
/m

as x → ∞. Note also that∫
L(x)μ(x)dx = 2 max

(
1, max

j=1,...,6

∫
wjρ(dw)

) ∫
wρ(dw)<∞.
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7. Sparse and dense models with local structure

In this section, we develop a class of models which allows us to control separately the
local structure, for example the presence of communities or particular subgraphs, and the
global sparsity/power-law properties. The class of models introduced can be used as a way
of sparsifying any dense graphon model.

7.1. Statement of the results

By Kallenberg’s representation theorem, any exchangeable point process can be represented
by Equation (2). However, it may be more suitable to use a different formulation where the
function W is defined on a general space, not necessarily R

2+, as discussed by [9]. Such a
construction may lead to more interpretable parameters and easier inference methods. Indeed,
a few sparse vertex-exchangeable models, such as the models of [18] or [37], are written in
such a way that it is not straightforward to express them in the form given by (2).

In this section we show that the above results easily extend to models expressed in the
following way. Let F be a probability space. Writing ϑ = (u, v) ∈R+ × F, let ξ (dϑ) = duG(dv)
where G is some probability distribution on F. Consider models expressed as in (1) with

Zij | (θk, ϑk)k=1,2,... ∼ Bernoulli{W (ϑi, ϑj)}, W : (R+ × F)2 → [0, 1], (47)

where (θk, ϑk)k=1,2,∞ are the points of a Poisson point process with mean measure dθξ (dϑ)
on R+ × (R+ × F). Let us assume additionally that the function W factors in the following
way:

W((ui, vi), (uj, vj)) =ω(vi, vj)η(ui, uj), (48)

where ω : F × F → [0, 1] and the function η : R+ ×R+ → [0, 1] is integrable. In this model,
ω can capture the local structure, as in the classical dense graphon, and η the sparsity
behaviour of the graph. Let μη(u) = ∫∞

0 η(u, u′)du′, μω(v) = ∫F ω(v, v′)G(dv′), and νη(x, y) =∫
R

2+ η(x, z)η(y, z)dz. The results presented in Section 3 remain valid when μη and νη satisfy
Assumptions 1 and 2. The proof of Proposition 12 is given in Section 7.2.

Proposition 12. Consider the model defined by Equations (47) and (48) and assume that the
functions μη and νη satisfy Assumptions 1 and 2. Then the conclusions of Proposition 1 hold,
and so do the conclusions of Theorems 1 and 2, with �(α) and �1(α) replaced respectively by

�̃(α) = �(α)
∫

F
μω(v)σG(dv), �̃1(α) = �1(α)

∫
F
μω(v)σG(dv).

Consider for example the following class of models for dense and sparse stochastic block-
models.

Example 2. (Dense and sparse stochastic block-models.) Consider F = [0, 1] and G the uni-
form distribution on [0, 1]. We choose for ω the graphon function associated to a (dense)
stochastic block-model. For some partition A1, . . . , Ap of [0, 1] and any v, v′ ∈ [0, 1], let

ω(v, v′) = Bk,� (49)

with v ∈ Ak, v′ ∈ A�, and B a p × p matrix where Bk,� ∈ [0, 1] denotes the probability that a node
in community k forms a link with a node in community �. Then ω defines the community struc-
ture of the graph, and η will tune its sparsity properties. Choosing η(x, y) = 1x≤11y≤1 yields
the dense, standard stochastic block-model; choosing η(x, y) = exp (−x − y) yields a sparse
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(a) (b)

(c) (d)

FIGURE 4. Illustration of a sparse stochastic block-model with three communities. (a) The function ω,
which controls the local community structure. A darker colour represents a higher value. (b) The function
η, which controls the sparsity. (c) Graph sampled from the sparse stochastic block-model using α= 50.
The size of each node is proportional to its degree. (d) Empirical degree distribution of the sampled graph.

stochastic block-model without power-law behaviour; and so on. Figure 4 gives an illustration
of the use of this model to obtain sparse stochastic block-models with power-law behaviour,
generalising the model of Section 6.3. The function ω is defined by

A1 = [0, 0.5), A2 = [0.5, 0.8), A3 = [0.8, 1],

B11 = 0.7, B22 = 0.5, B33 = 0.9, B12 = B13 = 0.1, B23 = 0.05,

and η(x, y) = (1 + x)−1/σ (1 + y)−1/σ , with σ = 0.8.

More generally, one can build on the large literature on (dense) graphon/exchangeable graph
models, and combine these models with a function η satisfying Assumptions 1 and 2, such as
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those described in the previous section, in order to sparsify a dense graphon and control its
sparsity/power-law properties.

Remark 5. We can also obtain asymptotic results for those functions W that do not satisfy the
separability condition (48). Let μ(u, v) = ∫

R+×F W((u, v), (u′, v′))du′dv′. Assume that for each
fixed v there exists u0(v)> 0 such that, for u> u0,

C3μ̃η(u)μ̃ω(v) ≤μ(u, v) ≤ C4μ̃η(u)μ̃ω(v), (50)

where μ̃ω : F →R+, μ̃η : R+ →R+ with μ̃η(u) = ∫∞
0 η̃(u, u′)du′ for some positive function

η̃, and C3 > 0 and C4 > 0. Assume that μ̃η and ν̃η satisfy Assumptions 1 and 2. Then the results
of Theorems 1 and 2 and Corollary 1 hold up to a constant. For example, for σ ∈ [0, 1] we have
N(e)
α � N2/(1+σ )

α �∗σ (Nα) almost surely as α tends to infinity. In particular, the inequality from
(50) is satisfied if

W((ui, vi), (uj, vj)) = 1 − e−ω̃(vi,vj)η̃(ui,uj). (51)

The models developed by [18, 37] for capturing (overlapping) communities fit into this frame-
work. Ignoring loops, both models can be written in the form given by Equation (51) with
η̃(u, u′) = 2ρ−1(u)ρ−1(u′), where ρ is a Lévy measure on (0,+∞) and ρ(x) = ∫∞

x ρ(dw) is
the tail Lévy intensity with generalised inverse ρ−1(x). When ω̃ is given by Equation (49), it
corresponds to the (dense) stochastic block-model graphon of [18], and when ω̃(vi, vj) = vT

i vj

with vi ∈R
p
+, it corresponds to the model of [37]. For instance, let ρ be the mean mea-

sure from Equation (46) with parameters τ0 > 0 and σ0 ∈ (−∞, 1). Then for σ0 ∈ (0, 1), the
corresponding sparse regime with power law for this graph is given by

N(e)
α � N2/(1+σ0)

α ,
C3

C4

σ0
(j − σ0)

j!
(1 − σ0)
≤ lim
α→∞

Nα,j
Nα

≤ C4

C3

σ0
(j − σ0)

j!
(1 − σ0)
, j ≥ 1

For σ0 = 0 (sparse, almost dense regime), N(e)
α � N2

α/ log(Nα)2 and Nα,j/Nα → 0 for j ≥ 1;

for σ0 < 0 (dense regime), N(e)
α � N2

α and Nα,j/Nα → 0 for j ≥ 1, almost surely, as α tends to
infinity.

7.2. Proof of Proposition 12

The proofs of Proposition 1 and Theorems 1 and 2 hold with x replaced by (u, v) ∈
R+ × F, dx = duG(dv), and μ(x) =μη(u)μω(v). We thus need only prove that if η satisfies
Assumptions 1 and 2, then Lemmas B.2, B.3, and B.4 in the appendix hold. Recall that
μ(x) =μη(u)μω(v), for x = (u, v). Then, for all v such that μω(v)> 0, we apply Lemma B.2 to
get

g0(t) =
∫ ∞

0
(1 − e−tμη(u))du, gr(t) =

∫ ∞

0
μη(u)re−tμη(u)du, t = αμω(v).

For all v such that μω(v)> 0, this leads to∫ ∞

0
(1 − e−αμω(v)μη(u))du = 
(1 − σ )ασ �(α)μω(v)σ

�{αμω(v)}
�(α)

{1 + o(1)}
= 
(1 − σ )ασ �(α)μω(v)σ {1 + o(1)}.

To prove that there is convergence in L1(G), note that if μω(v)> 0, since μω ≤ 1, we have∫ ∞

0

(
1 − e−αμω(v)μη(u))du =

∫ ∞

0
μ−1
η

{
z

αμω(v)

}
e−zdz ≤

∫ ∞

0
μ−1
η

( z

α

)
e−zdz.
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Moreover,

sup
α≥1

1

ασ �(α)

∫ ∞

0
μ−1
η

( z

α

)
e−zdz<+∞;

thus the Lebesgue dominated convergence theorem implies∫
F

∫ ∞

0

(
1 − e−αμω(v)μη(u))duG(dv) ∼ 
(1 − σ )ασ �(α)

∫
F
μω(v)σG(dv)

when σ < 1, while when σ = 1,∫
F

∫ ∞

0
(1 − e−αμω(v)μη(u))duG(dv) ∼ α�1(α)

∫
F
μω(v)G(dv).

The same reasoning is applied to the integrals∫
F
μω(v)r

∫ ∞

0
μη(u)re−αμω(v)μη(u)duG(dv).

To verify Lemma B.3, note that

h0(α) =
∫

F
ω(v, v)

∫ ∞

0
η(u, u)

(
1 − e−αμω(v)μη(u))duG(dv),

hr(α) =
∫

F
ω(v, v)μω(v)r

∫ ∞

0
η(u, u)μη(u)re−αμω(v)μη(u)duG(dv),

so that the Lebesgue dominated convergence theorem also leads to

h0(α) ∼
∫

F
ω(v, v)

∫ ∞

0
η(u, u)duG(dv), hr(α) = o(α−r)

and the control of the integrals
∫
R+×F{tμ(u, v)}e−tμ(u,v)duG(dv) as in Lemma B.4.

8. Conclusion

In this article, we derived a number of properties of graphs based on exchangeable random
measures. We related the sparsity and power-law properties of the graphs to the regular varia-
tion properties of the marginal graphon function, identifying four different regimes, from dense
to almost extremely sparse. We derived asymptotic results for the global and local clustering
coefficients. We derived a central limit theorem for the number of nodes Nα in the sparse and
dense regimes, and for the number of nodes of degree greater than j in the dense regime. We
conjecture that a CLT also holds for Nα,j in the sparse regime, under assumptions similar to
Assumptions 4 and 5, and that a (lengthy) proof similar to that of Theorem 5 could be used.
We leave this for future work.

Appendix A. Proofs of Theorem 1 and Proposition 6

Let gα,x(θ, ϑ) be defined, for any α, x, θ, ϑ > 0, by

gα,x(θ, ϑ) = − log{1 − W(x, ϑ)}1θ≤α . (52)
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A.1. Proof of Theorem 1

The mean number of nodes is

E(Nα) = α

∫
R+

{1 − e−αμ(x)}dx + α

∫
R+

W(x, x)e−αμ(x)dx;

see [38, Theorem 5.4]. By the Lebesgue dominated convergence theorem, we have
α
∫
R+ W(x, x)e−αμ(x)dx = o(α). Using Lemma B.2, as α goes to infinity we have

∫
R+ (1 −

e−αμ(x))dx ∼ ασ �(α)
(1 − σ ) for σ ∈ [0, 1) and
∫
R+{1 − e−αμ(x)}dx ∼ α�1(α) for σ = 1. It

follows that as α goes to infinity,

E(Nα) ∼
{
ασ+1�(α)
(1 − σ ) if σ ∈ [0, 1),

α2�1(α) if σ = 1.

The mean number of nodes of degree j is

E
(
Nα,j

)= αj+1

j!
∫
R+

(1 − W(ϑ, ϑ))e−αμ(ϑ)μ(ϑ)jdϑ

+ αj

j − 1!
∫
R+

e−αμ(ϑ)W(ϑ, ϑ)μ(ϑ)j−1dϑ ;

(53)

see [38, Theorem 5.5]. Lemma B.3 implies that

−α
j+1

j!
∫
R+

W(ϑ, ϑ)e−αμ(ϑ)μ(ϑ)jdϑ + αj

j − 1!
∫
R+

e−αμ(ϑ)W(ϑ, ϑ)μ(ϑ)j−1dϑ = o(α),

and from Lemma B.2, when σ ∈ [0, 1), we have

αj+1

j!
∫
R+

e−αμ(ϑ)μ(ϑ)jdϑ ∼ σ
(j − σ )

j! α1+σ �(α).

If σ = 1, from Lemma B.2 we have

α2
∫
R+

e−αμ(ϑ)μ(ϑ)dϑ ∼ α2�1(α),

and for j ≥ 2,

αj+1

j!
∫
R+

e−αμ(ϑ)μ(ϑ)jdϑ ∼ 1

j(j − 1)
α2�(α).

Finally, for σ ∈ [0, 1) we obtain

E
(
Nα,j

)∼ σ
(j − σ )

j! α1+σ �(α),

and for σ = 1 we obtain E(Nα,1) ∼ α2�1(α) and E
(
Nα,j

)∼ α2/{j(j − 1)}�(α) for j ≥ 2.
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A.2. Proof of Proposition 6

For j ≥ 1, define
Rαj =

∑
i

Tαi1Dαi=j . (54)

Then Rαj corresponds to the number of triangles having a node of degree j as a vertex, where
triangles having k ≤ 3 degree-j nodes as vertices are counted k times. We therefore have

C(�)
α,j =

2

j(j − 1)

Rαj

Nα,j
.

The proof for the asymptotic behaviour of the local clustering coefficients C(�)
α,j is organised

as follows. We first derive a convergence result for E(Rαj). This result is then extended to an
almost sure result. The extension requires some additional work as Rαj is not monotone, and∑

j≥k Rαk is monotone but not of the same order as Rαj; hence a proof similar to that for Nα,j

(see Section 3.2) cannot be used. The almost sure convergence results for C(�)
α,j and C

(�)
α then

follow from the almost sure convergence result for Rαj.
We have

Rαj =
∑

i

Tαi1Dαi=j = 1

2

∑
i �=l �=k

ZilZikZlk1
∑

s Zis=j1θs≤α1θi≤α1θl≤α1θk≤α

and

E
(
Rαj | M

)= 1

2

∑
i �=l �=k

W(ϑi, ϑl)W(ϑi, ϑk)W(ϑl, ϑk)
1

(j − 2)!

×
∑

i1 �=i2... �=ij−2 �=l �=k

⎡⎣j−2∏
s=1

W(ϑi, ϑs)

⎤⎦ e
−∑s�=l,k,i1,...,ij−2

gα,ϑi (θs,ϑs)

= 1

2 (j − 2)!
∑

i �=l �=k �=i1 �=i2... �=ij−2

W(ϑi, ϑl)W(ϑi, ϑk)W(ϑl, ϑk)(1 − W(ϑi, ϑi))

×
⎡⎣j−2∏

s=1

W(ϑi, ϑs)

⎤⎦ e
−∑s�=l,k,i1,...,ij−2

gα,ϑi (θs,ϑs)

+ 1

2(j − 3)!
∑

i �=l �=k �=i1 �=i2... �=ij−3

W(ϑi, ϑi)W(ϑi, ϑl)W(ϑi, ϑk)W(ϑl, ϑk)

×
j−3∏
s=1

W(ϑi, ϑs)e
−∑s�=i,l,k,i1,...,ij−3

gα,ϑi (θs,ϑs)
,

where gα,x(θ, ϑ) is defined in Equation (52). Applying the Slivnyak–Mecke theorem, we obtain

E
(
Rαj
)= αj+1

2(j − 2)!
∫
R

3+
W(x, y)W(x, z)W(y, z)(1 − W(x, x))μ(x)j−2e−αμ(x)dxdydz

+ αj

2(j − 3)!
∫
R

3+
W(x, y)W(x, z)W(y, z)W(x, x)μ(x)j−3e−αμ(x)dxdydz. (55)
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Note that under Assumption 1 with σ ∈ (0, 1), μ(x)> 0 for all x. The leading term in the
right-hand side of Equation (A.2) is the first term. We have therefore

E
(
Rαj
)∼ αj+1

2(j − 2)!
∫
R

3+
L(x)μ(x)je−αμ(x)dxdydz,

where

L(x) =
(1 − W(x, x))

∫
R

2+ W(x, y)W(x, z)W(y, z)dydz

μ(x)2
.

As limx→∞ W(x, x) = 0, the condition (29) implies limx→∞ L(x) = b.

Case b> 0. Assume first that b> 0. In this case, L is a slowly varying function by assumption.
Therefore, using Lemma B.5, we have, under Assumption 1, for σ ∈ (0, 1),∫ ∞

0
L(x)μ(x)je−αμ(x)dx ∼ σb�(α)
(j − σ )ασ−j

as α tends to infinity. Hence

E
(
Rαj
)∼ bσ
(j − σ )

2(j − 2)! α1+σ �(α) (56)

as α tends to infinity. In order to obtain a convergence in probability, we state the following
proposition, whose proof is given in Section A.3 in the supplementary material [13] and is
similar to that of Proposition 4.

Proposition A.1. Under Assumptions 1 and 2, with σ ∈ [0, 1], slowly varying function �, and
positive scalar a satisfying (17), we have

var

(∑
i

Tαi1Dαi=j

)
= O{α3+2σ−2a�σ (α)2}as α→ ∞,

and for any sequence αn going to infinity such that αn+1 − αn = o(αn),

var

(∑
i

Tαn+1i1Dαni=j1
∑

i′ 1αn<θi′ ≤αn+1 Zii′=1

)
= O

(
α3+2σ−2a

n �σ (αn)2
)

as n → ∞.

We now want to find a subsequence αn along which the convergence is almost sure. Using
Chebyshev’s inequality and the first part of Proposition A.1, there exist n0 ≥ 0 and C ≥ 0 such
that for all n> n0,

P

(∣∣∣∣∣ Rαnj

E
(
Rαnj

) − 1

∣∣∣∣∣> ε
)

≤ Cα3+2σ−2a
n �σ (αn)2

ε2
( bσ
(j−σ )

2(j−2)! α
1+σ
n �(αn)

)2 .

Now, if Assumption 2 is satisfied for a given a> 1/2, consider the sequence

αn = (n log2 n
)1/(2a−1)

, (57)
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so that
∑

n α
1−2a
n <+∞ and

∑
n

P

(∣∣∣∣∣ Rαnj

Ec(Rαnj(n log2 n))
− 1

∣∣∣∣∣> ε
)
<∞.

Therefore, using the Borel–Cantelli lemma, we have

Rαnj ∼ bσ
(j − σ )

2(j − 2)! α1+σ
n �(αn)

almost surely as n → ∞.
The goal is now to extend this result to Rαj, by sandwiching. Let Iα := {i : θi ≤ α}. We have

the following upper and lower bounds for Rαj:∑
i∈Iαn

Tαni1Dαi=j ≤
∑
i∈Iα

Tαi1Dαi=j ≤
∑

i∈Iαn+1

Tαn+1i1Dαi=j. (58)

Considering the upper bound of (58), we have∑
i∈Iαn+1

Tαn+1i1Dαi=j ≤
∑

i∈Iαn+1

Tαn+1i1Dαn+1 i=j +
∑

i∈Iαn+1

Tαn+1i1Dαi=j1Dαn+1 i>j

≤ Rαn+1j + R̃nj, (59)

where
R̃nj =

∑
i∈Iαn+1

Tαn+1i1Dαni≤j1
∑

i′ 1αn<θi′ ≤αn+1 Zii′≥1. (60)

We can bound the lower bound of (58) by∑
i∈Iαn

Tαni1Dαi=j ≥
∑
i∈Iαn

Tαni1Dαni=j1Dαi=j

≥
∑
i∈Iαn

Tαni1Dαni=j −
∑
i∈Iαn

Tαni1Dαni=j1Dαn+1 i>j

≥
∑
i∈Iαn

Tαni1Dαni=j −
∑

i∈Iαn+1

Tαn+1i1Dαni≤j1
∑

i′ 1αn<θi′ ≤αn+1 Zii′≥1

= Rαnj − R̃nj. (61)

The following lemma, proved in Section A.4 of the supplementary material [13], provides an
asymptotic bound for the remainder term R̃nj.

Lemma A.1. Let R̃nj be defined as in Equation (60). If Assumptions 1 and 2 hold with σ ∈
(0, 1) and slowly varying function �, and the condition (29) is satisfied with b> 0, then we
have

R̃nj = o(n log2 n)(α1+σ
n �(αn)(n log2 n))

almost surely as α tends to infinity

Combining Lemma A.1 with the inequalities (58), (59), and (61), and the fact that Rαnj ∼
Rαn+1j � α1+σ

n �(αn) almost surely as n → ∞, we obtain by sandwiching

Rαj ∼ bσ
(j − σ )

2(j − 2)! α1+σ �(α) almost surely as α tends to infinity.
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Recalling that Nα,j ∼ σ
(j−σ )
j! α1+σ �(α) almost surely, we have, for any j ≥ 1,

C(�)
α,j =

2Rαj

j(j − 1)Nα,j
→ b almost surely as α tends to infinity.

Finally, as Nα,j
Nα−Nα,1

converges to a constant πj ∈ (0, 1) almost surely for any j, we have, using
Toeplitz’s lemma,

C
(�)
α = 1

Nα − Nα,1

∑
j≥2

Nα,jC
(�)
α,j → b

almost surely as α tends to infinity.

Case b = 0. In the case L(x) → 0, Lemma B.5 gives
∫∞

0 L(x)μ(x)je−αμ(x)dx = o(ασ−j); hence,
by Markov’s inequality,

Rαj = o(α1+σ �(α))

and C(�)
αj → 0 in probability as α tends to infinity.

Appendix B. Technical lemma

The proof of the following lemma is similar to the proof of Proposition 2 in [17], and is
omitted here.

Lemma B.1. Let (Xt)t≥0 be some positive monotone increasing stochastic process with finite
first moment (E(Xt))t≥0 ∈ RVγ , where γ ≥ 0 (see Definition C.1). Assume

var(Xt) = O
{
t−aE(Xt)

2}
for some a> 0. Then

Xt

E(Xt)
→ 1 almost surely as t → ∞.

The following lemma is a compilation of results from Propositions 17, 18, and 19 in [17].

Lemma B.2. Let μ : R+ →R+ be a positive, right-continuous, and monotone decreasing
function with

∫∞
0 μ(x)dx<∞ and generalised inverseμ−1(x) = inf{y> 0 | f (y) ≤ x} satisfying

μ−1(x) = x−σ �(1/x), (62)

where σ ∈ [0, 1] and � is a slowly varying function. Consider

g0(t) =
∫ ∞

0

(
1 − e−tμ(x))dx, gr(t) =

∫ ∞

0
e−tμ(x)μ(x)rdx, r ≥ 1.

Then, for any σ ∈ [0, 1),
g0(t) ∼ 
(1 − σ )tσ �(t)as t → ∞,

and for r ≥ 1, {
gr(t) ∼ tσ−r�(t)σ
(r − σ ) if σ ∈ (0, 1),

gr(t) = o{tσ−r�(t)} if σ = 0,

as t → ∞. For σ = 1, as t → ∞,

g0(t) ∼ t�1(t), g1(t) ∼ �1(t), gr(t) ∼ t1−r�(t)
(r − 1),

where �1(t) = ∫∞
t x−1�(x)dx. Note that �(t) = o(�1(t)); hence gr(t) = o

{
t1−r�1(t)

}
.
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Lemma B.3. Let μ : R+ →R+ be a positive, monotone decreasing function, and u : R+ →
[0, 1] a positive and integrable function with

∫∞
0 u(x)dx<∞. Consider h0(t) = ∫∞

0 u(x)(1 −
e−tμ(x))dx and, for r ≥ 1, hr(t) = ∫∞

0 u(x)e−tμ(x)μ(x)rdx. Then, as t → ∞,

h0(t) ∼
∫ ∞

0
u(x)dx, hr(t) = o(t−r), r ≥ 1.

Proof. We have h0(t) → ∫∞
0 u(x)dx by dominated convergence. Using Proposition C.3, we

have
th1(t)∫∞

0 u(x)dx
→ 0.

We proceed by induction to obtain the final result. �
Lemma B.4. Let μ be a non-negative, non-increasing function on R+, with

∫∞
0 μ(x)dx<∞,

whose generalised inverse μ−1 satisfies μ−1(x) ∼ x−σ �(1/x) as x → 0, with σ ∈ [0, 1] and � a
slowly varying function. Then as t → ∞, for all r>σ ,∫

R+
μ(x)re−tμ(x)dx = O{tσ−r�(t)}

Proof. Let r>σ . Let U(y) =μ−1(1/y). Then U is non-negative and non-decreasing, with
U(y) ∼ yσ �(y) as y → ∞. Making the change of variable x = U(y), one obtains∫ ∞

0
{μ(x)}re−tμ(x)dx =

∫ ∞

0
y−re−t/ydU(y).

We follow part of the proof in [6, p. 37]. Note that y → y−r exp (−t/y) is monotone
increasing on [0, t/r] and monotone decreasing on [t/r,∞). We have∫ ∞

0
y−re−t/ydU(y) =

{∫ t/r

0
+

∞∑
n=1

∫ 2nt/r

2n−1t/r

}
y−re−t/ydU(y)

≤ t−re−rrrU(t/r) + t−rrr
∞∑

n=1

2−r(n−1)U
(
2nt/r

)
≤ 2tσ−re−rrr�(t/r) + 2t−rrr

∞∑
n=1

2−r(n−1)(2nt/r)σ �
(
2nt/r

)
≤ 2tσ−re−rrr�(t/r) + 2r+1tσ−rrr−σ

∞∑
n=1

2−n(r−σ )�
(
2nt/r

)
for t large, using the regular variation property of U. Using Potter’s bound [6, Theorem 1.5.6],
for any δ > 0 and for t large we have

�(2nt/r) ≤ 2�(t) max
(
1, 2nδ/rδ

)
.

Hence, for t large,∫ ∞

0
y−re−t/ydU(y) � tσ−r�(t)

(
1 +

∞∑
n=1

2−n(r−σ ) max
(
rδ, 2nδ)) .

Taking 0< δ < r−σ
2 , we conclude that the series in the right-hand side converges. �
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The next lemma is a slight variation of Lemma B.2, with the addition of a slowly varying
function in the integrals. Note that the case where σ = 0 and � tends to a constant is not covered.

Lemma B.5. Let f : R+ →R+ be a positive, right-continuous, and monotone decreasing
function with

∫∞
0 f (x)dx<∞ and generalised inverse f −1(x) = inf{y> 0 | f (y) ≤ x} satisfying

f −1(x) = x−σ �(1/x), (63)

where σ ∈ [0, 1] and � is a slowly varying function, with limt→∞ �(t) = ∞ if σ = 0. Consider

g̃0(t) =
∫ ∞

0

(
1 − e−tf (x))L(x)dx

and, for r ≥ 1,

g̃r(t) =
∫ ∞

0
e−tf (x)f (x)rL(x)dx,

where L : R+ → (0,∞) is a locally integrable function with limt→∞ L(t) = b ∈ [0,∞). Then,
for any σ ∈ [0, 1), {̃

g0(t) ∼ b
(1 − σ )tσ �(t) if b> 0,

g̃0(t) = o(tσ �(t)) if b = 0,

and for r ≥ 1, {̃
gr(t) ∼ btσ−r�(t)σ
(r − σ ) if σ ∈ (0, 1), b> 0,

g̃r(t) = o{tσ−r�(t)} if σ = 0 or b = 0,

as t → ∞. For σ = 1, b> 0, as t → ∞,

g̃0(t) ∼ bt�1(t), g̃1(t) ∼ b�1(t), g̃r(t) ∼ bt1−r�(t)
(r − 1),

where �1(t) = ∫∞
t x−1�(x)dx. Note that �(t) = o(�1(t)); hence g̃r(t) = o{t1−r�1(t)}.

Proof. Let g0(t) = ∫∞
0

(
1 − e−tf (x)

)
dx. Let �1(t) = ∫∞

t x−1�(x)dx and �σ (t) = 
(1 − σ )�(t)
if σ ∈ [0, 1). Using Lemma B.2, we have g0(t) ∼ tσ �σ (t) as t → ∞, and in particular
g0(t) → ∞. By dominated convergence, for any x0 > 0, we have∫ x0

0

(
1 − e−tf (x))L(x)dx →

∫ x0

0
L(x)dx<∞;

hence, g̃0(t) ∼ ∫∞
x0

(
1 − e−tf (x)

)
L(x)dx as t → ∞.

Let ε > 0. There exists x0 such that for all x ≥ x0, |L(x) − b| ≤ ε and so

(b − ε)
∫ ∞

x0

(
1 − e−tf (x))dx ≤

∫ ∞

x0

(
1 − e−tf (x))L(x)dx ≤ (b + ε)

∫ ∞

x0

(
1 − e−tf (x))dx.

Hence, by sandwiching, we have

lim
t→∞

g̃0(t)

tσ �σ (t)
= lim

t→∞

∫∞
x0

(
1 − e−tf (x)

)
L(x)dx

tσ �σ (t)
∈ (b − ε, b + ε).

As this is true for any ε > 0, we obtain g̃0(t) ∼ btσ �σ (t) as t → ∞ if b> 0 and g̃0(t) =
o(tσ �σ (t)) if b = 0. The asymptotic results for g̃r(t) then follow from Proposition C.3. �
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The following is a corollary of [40, Theorem 2.1].

Corollary B.1. [40, Theorem 2.1]. Assume that

f (x) ∼ �(x)xαe−βx

where � is a slowly varying, locally bounded function on (0,∞), and where either β ≥ 0 and
α ∈R, or α <−1 and β = 0. Then, as n → ∞,∫ ∞

0

(λx)ne−λx

n! f (x)dx ∼ �(n)

(λ+ β)α+1

(
λ

λ+ β

)n

nα (64)

and ∫ ∞

0

(λx)ne−λx

n! u(x)f (x)dx = o

(
�(n)

(λ+ β)α+1

(
λ

λ+ β

)n

nα
)

(65)

for any locally bounded function u vanishing at infinity.

Proof. Equation (64) is proved in [40, Theorem 2.1]. For any x0 > 0, we have∫ ∞

0

(λx)ne−λx

n! u(x)f (x)dx ∼
∫ ∞

x0

(λx)ne−λx

n! u(x)f (x)dx.

For any ε > 0, there is x0 such that u(x)< ε for all x> x0; hence∫ ∞

x0

(λx)ne−λx

n! u(x)f (x)dx ≤ ε
∫ ∞

0

(λx)ne−λx

n! f (x)dx,

and (65) follows from (64) by sandwiching. �
The following lemma is useful to bound the variance and for the proof of the central limit

theorem.

Lemma B.6. Assume the functions μ and ν satisfy Assumptions 1 and 2, for some σ ∈ [0, 1]
and slowly varying function �, with a>min (1/2, σ ) if σ < 1 and a = 1 if σ = 1. Then∫

R
2+
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy = O

(
α2σ−2a�2

σ (α)
)
,

where �σ is defined in Equation (20). If a = 1 and σ = 0 we have the stronger result∫
R

2+
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy = o

(
α−2�2(α)

)
.

Proof. Using the fact that ν(x, y) ≤ √
μ(x)μ(y) ≤ (μ(x) +μ(y))/2 and Assumption 2, we

have ∫
R

2+
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy ≤

∫
R

2+
ν(x, y)e−αμ(x)/2−αμ(y)/2dxdy

≤ C1

(∫ ∞

x0

μ(x)ae−αμ(x)/2
)2

+ 2
∫ x0

0

∫ ∞

0
ν(x, y)e−αμ(x)/2−αμ(y)/2dxdy,
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where a>min (1/2, σ ) if σ < 1 and a = 1 if σ = 1. Using
∫ x0

0 ν(x, y)dx ≤ x0μ(y), we have∫ x0

0

∫ ∞

0
ν(x, y)e−αμ(x)/2−αμ(y)/2dxdy ≤ e−αμ(x0)/2x0

∫ ∞

0
μ(y)e−αμ(y)/2dy

if x0 > 0 (otherwise the bound is trivial). Since μ(x0)> 0, the right-hand side is in o(α−p) for
any p> 0. Using Lemma B.4 (for σ < 1) or 10 (for σ = 1) together with Assumption 1, we
therefore obtain ∫

R
2+
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy = O

{
α2σ−2a�2

σ (α)
}
.

In the case σ = 0 and a = 1, Lemma B.2 and Assumption 1 give∫
R

2+
ν(x, y)e−αμ(x)−αμ(y)+αν(x,y)dxdy = o

(
α−2�2(α)

)
.

�

Appendix C. Background on regular variation and some technical lemmas about
regularly varying functions

Definition C.1. A measurable function U : R+ →R+ is regularly varying at ∞ with index
ρ ∈R if, for x> 0, limt→∞ U(tx)/U(t) = xρ . We denote this by U ∈ RVρ . If ρ = 0, we call U
slowly varying.

Proposition C.1. If U ∈ RVρ , then there exists a slowly varying function � ∈ RV0 such that

U(x) = xρ�(x). (66)

Definition C.2. The de Bruijn conjugate �# of the slowly varying function �, which always
exists, is uniquely defined up to asymptotic equivalence [6, Theorem 1.5.13] by

�(x)�#{x�(x)} → 1, �#(x)�
{
x�#(x)

}→ 1,

as x → ∞. Then (�#)# ∼ �. For example, (loga x)# ∼ log−a x for a �= 0 and �#(x) ∼ 1/c if
�(x) ∼ c.

Proposition C.2. ([36, Proposition 0.8, Chapter 0].) If U ∈ RVρ , ρ ∈R, and the sequences (an)
and

(
a′

n

)
satisfy 0< an → ∞, 0< a′

n → ∞ and an ∼ ca′
n for some 0< c<∞, then

U(an) ∼ cρU
(
a′

n

)
as n → ∞.

Proposition C.3. ([36, Proposition 0.7, p. 21].) Let U : R+ →R+ be absolutely continuous
with density u, so that U(x) = ∫ x

0 u(t)dt. If U ∈ RVρ , ρ ∈R, and u is monotone, then

lim
x→∞

xu(x)

U(x)
= ρ;

furthermore, if ρ �= 0, then sign(ρ)u(x) ∈ RVρ−1.
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