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Resultants of Chebyshev Polynomials:
A Short Proof

Stéphane R. Louboutin

Abstract. We give a simple proof of the value of the resultant of two Chebyshev polynomials (of the
first or the second kind), values lately obtained by D. P. Jacobs, M. O. Rayes, and V. Trevisan.

In [Lou], we gave a simple proof of the value of the resultant of cyclotomic poly-
nomials, a result obtained in [Apo, Die]. Here, we show that our method applies
readily to the computation of resultants of Chebyshev polynomials. We explain in six
steps how one can simply deduce such resultants. Let us mention that whereas the
authors in [JRT] have to know beforehand the result, for they prove it by induction,
we will deduce it from the definitions of the resultants (see (1) and (2) below) and
from a simple tool (see Lemma 2).

Step 1. The Chebyshev polynomials of the first kind Tn(x), n ≥ 1, are defined by

Tn(x) = cos(n · arccos x) = 2n−1
n∏

k=1

(
x − cos

( 2k− 1

n

π

2

))
∈ Z[x].

The resultant of two such polynomials is given by

(1) res(Tm,Tn) = 2mn−m−n
m∏

k=1

n∏
l=1

(
2 cos

( 2k− 1

m

π

2

)
− 2 cos

( 2l− 1

n

π

2

))

(e.g., see [JRT, (3.3)]).
To begin with, res(Tm,Tn) = 0 if and only if there exist k and l such that

2k− 1

m

π

2
≡ ±2l− 1

n

π

2
(mod 2π),

i.e., such that m1(2l − 1) ≡ ±n1(2k − 1) (mod 4gm1n1), where m = gm1, n = gn1

and g = gcd(m, n). If m1 and n1 are odd, then by taking k = (m1 + 1)/2 and
l = (n1 + 1)/2 we obtain res(Tm,Tn) = 0. If m1 or n1 is even, then one of them is odd
(since gcd(m1, n1) = 1), hence m1(2l − 1) ≡ ±n1(2k− 1) (mod 4) has no solution
and res(Tm,Tn) 6= 0. Hence, we have the following proposition.
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Proposition 1 (See [JRT, Corollary 4.2]) For m, n ≥ 1, we have res(Tm,Tn) = 0 if
and only if m1 := m/ gcd(m, n) and n1 := n/ gcd(m, n) are odd.

Step 2. So, from now on we may assume that m1 or n1 is even, the other one being
odd, since gcd(m1, n1) = 1. We write m1 = 2αM, n1 = 2βN, and g = 2γG, where
M, N, and G are odd, α or β is equal to zero and the other one is not, and where
gcd(M,N) = 1. As in [Lou], two algebraic integers α and β are called associated if
there exists an algebraic unit ε such that β = εα. To prove that the rational integer
res(Tm,Tn) is equal to some R ∈ Z, it suffices to prove that res(Tm,Tn) is associated
with R and that res(Tm,Tn) and R are of the same sign. We set ζx = exp(2iπ/x).
Now, if a and b are rational multiples of π, then

2 cos a− 2 cos b = 4 sin
( a + b

2

)
sin
( a− b

2

)
= −eib(1− ei(a+b))(1− ei(a−b))

is an algebraic integer.
In particular, by (1), it follows that 2mn−m−n divides res(Tm,Tn) ∈ Z.

Step 3. Now we will use a standard result from cyclotomic fields (see e.g., [Lou,
Lemma 1] for a proof).

Lemma 2 Let x ≥ 1 and y be coprime integers. Then 1− ζ y
x is associated with 1− ζx.

Moreover, 1 − ζx is associated with 1, except if x is a power of some prime p, in which
case (1− ζx)φ(x) is associated with p.

Now, for a = 2k−1
m

π
2 and b = 2l−1

n
π
2 , we have 1 − ei(a±b) = 1 − ζ

y
x with x =

4gm1n1/δ ≥ 1 and y = ((2k− 1)n1 ± (2l− 1)m1)/δ coprime, where

δ := gcd
(

4gm1n1, (2k−1)n1± (2l−1)m1

)
= gcd

(
gm1n1, (2k−1)n1± (2l−1)m1

)
(for (2k − 1)n1 ± (2l − 1)m1 is odd). Hence, x is divisible by 4. Therefore, if x is a
power of a prime, then x is a power of 2.

Consequently, res(Tm,Tn) is always a perfect power of 2, up to the sign, by (1) and
Lemma 2.
Step 4. Moreover, we have δ = gcd(GMN, 2β(2k − 1)N ± 2α(2l − 1)M) (for (2k −
1)n1 ± (2l− 1)m1 is odd), and

x = 2α+β+γ+2 GMN

gcd(GMN, 2β(2k− 1)N ± 2α(2l− 1)M)

is a power of 2 if and only if GMN divides 2β(2k − 1)N ± 2α(2l − 1)M, in which
case x = 2α+β+γ+2. It follows that if t denotes the number of (k, l) ∈ {1, . . . ,m} ×
{1, . . . , n} such that GMN divides 2β(2k − 1)N ± 2α(2l − 1)M, then res(Tm,Tn) is

associated with, hence up to its sign equal to, R := 2mn−m−n × 22·t/φ(2α+β+γ+2), by (1)
and Lemma 2.
Step 5. Since res(Tm,Tn) = res(Tn,Tm), we may assume that α = 0 and β ≥ 1.
Then GMN divides 2β(2k − 1)N ± 2α(2l − 1)M if and only if M divides 2k − 1
and 2β 2k−1

M ± (2l − 1) ≡ 0 (mod GM). Hence, k is unique mod M and there are

https://doi.org/10.4153/CMB-2012-002-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-002-1


604 S. R. Louboutin

m/M = m/m1 = g possible choices for k. Now, for a given k we have 2l − 1 ≡
∓2β 2k−1

M N (mod GN), where GN is odd. Hence, l is unique mod GN, so that there
are n/GN = 2β+γn/gn1 = 2β+γ = 2α + β + γ choices for n.

Hence, t = g · 2α+β+γ and res(Tm,Tn) is associated with R = 2mn−m−n+q.

Step 6. Finally the sign of res(Tm,Tn) being equal to (−1)mn/2 (count the number
of negative terms in (1), i.e., the number of indices (k, l) for which (2k − 1)/m >
(2l− 1)/n), as in [JRT] we obtain the following theorem.

Theorem 3 (See [JRT, Theorem 4.5]) For m, n ≥ 1 we have

res(Tm,Tn) =

{
0 m/ gcd(m, n) and n/ gcd(m, n) are odd,

2mn−m−n+gcd(m,n) otherwise.

The Chebyshev polynomials of the second kind, Un(x), n ≥ 1, are defined by

Un(x) =
T ′n+1(x)

n + 1
=

sin((n + 1) arccos x)

sin(arccos x)
= 2n

n∏
k=1

(
x − cos

( kπ

n + 1

))
∈ Z[x].

The resultant of two such polynomials is given by

(2) res(Um,Un) = 2mn
m∏

k=1

n∏
l=1

(
2 cos

( kπ

m + 1

)
− 2 cos

( lπ

n + 1

))
.

To begin with, res(Um,Un) = 0 if and only if there exist k with 1 ≤ k ≤ m and l with
1 ≤ l ≤ n such that

kπ

m + 1
≡ ± lπ

n + 1
(mod 2π),

i.e., such that m1l ≡ ±n1k (mod 2gm1n1), where m + 1 = gm1, n + 1 = gn1 and
g = gcd(m + 1, n + 1). If g > 1, then by taking k = m1 ≤ m and l = n1 ≤ n
we obtain res(Tm,Tn) = 0. If g = 1, then m1 = m + 1 must divide k < m and
n1 = n + 1 must divide l < n, which cannot occur. Hence res(Tm,Tn) 6= 0 and
res(Um,Un) = 0 if and only if gcd(m + 1, n + 1) > 1, as in [JRT, Corollary 5.2]. So
we now assume that m1 := m + 1 and n1 := n + 1 are coprime. With a = kπ/m1 and
b = lπ/n1, we have 1− ei(a±b) = 1− ζ y

x with x = 2m1n1/δ, y = (kn1 ± lm1)/δ and
δ = gcd(2m1n1, kn1 ± lm1). But

x ′ :=
m1n1

gcd(m1n1, kn1 ± lm1)
=

m1

gcd(m1, k)

n1

gcd(n1, l)

divides x, and x ′ is clearly not a prime power (for k < m1, l < n1 and gcd(m1, n1) = 1
yields that x ′ is the product of two coprime integers greater than 1). Hence, each
factor in (2) is associated with 1, by Lemma 2. Therefore, res(Um,Un) is associated
with 2mn, and we obtain the following theorem.

Theorem 4 (See [JRT, Theorem 5.6]) For m, n ≥ 1 we have

res(Um,Un) =

{
0 gcd(m + 1, n + 1) > 1,

(−1)mn/22mn otherwise.
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