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Abstract
Smartphone applications (SPA) now offer the ability to provide accessible in-home monitoring of relevant individual health biomarkers.
Previous cross-sectional validations of similar technologies have reported acceptable accuracy with high-grade body composition assessments;
this research assessed longitudinal agreement of a novel SPA across a self-managed weight loss intervention of thirty-eight participants
(twenty-one males, seventeen females). Estimations of body mass (BM), body fat percentage (BF%), fat-free mass (FFM) and waist circumfer-
ence (WC) from the SPA were compared with ground truth (GT) measures from a dual-energy X-ray absorptiometry scanner and expert
technician measurement. Small mean differences (MD) and standard error of estimate (SEE) were observed between method deltas (ΔBM:
MD= 0·12 kg, SEE= 2·82 kg; ΔBF%: MD= 0·06 %, SEE= 1·65 %; ΔFFM: MD= 0·17 kg, SEE= 1·65 kg; ΔWC: MD = 1·16 cm, SEE= 2·52 cm).
Concordance correlation coefficient (CCC) assessed longitudinal agreement between the SPA and GT methods, with moderate concordance
(CCC: 0·55–0·73) observed for all measures. The novel SPA may not be interchangeable with high-accuracy medical scanning methods yet
offers significant benefits in cost, accessibility and user comfort, in conjunction with the ability tomonitor body shape and composition estimates
over time.
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The assessment of body composition is vital for monitoring
health, chronic disease risk, as well as athletic performance, with
measures of bodymass (BM), fat mass (FM), body fat percentage
(BF%), fat-free mass (FFM) and waist circumference (WC) often
reported(1,2). Whether direct assessments or indirect surrogate
measurements of body composition are used typically relies
on the context for which the measurement is required.
Methods such as MRI, computed tomography and dual-energy
X-ray absorptiometry (DXA) provide accurate body composition
assessment yet are expensive and time-costly with potential
participant burden(1). Though others may provide improved
accessibility, such as bioelectrical impedance analysis (BIA),
three-dimensional (3D) optical body scanning and anthropo-
metrics, they do not deliver the accuracy of computed

tomography, MRI or DXA methods(4,5). Nonetheless, many of
these accessible surrogate methods can still provide an indi-
vidual or clinician with the potential to estimate body composi-
tion levels to infer disease risk, track health improvements or set
performance outcomes(5).

Accessible assessments of body shape and composition have
been validated cross-sectionally, and to a lesser extent, longitu-
dinally(6,7). Longitudinal research has primarily utilised BIA for
body composition assessment, comparing changes over time
with methods(8–12). The findings have varied in support for
measuring changes in adiposity and muscle mass, with mean
differences (MD) ranging between 2–6 kg for FFM and
2–3 percentage points for BF%. Novel methods of assessment
are now available via smartphones, which offer the hardware
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and processing capabilities to utilise high-grade digital imaging
technologies and machine learning models for body shape and
composition assessment(13).

Previously validated smartphone and digital imagery
technologies have provided promising results compared
with expert measurement and multi-camera digital 3D
photogrammetry(14–17). A two-dimensional smartphone applica-
tion (SPA) ‘BodyScan’ (Body Composition Technologies,
Advanced Human Imaging, CompleteScan, Version 21.1.2)
utilises machine learning and computer vision trained on a large
dataset of medical images to predict body shape and composi-
tion from two-dimensional smartphone images. Results of the
BodyScan technology were clinically equivalent to DXA and
technician circumferences, similar to those achieved by other
technologies(15). Other techniques have been reported by
Farina et al. who found low cross-sectional standard errors in
two-dimensional smartphone image predictions of body FM
(standard error of estimate (SEE): 2·7–2·9 kg) for male and
females across a wide range of body fat(14). However, these
previous validations have relied on back-end cloud processing
(i.e. model processing did not run on the smartphone device)
or have utilised cross-validation techniques of model outputs.
These preliminary validations are also cross-sectional compari-
sons, rather than a longitudinal data series employed to monitor
change over time. Ultimately, a body composition assessment
tool must be able to accurately track change if it can be mean-
ingfully used to improve health and reduce risk of chronic
disease.

To provide further narrative to a rapidly evolving field, this
research aims to analyse agreement between the commercially
available SPA and ground truth (GT)methods of DXA and expert
tape-measure circumference. Longitudinal agreement between
the SPA estimations and GT measures of BM, BF%, FFM and
WCwill be compared across a 12-weekweight loss intervention.
In line with previous smartphone measurement validations,
we hypothesise that therewill be significant correlations in longi-
tudinal concordance of the SPA and GT measures, MD of each
measurement will trend in the same direction for monitoring
change over time and that no significant differences (P< 0·05)
in method and method by time changes will be observed
between the methods.

Methods

Participants

Participants interested in self-managed weight loss, aged
between 30–65 years, were invited to participate in this study.
Participants with a physical disability that prevented an accurate
measurement of their anthropometry or body composition were
excluded from participation, as were those who were pregnant
or weighed >160 kg (DXA table limitation). This study was
conducted according to the guidelines laid down in the
Declaration of Helsinki and all procedures were approved by
The University of Western Australia’s Human Ethics Research
Committee (RA:2021/ET000254). The study procedure was
explained to each participant, who provided their written
consent. Participants agreed to self-manage their weight loss

across the 12 weeks of measurement. As part of participation
in this research, all participants were offered the option of a free
consult with a metabolic specialist and exercise physiologist to
help advise their own goals. The focus of this research was
not the monitoring of an intervention; each participant’s indi-
vidual goal of change in their body composition was encour-
aged, with a variation in weight loss and body composition to
be expected. Participants were requested to wear form-fitting
clothing, be barefoot and void their bladder and bowel before
assessment. Two sessions were analysed across a self-directed
12-week weight-loss intervention period; the same measures
were taken at each session.

Anthropometric measurements

Firstly, GT measurements including height, BM and WC were
measured by a single trained technician (International Society
for the Advancement of Kinanthropometry (ISAK)) across all
three sessions. Standing height was recorded with a wall-
mounted stadiometer and BM was measured to the nearest
0·01 kg using a self-calibrating digital platform scale (MultiRange,
Model ED 3300). WC was measured twice with an inelastic
retractable anthropometric tape (Lufkin W606PM Executive
Diameter Tape) following ISAK standard protocols(18). Both
measurements were averaged if they were taken within
2 % measurement error (∼1·8 cm). WC was measured horizon-
tally at the narrowest point between the iliac crest and the tenth
rib. When the technician was unable to identify the narrowest
point, WC was measured at the midpoint of these landmarks,
with the specific assessment point kept consistent across the
testing sessions for each participant.

Dual-energy X-ray absorptiometry

A DXA scanner with Encore Version 17 software (GE Lunar
iDXA, GEHealthcare) was used to assess each participant’s body
composition. Daily quality assurance tests were performed as
per the manufacturer’s procedures. In a supine position, partic-
ipants rested with their arms by their side and feet apart.
Participants who did not fit inside the scan plane had their left
arm cropped in the same position each session using the manu-
facturer’s mirror analysis. Regions of interest were manually
annotated and adjusted post-scan to standardise segmentation
as per previously published methods(19). Outputs were proc-
essed for whole-body BF% and FFM. Previous scan–rescan
analysis using the same scanner indicated a SEE of 0·4 % points
for BF% and 0·52 kg for FFM.

Smartphone application assessment

An iPhone 13 (Apple Inc. California) with the BodyScan SPAwas
placed upright on a tripod to capture the participant images. The
SPA directs the capture process using automated on-screen
guides to allow the participant to fit themselves within a stand-
ardised front and side pose. Participant height and BM are
entered into the phone to generate a participant-specific contour
shape for the participant to fit their body within. Six rounds of
front and side images were taken of the participant in front of
a chroma key screen, totalling twelve images.
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The images were captured and processed through the
BodyScan SPA which utilises the on-device GPU processing
capabilities. After image capture, the application downloads
the machine learning models onto the device which estimate
shape and body composition outputs including BM, BF%, FFM
and WC. Entered BM for the image capture process is not used
by the technology to guide the smartphone estimations of BM.
The BodyScan proprietary machine learning models were
trained using a large dataset of front and side profile images
and body shape and composition data from previously
published heterogeneous populations(19,20). All iPhone images
were inspected for participant position quality and model
processing errors. Outputs from all quality attempts were aver-
aged to provide a single output for BM, BF%, FFM and WC for
each testing session.

Statistical analysis

A power analysis was conducted on a previously collected
cohort using a conservative power of 0·95 and determined that
twenty-one participants would be necessary to observe signifi-
cant associations at an α= 0·05 between the devices/methods
in question and GT-derived values(19). Statistical analyses were
performed within JASP (JASP v0.16.2) and Excel (Microsoft).
All data were assessed for normality with visualisation of distri-
bution plots, analysis of skewness, kurtosis and Shapiro–Wilk
tests. Repeated-measures ANOVA was undertaken using GT
and SPA as comparison methods (within-subject factors) across
the participant’s first and last session measurements (time). Lin’s
concordance correlation coefficient (CCC) and 95 % CI were
used to assess precision and accuracy correlation between GT
and SPA deltas across the first and last testing sessions(21). SEE
and MD for measurement deltas are also presented.

Results

Forty-one participants completed their first and last sessions
across the 12-week intervention. Three participants with
measurement errors were not included within the analysis,
leaving thirty-eight participants, twenty-one males (39·0
(SD 11·8) years, 94·1 (SD 16·8) kg, 1·79 (SD 0·05) m, 29·3
(SD 4·9) kg/m2) and seventeen females (47·4 (SD 0·5) years,
75·1 (SD 11·7) kg, 1·67 (SD 0·07) m, 27·1 (SD 4·0) kg/m2) for the
final analysis. Mean decreases in BM, BF%, FFM and WC were
observed across the cohort for both SPA and GT measures
(Fig. 1). Differences between the GT measurements of the first
and the last sessions exceeded the DXA scan–rescan error for
BF% (MD=−1·93 % v. error of ± 0·4 %) and exceeded scale
and technician error for BM (MD=−3·47 kg v. error of ±
0·001 kg) and WC (MD=−4·31 cm v. error of ±2 cm). The
changes in FFM were similar to the reported scan–rescan error
(MD=−0·48 kg v. error of ±0·52 kg). Repeated-measures
ANOVA (Table 1) observed method main effects in male and
female measures of WC, BF% and FFM (P< 0·05), with larger
SPA values for WC and BF% and larger GT values for FFM.
Method by time interactions was observed for the combined
cohort WC and male WC (P≤ 0·05). Follow-up testing indicated
that male WC significantly decreased in both GT and SPA

measures (P ≤ 0·001); however, decreases in GT measures
(MD= 4·64 cm) were larger when compared with SPA
(3·37 cm). Time main effects indicated decreases in BM, WC
and BF% for males and females. Time effects were not observed
in male and female FFM. SEE values for all measurement deltas
exceeded those reported for the same scanner, technician
measurements for WC and BM scale accuracy. All SPA changes
were significantly correlated with GT methods, with all CCC
results greater than 0·55, except for female FFM (CCC= 0·25).
CCC plots are presented in Fig. 2 for BM, WC, %BF and FFM.

Discussion

This research aimed to examine the longitudinal agreement of
anthropometry and body composition measurements predicted
from a novel smartphone technology across a 12-week self-
managed weight loss intervention, compared with GT measure-
ments from trained anthropometry technicians and DXA scans.
The importance of body shape and composition tracking for
clinical health risk and athletic performance has been explained
by previous research, with a significant call for technological
advancements to promote accessibility of assessment(5). Themost
important finding from the current study is that the novel SPA
provides value in the accessible tracking of body composition
and anthropometry changes. Measurement tracking of changes
showed a significant decrease in GT and SPA measures of BM,
WC and BF%. Our hypothesis was partially supported with no
significant differences observed between methods across the
two testing time points for BM, BF% and FFM, although a method
by timemain effect was seen in significant differences inmale and
female changes in WC. SPA-derived BM, WC and BF% measure-
ment changes were significantly correlated with changes in GT
measurement across the 12-week intervention.

Changes in BF% and FFM were significantly correlated
between GT DXA and SPA measures (P≤ 0·05). Similar agree-
ment has been observed in previous longitudinal research
comparing accessible BIA and GT methods. Due to its ease of
use, BIA is employed as a standard of accessible measurement,
despite known limitations and reported errors(4). Boykin et al.
reported a longitudinal agreement for BIA estimated FFM of
0·49 CCC (95 % CI 0·17, 0·72) and 0·50 CCC (95 % CI 0·23,
0·70) for FM(9). Recent findings by Schoenfeld et al. and
Tinsley et al. also supported the use of accessible measurements
via BIA for whole-body composition changes(8,12). Contrary
conclusions have previously been proposed with low correla-
tions across ΔFM and ΔFFM estimations, suggesting the tracking
of body composition is not interchangeable between methods
and may not be applicable for longitudinal monitoring(10,11).
Although method differences were observed between SPA
and GT measures of BF% and FFM in the current study, both
methods observed the same decreasing trend across the first
and final testing sessions. Similar to the current study, overesti-
mation of FFM and underestimation of BF% by alternate acces-
sible methods of BIA have been observed(9). However, when
these differences occur, longitudinal agreement can still be
achieved between methods with a reliance on consistency of
estimation over time(9). Male and female MD between methods
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Fig. 1. Rawground truth (GT) and smartphone application (SPA)measures of bodymass (BM), waist circumference (WC), body fat percentage (BF%) and fat-freemass
(FFM) displayed in raincloud, box and distribution plots for the first (left) and last sessions (right).
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were not larger than 0·42 percentage points for BF% and 0·46 kg
for FFM. These observations suggest that while body composi-
tion estimates from DXA and the SPA may not be

interchangeable, low differences between total FFM changes
detected by each method provide a strong case for the utility
of the novel SPA technology.

Table 1. Agreement between ground truth and the smartphone application measurement changes
(Mean values and standard deviations; standard error of estimates and 95 % confidence intervals)

MD SD SEE CCC 95% CI

Repeated-measures ANOVA
(P)

Measure

GT change SPA change

Time Method

Time *

Mean SD Mean SD Method

All participants (n 38) BM (kg) –3·47 3·56 –3·35 3·66 0·12 2·89 2·82 0·68 0·46, 0·82 <0·001* 0·809 0·806
WC (cm) –4·31 3·77 –3·15 2·99 1·16 2·3 2·52 0·73 0·56, 0·84 <0·001* <0·001* 0·004*
BF% (%) –1·93 1·77 –1·87 1·83 0·06 1·7 1·65 0·55 0·29, 0·74 <0·001* <0·001* 0·836
FFM (kg) –0·48 1·3 –0·65 2·16 –0·17 1·68 1·65 0·55 0·34, 0·71 0·033* <0·001* 0·542

Females (n 17) BM (kg) –2·98 2·7 –2·68 3·22 0·31 2·38 2·27 0·69 0·35, 0·87 <0·001* 0·878 0·618
WC (cm) –3·91 4·07 –2·88 2·96 1·02 2·96 2·96 0·65 0·31, 0·84 <0·001* 0·013* 0·172
BF% (%) –1·64 1·51 –2·02 1·92 –0·38 1·65 1·60 0·56 0·15, 0·80 <0·001* <0·001* 0·34
FFM (kg) –0·57 0·87 –0·38 1·65 0·19 1·66 1·58 0·25 0·15, 0·58 0·086 0·027* 0·638

Males (n 21) BM (kg) –3·87 4·1 –3·9 3·91 –0·02 3·29 3·14 0·66 0·34, 0·85 <0·001* 0·617 0·969
WC (cm) –4·64 3·46 –3·37 3 1·27 1·67 2·01 0·8 0·61, 0·90 <0·001* <0·001* 0·002*
BF% (%) –2·18 1·92 –1·76 1·74 0·42 1·69 1·66 0·56 0·20, 0·79 <0·001* <0·001* 0·268
FFM (kg) –0·4 1·57 –0·86 2·49 –0·46 1·68 1·66 0·66 0·40, 0·82 0·143 0·003* 0·224

GT, ground truth; SPA, smartphone application; MD, mean difference; SEE, standard error of estimate; CCC, Lin’s concordance correlation coefficient; BM, body mass; WC, waist
circumference; BF%, body fat percentage; FFM, fat-free mass.
* Repeated-measures ANOVA was performed on raw data, significant P values (< 0·05).

Fig. 2. Agreement of changes in body mass (A), waist circumference (B), body fat percentage (C) and fat-free mass (D). Smartphone application (SPA) prediction and
ground truth (GT) change between first and last sessions are plotted and compared with the solid black line of perfect agreement. The dotted line shows the trend
and correlation for comparison using Lin’s concordance correlation coefficient.
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The longitudinal agreement of the SPA in the current study
also aligns with the high accuracy reported in cross-sectional
research using two-dimensional digital and smartphone images
to trainmachine learning andmultiple regressionmodels(14,15,17).
Our previous validation of 929 participants compared the same
SPA technology used in the current study against DXA and BIA
measures of BF% and FFM, with high accuracy across the hetero-
geneous cohort (SEE: BF%= 2·8–2·9 %, FFM= 1·7–2·3 kg)(15). As
expected, lower CCC were found in the current study when
compared with the previous validation, due to the comparison
of smaller longitudinal changes. Although these previously
published results reported high accuracy, the outputs andmodel
predictions were performed ‘offline’ on a desktop computer.
This current research utilised a cloud-hosted model, down-
loaded onto the device to process the images using the smart-
phone’s GPU for real-time outputs that a user could expect in
their own home. With the continuously evolving development
of inexpensive imaging devices, body composition assessment
in clinical and home settings can be safe, practical and relatively
inexpensive(5). The novel SPA offers significant benefits in cost,
accessibility and user comfort, in conjunction with comparable
agreement of body composition estimates that are congruent
with previously reported accessible methods such as BIA.

SPA anthropometry measures of BM and WC had strong and
significant correlations with GT methods. Both GT and SPA
measures significantly decreased across theweight loss interven-
tion. However, despite a strong concordance (CCC = 0·80, 95 %
CI 0·61, 0·90), male GT and SPA ΔWC were statistically different
across method and time interactions (P= 0·002). Male and
female ΔBM had a MD of less than 0·31 kg, with a larger SEE
in males (3·14 kg). No significant differences were seen in BM
between methods across the first and last sessions, with high
agreement correlations. SEE of 2·5 cm for female and 2·0 cm
for male ΔWC are comparable with those observed in the SPA
technology’s previous cross-sectional validation, with variations
between the sexes due to significant differences in body
shape(15). A recent cross-sectional study compared tape
measured WC with smartphone estimations and a commercial
grade 3D optical scanner, with authors reporting an error of
6·1 cm for the smartphone technology, compared with 9·2 cm
for the optical scanner(16). As a generally accepted standard
for digital anthropometry, lower errors of WC prediction
(2·60–3·27 cm) have been reported for 3D optical scanners, with
the systems sometimes requiring multiple calibrated cameras or
depth sensors for accurate and repeatable measures(6,7). These
systems also require appropriate participant preparation,
including swimming caps, and post-processing adjustment to
improve the identification of difficult-to-scan areas such as the
armpits and inner thighs. The SPA in the current study performed
well when compared with these costly and widely considered
robust systems, potentially paving way for a new standard of
digital anthropometry – one that could be made widely available
on any smartphone. Epidemiologists are becoming increasingly
reliant on telehealth and ‘mhealth’ applications for large popu-
lations and the monitoring of at-risk cohorts in remote loca-
tions(13). The accessibility and suitability of the measures from
the novel SPA significantly increase the reach of disease and
health risk monitoring.

Some limitations are present in the current study. First, while
all participants aimed to reduce their FM andWC over the length
of the research, not all participants achieved this goal. Mean FFM
decrease was similar to the observed scan–rescan measurement
error of the same DXA machine (–0·48 kg v. 0·52 kg). This is
likely due to many participants losing FFM with weight loss,
while some attempted to gain lean muscle mass across the inter-
vention. Many participants had a goal of losing BF% and gaining
FFM; thirteen participants were able to achieve this, with twenty-
one participants losing both FFM and FM. Longitudinal changes
in FM and FFM were explored by Tinsley et al. who split their
cohort analysis by whether participants gained FFM but lost
FM, or gained both FFM and FM, which the current study was
not able to perform due to insufficient numbers(8). However,
a strength of the study was the ability to split the cohort by
sex to assess the SPA’s robustness, given typical differences in
male and female body shape and composition.

Second,we did notmonitor or control the nutritional intake of
each participant, whichmay have provided further context to the
results of the research. However, a clear reduction in BM, FM and
WC was seen for both males and females, supporting the aim of
the research which was to assess the SPA across longitudinal
changes in body composition. Third, another limitation may
be present in our choice of GT methods chosen for comparison.
The GE DXA machine is considered by some to be a ‘gold-stan-
dard’ for whole body composition yet has its own limitations
when compared with other methods, such as computed tomog-
raphy, MRI or the four-component method(1). Variations have
also been reported between machines and laboratories.
Technician circumference measures have also been shown to
vary widely, with a variation of ∼2 cm generally accepted as
normal for intra-tester measurements(18). These variations are
also seen between digital technologies and manual methods
due to differences in landmark location, especially for WC
measurements(5). Lastly, the SPA was utilised in a controlled
laboratory to provide a ‘best-case’ comparison of the technology.
Users may experience larger differences in uncontrolled envi-
ronments; however, the application does provide examples
and onboarding which explain the need for even lighting and
an uncluttered background for the best estimation results.
Future research will need to assess the efficacy of the SPA within
settings closer to ‘real-world’.

Conclusion

This research explored the longitudinal body composition and
anthropometry assessment with a novel smartphone tech-
nology. The SPA was able to achieve comparable agreement
of decreases in BM, BF%, FFM and WC measurement across a
12-week weight loss intervention. Similar to published reports
of high-end accessible methods such as BIA and 3D body
scanners, the SPA estimations offer longitudinal monitoring of
body shape and composition. For the accessible measurement
of anthropometry and body composition changes, it is necessary
for researchers, clinicians and sports practitioners to be aware
of the limitations of each method and the advantages of new
technologies such as the SPA.With acknowledgedmeasurement
variation, the novel smartphone technology’s ability to monitor
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trend can be utilised for performance and health risk monitoring
over time.
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