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Abstract

Kleinewillinghöfer classified Laguerre planes with respect to linearly transitive groups of central
automorphisms. Polster and Steinke investigated two-dimensional Laguerre planes and their so-called
Kleinewillinghöfer types. For some of the feasible types the existence question remained open. We
provide examples of such planes of type II.A.2, which are based on certain two-dimensional Laguerre
planes of translation type. With these models only one type, I.A.2, is left for which no two-dimensional
Laguerre planes are known yet.
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1. Introduction

Similar to the Lenz-Barlotti classification of projective planes, compare [10, Anhang,
Section 6], Kleinewillinghöfer [5] classified Laguerre planes with respect to central
automorphisms, that is, permutations of the point set of the Laguerre plane such that
generators are mapped to generators and circles are mapped to circles and such that at
least one point is fixed and central collineations are induced in the derived projective
plane at one of the fixed points. In [14] and [21], two-dimensional Laguerre planes
were considered and their so-called Kleinewillinghöfer types were investigated, that
is, the Kleinewillinghöfer types of the (full) automorphism groups. In particular,
all feasible types of two-dimensional Laguerre planes with respect to Laguerre
translations, were completely determined in [14], the case of Laguerre homotheties
was dealt with in [21] and Laguerre homologies are covered in [14, 17, 22]; see
Section 3 for definitions of these kinds of central Laguerre plane automorphisms.
Examples for some of the feasible combined Kleinewillinghöfer types of two-
dimensional Laguerre planes (that is, with respect to all three types of central
automorphisms Kleinewillinghöfer used in her classification) can be found in [14,
Section 6], [9] and [20].
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Sections 2 and 3 give brief reviews of some basic facts about two-dimensional
Laguerre planes and their Kleinewillinghöfer types, respectively. In Section 4
we provide models for two-dimensional Laguerre planes of Kleinewillinghöfer
type II.A.2. Hence, for two-dimensional Laguerre planes only the existence of one
combined Kleinewillinghöfer type, type I.A.2, remains open.

2. Two-dimensional Laguerre planes

A two-dimensional or flat Laguerre plane L = (Z,C) is an incidence structure of
points and circles whose point set is the cylinder Z = S1 × R (where S1 is usually
represented as R ∪ {∞}), whose circles, elements in C, are graphs of continuous
functions S1→ R such that any three points, no two of which are on the same generator
{c} × R of the cylinder, can be joined by a unique circle and such that the circles which
touch a fixed circle C at p ∈ C, that is, C itself and the circles which have only p in
common with C, partition the complement in Z of the generator [p] that contains p.
For more information on two-dimensional Laguerre planes we refer to [1] and [3] or
[13, Ch. 5]. We say that two points of Z are parallel if they are on the same generator
of Z. This defines an equivalence relation ‖ on Z whose equivalence classes, also called
parallel classes, are the generators of Z.

It readily follows that for each point p of L the incidence structure Ap = (Ap,Lp)
whose point set Ap consists of all points of L that are not on the generator [p] and
whose line setLp consists of all restrictions to Ap of circles ofL passing through p and
of all generators not containing p is an affine plane, which extends to a projective plane
Pp. We call Ap and Pp the derived affine and projective plane at p, respectively. In
fact, the geometric axioms of a Laguerre plane are equivalent to all derived incidence
structuresAp as defined above being affine planes.

The classical two-dimensional Laguerre plane is obtained as the geometry of
nontrivial plane sections of a cylinder in R3 with an ellipse in R2 as the base, or
equivalently, as the geometry of nontrivial plane sections of an elliptic cone, in real
three-dimensional projective space, with its vertex removed. The parallel classes are
the generators of the cylinder or cone. By replacing the ellipse in the construction of
the classical two-dimensional Laguerre plane by arbitrary ovals in R2, that is, convex,
differentiable simply closed curves, we also obtain two-dimensional Laguerre planes.
These are the so-called ovoidal two-dimensional Laguerre planes.

Every automorphism of a two-dimensional Laguerre plane is continuous and thus
a homeomorphism of Z. The collection of all automorphisms of a two-dimensional
Laguerre plane L forms a group with respect to composition, the automorphism group
Γ of L. This group is a Lie group of dimension at most 7 with respect to the compact-
open topology; see [18]. We call the dimension of Γ the group dimension of L. The
maximum dimension is attained precisely in the classical two-dimensional Laguerre
plane. In fact, group dimension of at least 6 implies classical. Furthermore, two-
dimensional Laguerre planes of group dimension 5 must be special ovoidal Laguerre
planes; see [8, Theorem 1].
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The collection of all automorphisms of L that fix each generator of L is a closed
normal subgroup of Γ, called the kernel of L. The kernel of a two-dimensional
Laguerre plane has dimension of at most 4. Furthermore, a kernel of dimension 4
characterizes the ovoidal Laguerre planes among two-dimensional Laguerre planes,
that is, a two-dimensional Laguerre plane L is ovoidal if and only if its kernel is four-
dimensional; see [2].

2.1. Two-dimensional Laguerre planes of translation type. One particular family
of two-dimensional Laguerre planes we will be referring to, and on which our
construction is ultimately based, is the class of two-dimensional Laguerre planes of
translation type introduced in [7]. These planes depend on two strongly parabolic
functions; see [7, 1.3] for a precise definition. Since the two-dimensional Laguerre
planes of translation type we are interested in are of a special kind we only present
those planes instead of giving the full and lengthy definition for the general case.

Let fm : R→ R be the function given by

fm(x) = |x|m

where m > 0. Note that fm is multiplicative and twice continuously differentiable for
all x , 0. One has

f ′m(x) = mx|x|m−2 and f ′′m (x) = m(m − 1)|x|m−2.

In particular, when m > 2, the second derivative is always nonnegative so that fm is
strictly convex.

Now L( fm), m > 1, is the two-dimensional Laguerre plane on the cylinder Z whose
circles are the sets

D0,b,c = {(x, bx + c) | x ∈ R} ∪ {(∞, 0)},

where b, c ∈ R and

Da,b,c = {(x, a fm(x − b) + c) | x ∈ R} ∪ {(∞, a)},

where a, b, c ∈ R, a , 0. (These are the planes EΛ( fm, fm) in the notation of [7].) Note
that the derived affine plane at the point (∞, 0) is the Euclidean plane. Moreover,
circles that touch D0,0,0 are precisely the circles Da,b,c where a = b = 0 or c = 0, and
that circles that meet D0,0,0 in two points are precisely the circles Da,b,c where a = 0,
b , 0 or a , 0, c < 0.

Löwen and Pfüller [7, Theorems 5 and 9] prove the following result.

Proposition 2.1. A plane L( fm), m > 1, is ovoidal if and only if m = 2. In this case the
plane is classical.
L( fm), m > 1, has group dimension 4. The (full) automorphism group fixes the point

(∞, 0) and consists of the transformations

(x, y) 7→

(rx + u, sy + v) if x ∈ R,
(∞, sy/ fm(r)) if x =∞,

where r, s, u, v ∈ R, r, s , 0.
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2.2. Cut-and-paste. There are many ways to combine different two-dimensional
Laguerre planes into new two-dimensional Laguerre planes; see for example, [12,
Section 4] or [13, Section 5.3]. One construction, which we will be using in order to
obtain our models of two-dimensional Laguerre planes of type II.A.2 is as follows. Let
L = (Z,C) be a two-dimensional Laguerre plane and let C0 ∈ C be a circle. Consider
the collection C1 of all circles that touch C0. (Note that this includes the circle C0.)
The circle C0 separates the cylinder Z into two connected components, the open upper
half-cylinder Z+ and the open lower half-cylinder Z−. We define C± to be the collection
of all circles that are completely contained in Z±. Finally, let C2 be the set of all
circles that intersect C0 in precisely two points. Obviously, C1 ∪ C2 ∪ C+ ∪ C− is a
partition of the circle set. With this notation, the following result was obtained in [12,
Proposition 6].

Proposition 2.2. LetLi = (Z,Ci), i = 1,2,3 be three two-dimensional Laguerre planes.
Suppose that (C1)1 = (C2)1 = (C3)1 =: C1 for some circle C0. Then L := (Z,C1 ∪ C2

1 ∪

C+
2 ∪ C

−
3 ) is a two-dimensional Laguerre plane.

3. Kleinewillinghöfer types of two-dimensional Laguerre planes

Central automorphisms are automorphisms that have at least one fixed point
and induce central collineations in the derived projective plane at this fixed point.
Kleinewillinghöfer considered four kinds of central automorphisms: C-homologies,
G-translations, (G, B(q,C))-translations and (p, q)-homotheties; see the following for
definitions. The four different kinds of central automorphisms above are distinguished
according to the relative position of the centre and axis and whether or not the axis is
the line at infinity of the derived affine plane at one of its fixed points. The notions of
translation, homothety and homology describe the sort of central collineation one sees
in this derived affine plane.

A subgroup of central automorphisms that have the same ‘centre’ and ‘axis’ is
linearly transitive if the induced group of central collineations in a derived projective
plane at one of the fixed points is transitive on each central line except for the obvious
fixed points, the centre and the point of intersection with the axis. Kleinewillinghöfer
considered the automorphism groups of Laguerre planes and determined their types
according to linearly transitive subgroups of central automorphisms contained in them.
We say that the Laguerre plane is of type X if the (full) automorphism group Γ has
Kleinewillinghöfer type X.

A Laguerre homology of a Laguerre plane L is an automorphism of L that is either
the identity or fixes precisely the points of one circle. One speaks of a C-homology
if C is the circle that is fixed pointwise. A C-homology induces a homology of the
derived projective plane Pq at each q ∈ C with the centre being the point ω at infinity
of lines coming from generators of L and the axis, the line induced by C. With respect
to Laguerre homologies, Kleinewillinghöfer obtained seven types of Laguerre planes,
labelled I, II, III, IV, V, VI and VII; see [5, Satz 3.1]. Of these types, type VI cannot
occur in two-dimensional Laguerre planes; see [14, Proposition 3.4].
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A Laguerre translation of L is an automorphism of L that is either the identity
or fixes precisely the points of one generator and induces a translation in the derived
affine plane at one of its fixed points. Laguerre translations come in two different
varieties. Firstly, a nonidentity G-translation of L is a Laguerre translation that fixes
precisely the points of the generator G and furthermore fixes each generator globally.
For the second variety of Laguerre translations one uses a tangent bundle B(p,C), that
is, all circles that touch the circle C at the point p. In the derived affine plane at p,
the tangent bundle represents a parallel class of lines, and we can look at translations
in this direction. Then a (G, B(p,C))-translation of L is a Laguerre translation that
fixes C (and each circle in B(p,C)) globally. With respect to Laguerre translations
Kleinewillinghöfer obtained 11 types of Laguerre planes, labelled A through to K; see
[5, Satz 3.3], or [6, Satz 2]. Of these types, types F, I and J cannot occur in two-
dimensional Laguerre planes; see [14, Proposition 4.8].

Finally, a Laguerre homothety of L is an automorphism of L that is either the
identity or fixes precisely two nonparallel points and induces a homothety in the
derived affine plane at each of these two fixed points. One speaks of a {p, q}-
homothety if p, q are the two fixed points. With respect to Laguerre homotheties
Kleinewillinghöfer obtained 13 types of Laguerre planes, labelled 1 through to 13; see
[5, Satz 3.2] or [6, Satz 1]. Types 5, 6, 7, 9, 10 and 12 cannot occur in two-dimensional
Laguerre planes; see [14, Proposition 5.6] and [21].

Combining all three classifications, Kleinewillinghöfer obtained a total of 46
combined types. In two-dimensional Laguerre planes, 21 of these 46 combined types
cannot occur. There are models of two-dimensional Laguerre planes of types I.A.1,
I.B.1, I.B.3, I.C.1, I.E.1, I.E.4, I.G.1, I.H.1, I.H.11, II.A.1, II.E.1, II.E.4, II.G.1, III,B.1,
III.B.3, III.H.1, III.H.11, IV.A.1, IV.A.2, V.A.1, VII.D.1, VII.D.8 and VII.K.13; see
[14, Section 6], [9, 16, 17, 20–22]. Here a combined type just refers to the respective
single types. For example, type III.B.3 refers to type III with respect to Laguerre
homologies, type B with respect to Laguerre translations, and type 3 with respect to
Laguerre homotheties. (This notation for combined types is different from the one used
in [5] but more consistent.) Note that there is a two-dimensional Laguerre plane of
each of the single Kleinewillinghöfer types not excluded for two-dimensional Laguerre
planes.

In particular, the Kleinewillinghöfer type II.A.2 we are interested in in this paper is
defined as follows.

• In type II (with respect to Laguerre homologies) there is a single circle C for
which the group of Laguerre homologies is linearly transitive.

• In type A (with respect to Laguerre translations) there is neither a tangent bundle
nor a generator for which the group of Laguerre translations is linearly transitive.

• In type 2 (with respect to Laguerre homotheties) there is a single unordered pair
{p, q} for which the group of Laguerre homotheties is linearly transitive.
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Proposition 3.1. A two-dimensional Laguerre plane L of Kleinewillinghöfer type
II.A.2 with distinguished points p and q and distinguished circle C has group
dimension 2. Furthermore, the group H generated by all C-homologies and all {p, q}-
homologies has index of at most 2 in the automorphism group Γ of L.

Proof. Note that in type II.A.2 the distinguished points p and q must be on the
distinguished circle C, and C and the pair {p,q}must be fixed by the full automorphism
group. Indeed, if γ is a C-homology and α any automorphism of L, then αγα−1 is an
α(C)-homology, and similarly for {p, q}-homotheties. Hence, the automorphism group
Γ of such a plane is two-dimensional. This follows by repeated application of the
dimension formula dim G = dim Gx + dim G(x), which relates the dimensions of a Lie
group G acting on Z, the stabilizer Gx of a point x ∈ Z and its orbit (see [4]) and the
stabilizer lemma, which says that the stabilizer of three points on a circle and one point
off this circle is trivial (see [19, Lemma 2.10]). Hence,

dim Γ = dim Γp,q = dim Γp,q,c + 1 = dim Γp,q,c,r + 2 = 2

where c ∈ C \ {p, q} and r ∈ [p] \ {p}. Furthermore, the stabilizer lemma and
transitivity properties of H show that H has index of at most 2 in Γ. �

Since the commutator of a C-homology and a {p, q}-homothety with p, q ∈ C is
a C-homology and a {p, q}-homothety, it must be the identity. Hence these central
automorphisms commute. By [15, Proposition 44.8b] the group H is isomorphic to
the direct product of multiplicative loops of some ternary fields coordinatizing the
derived projective plane at p (or q).

Due to the small dimension of Γ only limited information is available to construct
such a Laguerre plane. However, there are examples of two-dimensional Laguerre
planes of small group dimension that admit subgroups of automorphisms of type
II.A.2. One possible strategy therefore is to start with such a plane of ‘higher’ type
and distort circles to destroy central automorphisms that do not belong to type II.A.2.
This method was, for example, applied in [22] to find two-dimensional Laguerre planes
of type IV.A.2 from ovoidal Laguerre planes (of type VII.D.8).

Another way is to take two suitable two-dimensional Laguerre planes of higher type
and exchange circles (like according to Proposition 2.2) to remove unwanted central
automorphisms. For example, the latter method has been successfully employed to
obtain two-dimensional Laguerre planes of Kleinewillinghöfer type E (with respect to
Laguerre translations) from two two-dimensional Laguerre planes of translation type
as in Section 2.1; see [20] for details.

4. The models

In this section we present models for two-dimensional Laguerre planes of
Kleinewillinghöfer type II.A.2. They depend on one real parameter k > 2. The strategy
is to use the circles of two isomorphic models of two-dimensional Laguerre planes of
translation type over the multiplicative parabolic function fk introduced in Section 2.1
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and exchange certain circles. The two distinguished points (as in type 2 with respect
to Laguerre homotheties) will be (∞, 0) and (0, 0). The distinguished circle (as in type
II with respect to Laguerre homologies) will be S1 × {0}. The condition on k can be
weakened a bit further, but with the above constraint the arguments we shall be using
become shorter.

Description of the models L(k). Fix k > 2. For all a, b, c ∈ R we define a function
fa,b,c, that describes a circle, by

fa,b,c(x) =


bx + c if a = 0,
a|x − b|k + c if ac ≤ 0, a , 0,

a
a|b|k + c

(a|bx − 1|k + c|x|k) if ac > 0.

ThenL(k) has point set Z = (R ∪ {∞}) × R. Two points (x1, y1), (x2, y2) ∈ Z are parallel
if and only if x1 = x2, and generators inL are the sets Πu = {u} × R where u ∈ R ∪ {∞}.
The sets

Ca,b,c = {(x, fa,b,c,(x)) | x ∈ R} ∪ {(∞, a)}

are the circles of L(k), that is,

C(k) = {Ca,b,c, | a, b, c ∈ R}.

The topology of Z induces the Euclidean topology on R2. The neighbourhoods of
points (∞,a) at infinity consist of all points (∞,a′) such that |a′ − a| is sufficiently small
and all points (x, y) of R2 such that |x| is sufficiently large and |a − y/|x|k| is sufficiently
small. According to [11, Proposition 2], this is the unique topology on Z that makes
the Laguerre plane into a two-dimensional Laguerre plane.

We claim that L(k) = (Z,C(k)) is a two-dimensional Laguerre plane. Note that
circles Ca,b,c such that ac ≤ 0 are circles of the two-dimensional Laguerre plane L( fk)
of translation type. Moreover, these circles comprise all circles of L(k) that meet the
circle C0,0,0 in at least one point. When k = 2 one obtains the classical two-dimensional
Laguerre plane.

For each r, s ∈ R, r, s , 0, let γr,s : Z → Z be the permutation of Z defined by

γr,s : (x, y) 7→

(rx, sy) if x ∈ R,
(∞, sy/|r|k) if x =∞.

It is readily verified that γr,s is an automorphism of L(k) and that

γr,s(Ca,b,c) =


C0,bs/r,cs if a = 0,
Cas/|r|k ,br,cs if ac ≤ 0, a , 0,
Cas/|r|k ,b/r,cs/|r|2k if ac > 0,

where r, s ∈ R, r, s , 0. Let

G = {γr,s | r, s ∈ R \ {0}}.
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This is a group of automorphisms of L(k). Furthermore G has six orbits on the
cylinder Z, namely {(∞, 0)}, Π∞ \ {(∞, 0)}, {(0, 0)}, Π0 \ {(0, 0)}, {(x, 0) | x ∈ R, x , 0}
and {(x, y) ∈ R2 | x, y , 0}.

Theorem 4.1. L(k), k > 2, is a two-dimensional Laguerre plane.

Proof. We consider the two-dimensional Laguerre planeL( fk) of translation type from
Section 2.1. We apply the transformation σ : Z → Z given by

σ(x, y) =


(1/x, y/|x|k) if x ∈ R, x , 0,
(∞, y) if x = 0,
(0, y) if x =∞.

This gives us a two-dimensional Laguerre plane L′k = σ(L( fk)) that is isomorphic to
L( fk). The circles of L′k are the sets D′a,b,c = σ(Da,b,c) where a, b, c ∈ R and

D′a,b,c =

{(x, bx|x|k−2 + c|x|k) | x ∈ R} ∪ {(∞, c)} if a = 0,
{(x, a|1 − bx|k + c|x|k) | x ∈ R} ∪ {(∞, a|b|k + c)} if a , 0.

From this list we see that D′0,0,c = Dc,0,0, D′a,b,0 = Da|b|k ,1/b,0 where b , 0 and D′a,0,0 =

D0,0,a. This shows that the circles in L′k that touch D′0,0,0 = D0,0,0 are the same as the
circles inL( fk) that touch D0,0,0 = D′0,0,0. Hence the assumptions of Proposition 2.2 are
satisfied. We can therefore interchange the circles in L( fk) that do not meet D0,0,0, that
is, the circles Da,b,c where ac > 0, with the circles in L′k that do not meet D′0,0,0, that
is, the circles D′a,b,c where ac > 0, and obtain a new two-dimensional Laguerre plane.
A straightforward algebraic manipulation then yields precisely the circles of the form
Ca,b,c of L(k). �

It turns out that there is a unique point at which the derived affine plane of L(k) is
Desarguesian. We only prove a weaker result, which will be sufficient to deduce that
this point must be fixed under any automorphism of L(k).

Proposition 4.2. The derived affine plane A(∞,0) of L(k) at (∞, 0) is Desarguesian
whereas the derived affine planes A(∞,1) and A(0,0) at (∞, 0) and (0, 0), respectively,
are non-Desarguesian.

Proof. The affine plane A(∞,0): Since circles through (∞, 0) are the same as in the
classical two-dimensional Laguerre plane, we immediately obtain that the derived
incidence structureA(∞,0) of L(k) at (∞, 0) is the real Desarguesian affine plane.

The affine plane A1 =A(∞,1): The nonvertical lines of A1 are the traces of circles
C1,b,c where b, c ∈ R. Thus nonvertical lines ofA1 are of the form

Lb,c = {(x, |x − b|k + c) | x ∈ R}

where b, c ∈ R, c ≤ 0, and

Lb,c =

{(
x,
|bx − 1|k + c|x|k

|b|k + c

) ∣∣∣∣∣ x ∈ R
}
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where b, c ∈ R, c > 0. Let Hc = L0,c when c ≤ 0 and Hc = L0,1/c when c > 0. Then

Hc = {(x, |x|k + c) | x ∈ R}

for all c ∈ R. It is obvious that the Hc form a bundleH of parallel lines inA1.
Suppose thatA1 is Desarguesian. Then this plane admits a central collineation ϕ of

order 2 with axis H0 and centre the point at infinity of vertical lines. Since ϕ permutes
the lines inH , there is an involution ψ such that ϕ(Hc) = Hψ(c) for all c ∈ R. From this,

ϕ(x, y) = (x, |x|k + ψ(y − |x|k))

for all (x, y) ∈ R2. The homology ϕ also permutes the lines Lb,−|b|k through (0, 0) ∈ H0.
Hence for each b ∈ R there exists a β ∈ R such that for all x ∈ R,

|x − β|k − |β|k − |x|k = ψ(|x − b|k − |b|k − |x|k). (4.1)

Substitution of x = β and x = b in (4.1) yields

−2|β|k = ψ(|β − b|k − |b|k − |β|k) = ψ2(−2|b|k) = −2|b|k.

Hence |β| = |b|. Since Lb,−|b|k neither is the axis H0 of ϕ when b , 0 nor passes through
the centre of ϕ, we see that β , b. Thus β = −b and Equation (4.1) becomes

|x + b|k − |b|k − |x|k = ψ(|x − b|k − |b|k − |x|k) (4.2)

for all b, x ∈ R. When x = b in (4.2), then (2k − 2)|b|k = ψ(−2|b|k) for all b ∈ R.
Therefore

ψ(z) = (1 − 2k−1)z

for all z ≤ 0. We now substitute b = 2, x = 1 in (4.2) to find with the above formula for
ψ that

3k − 2k − 1 = ψ(−2k) = (2k−1 − 1)2k.

Hence 3k − 1 = 22k−1, which is impossible because k > 2. This shows that A1 is not
Desarguesian.

The affine plane A0 = A(0,0): The nonvertical lines of A0 are the traces of
circles Ca,b,−a|b|k where a, b ∈ R, a , 0, and C0,b,0, b ∈ R. We make the coordinate
transformation

(x, y) 7→


(1/x, y/|x|k) if x ∈ R, x , 0,
(∞, y) if x = 0,
(0, y) if x =∞.

In the new coordinates nonvertical lines ofA0 are of the form

La,b = {(x, a(|bx − 1|k − |bx|k)) | x ∈ R}

where a, b ∈ R, a , 0,
L0,b = {(x, bx|x|k−2) | x ∈ R}

where b ∈ R.
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Assume that A0 is Desarguesian. Then this plane admits all central collineations
ϕ with the axis the line at infinity and the centre the point at infinity of vertical lines.
(That is, ϕ is a translation in the vertical direction.) In particular, there is one such
translation that takes the point (0, 0) to the point (0, 1/k). Since ϕ permutes the
horizontal lines La,0, a ∈ R, there is a permutation ψ such that ϕ(La,0) = Lψ(a),0 for all
a ∈ R. From this we obtain that ϕ(x, y) = (x, ψ(y)) for all (x, y) ∈ R2. Furthermore, ϕ
takes L0,1 to a line through (0,1/k) so that there exists a b ∈ R such that ϕ(L0,1) = L1/k,b.
But L1/k,b must be parallel to L0,1. This means that the circles C1/k,b,−|b|k/k and C0,1,0

touch each other at the point (0, 0), which implies that the functions f1/k,b,−|b|k/k and
f0,1,0 that describe these circles have the same derivative at x = 0. Thus we obtain that
b = −1. Hence for all x ∈ R

ψ(x|x|k−2) =
1
k

(|x + 1|k − |x|k).

In particular we see that

ψ(−1/2k−1) =
1
k

(∣∣∣∣∣−1
2

+ 1
∣∣∣∣∣k − ∣∣∣∣∣12

∣∣∣∣∣k) = 0 and that

ψ(1/2k−1) =
1
k

(∣∣∣∣∣12 + 1
∣∣∣∣∣k − ∣∣∣∣∣12

∣∣∣∣∣k) =
3k − 1

2kk
.

We now consider the line L−21−k ,1 through (0,−21−k). This line is taken under ϕ to a line
through (0, 0) and thus is of the form L0,m. Since the point (1/2, 0) belongs to L−21−k ,1
and ψ(0) = 1/k, the line L0,m must pass through (1/2, 1/k). Thus m = 2k−1/k and

ψ(−21−k(|x − 1|k − |x|k)) =
2k−1

k
x|x|k−2

for all x ∈ R. Substitution of x = 1 gives us ψ(21−k) = 2k−1/k. Comparison
with the value we found earlier yields that 2k−1/k = (3k − 1)/2kk so that
3k − 1 = 22k−1, which is impossible because k > 2. This shows that A0 is not
Desarguesian. �

Corollary 4.3. The derived affine plane Ap of L(k) at a point p of the generator
[(∞, 0)] through (∞, 0) or a point on C0,,0 is Desarguesian if and only if p = (∞, 0).

Proof. Note that for arbitrary u ∈ R the nonvertical lines of A(u,0) come from circles
that do meet C0,0,0. Thus they are the same as in the two-dimensional Laguerre plane
L( fk) of translation type introduced in Section 2.1. Since the automorphism group of
L( fk) is transitive on C0,0,0 \ {(∞, 0)}, we conclude that A(u,0) is isomorphic to A(0,0).
Since the latter affine plane is non-Desarguesian by Proposition 4.2, so isA(u,0).

Since G is transitive on [(∞, 0)] \ {(∞, 0)}, a derived plane A(∞,v) where v , 0 is
isomorphic to the derived plane at (∞, 1), which is non-Desarguesian. �
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Proposition 4.4. Every automorphism α of L(k) fixes the circle C0,0,0.

Proof. Let α be an automorphism of L(k) and consider the circle C = α(C0,0,0).
Assume that C , C0,0,0. It is readily verified that

{γ1,s | s ∈ R, s , 0}

is a linearly transitive group of C0,0,0-homologies. Conjugation by α then yields a
linearly transitive group of C-homologies. Any nonidentity C-homology will also
move C0,0,0. We may therefore, without loss of generality, assume that α belongs to
the kernel ∆ of L(k). In this case, when p ∈ C \ C0,0,0, then ∆ is transitive on the
generator [p]. From Corollary 4.3 it follows that (∞, 0) must belong to both C and
C0,0,0. Therefore (∞, 0) is fixed by α. But then α induces a central collineation α′ of
A(∞,0) with the centre the point ω at infinity of vertical lines. Thus α′ is of the form

α′ : R2 → R2 : (x, y) 7→ (x, sy + mx + t)

where m, s, t ∈ R, s , 0. By applying γ−1
1,s we may without loss of generality assume

that s = 1.
Now α(C1,0,0) = {(x, |x|k + mx + t) | x ∈ R} augmented by a point at infinity. In fact,

dividing by |x|k and considering the limit as x tends to ∞, one sees that the point at
infinity is (∞, 1). This set has to be a circle C1,b,c of L(k) where b, c ∈ R. Since k > 2,
corresponding circles describing functions f1,b,c do not have linear terms so that m = 0.
More precisely, one first shows that b = 0, which follows by differentiating the identity
|x|k + mx + t = f1,b,c(x) twice and substituting x = 0. Then f1,0,c(x) = |x|k + c when c ≤ 0
and f1,0,c(x) = |x|k + (1/c) when c > 0. In either case one obtains that m = 0. We then
can without loss of generality assume that t ≥ 0.

Finally, α(C1,1,0) = {(x, |x − 1|k + t) | x ∈ R} ∪ {(∞, 1)} is a circle C1,b′,c′ where
b′, c′ ∈ R. Furthermore, c′ > 0 in the case t > 0. Hence, the identity

(|b′|k + c′)(|x − 1|k + t) = |b′x − 1|k + c′|x|k

for all x ∈ R. Differentiation with respect to x gives us

k(|b′|k + c′)(x − 1)|x − 1|k−2 = k(b′(b′x − 1)|b′x − 1|k−2 + c′x|x|k−2)

for all x ∈ R. When x = 0 one finds that |b′|k + c′ = b′. In particular b′ > 0.
Differentiating again with respect to x yields

k(k − 1)(|b′|k + c′)|x − 1|k−2 = k(k − 1)((b′)2|b′x − 1|k−2 + c′|x|k−2)

for all x ∈ R. When x = 0 one obtains that |b′|k + c′ = (b′)2. Thus (b′)2 = b′ from above
and so b′ = 1. But then c′ = b′ − |b′|k = 0—a contradiction to c′ > 0.

This shows that m = t = 0. Therefore C0,0,0 is fixed. �

Theorem 4.5. The automorphism group ofL(k), k > 2, is the group G as defined before
Theorem 4.1. Furthermore, L(k) is of Kleinewillinghöfer type II.A.2.
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Proof. By Theorem 4.1 we know that L(k) is a two-dimensional Laguerre plane. We
first note that every automorphism α of L(k) fixes the point (∞, 0) and the circle
C0,0,0. Indeed, by Proposition 4.4 we know that C0,0,0 is fixed by every automorphism.
Corollary 4.3 shows that the derived affine plane A(∞,0) is Desarguesian whereas all
other derived affine planes Ap where p ∈ C0,0,0, p , (∞, 0) are non-Desarguesian.
Thus (∞, 0) is fixed by α. As seen in the proof of Proposition 4.4 α induces a
collineation α′ ofA(∞,0) and is of the form

α′ : R2 → R2 : (x, y) 7→ (rx + t, sy)

where r, s, t ∈ R, r, s , 0. By applying γ−1
r,s we may without loss of generality assume

that r = s = 1.
Now α(C1,0,1) = {(x, 1 + |x − t|k) | x ∈ R} ∪ {(∞, 1)} has to be a circle C1,b,c of L(k).

Furthermore this set is above C0,0,0 and thus c > 0. Comparison with circle describing
functions f1,b,c yields that b = 0 = t. Indeed, from

(|b|k + c)(1 + |x − t|k) = |bx − 1|k + c|x|k

for all x ∈ R we obtain by differentiation with respect to x and division by k that

(|b|k + c)(x − t)|x − t|k−2 = b(bx − 1)|bx − 1|k−2 + cx|x|k−2 (4.3)

for all x ∈ R. When x = 0 this identity yields (|b|k + c)t|t|k−2 = b. Differentiating (4.3)
again and dividing by k − 1 gives us

(|b|k + c)|x − t|k−2 = b2|bx − 1|k−2 + c|x|k−2

for all x ∈ R. Evaluation at x = 0 shows that (|b|k + c)|t|k−2 = b2. Hence tb2 = b so that
either b = 0 or tb = 1. In the former case it follows that ct|t|k−2 = 0 and thus t = 0. In the
latter case we substitute x = t into Equation (4.3) to obtain 0 = ct|t|k−2—a contradiction
to tb = 1.

This shows that α′ and thus α is the identity (onR2 and Z, respectively). In summary
we have shown that Aut(L(k)) equals G as defined before Theorem 4.1.

Since G fixes each of the points (∞, 0) and (0, 0) and the circle C0,0,0, a Laguerre
translation must be the identity. Thus L(q) has type A with respect to Laguerre
translations.

Similarly, the centres of a Laguerre homothety must be (∞, 0) and (0, 0), and the
circle that forms the axis of a Laguerre homology must be C0,0,0. On the other hand,
as mentioned in the proof of Proposition 4.4 the group {γ1,s | s ∈ R, s , 0} is a linearly
transitive group of C0,0,0-homologies. It is readily verified that {γr,r | r ∈ R, r , 0} is a
linearly transitive group of {(∞, 0), (0, 0)}-homotheties. Hence, it follows thatL(q) has
combined Kleinewillinghöfer type II.A.2 as claimed. �

In a similar fashion one shows that an isomorphism from L(k) to L(k′) where
k, k′ > 2, takes (∞, 0) in L(k) to (∞, 0) in L(k′). One then has an induced isomorphism
between the derived affine planes at (∞, 0), which are both Desarguesian. An analysis
as in the proof of Theorem 4.5 shows that k = k′. Thus one has the following result.
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Theorem 4.6. Two two-dimensional Laguerre planes L(k) and L(k′) where k, k′ > 2
are isomorphic if and only if k = k′.

Remark. The models of two-dimensional Laguerre planes of type II.A.2 can be
generalized by starting with the planes of type II.E.4 from [20] instead of the two-
dimensional Laguerre planes of translation type we used in this section. By [20,
Proposition 8], given k, l > 0, 2 , kl > 1 , l, the subsets of Z given by

Da,b,c =


{(x, bx + c) | x ∈ R} ∪ {(∞, 0)} if a = 0,
{(x, a(|x − b|kl + c)) | x ∈ R} ∪ {(∞, a)} if a , 0, c ≤ 0,
{(x, a(|x − b|k + c)l) | x ∈ R} ∪ {(∞, a)} if a , 0, c > 0,

where a, b, c ∈ R form the set of circles of a two-dimensional Laguerre plane Lk,l of
type II.E.4. (This is not quite the form given in [20] but equivalent to it in the case of
type II.E.4.) In a fashion similar to the one used in the proof of Theorem 4.1 we can
exchange circles that meet D0,0,0 in two points with circles of an isomorphic copy of
Lk,l. In this way, one obtains two-dimensional Laguerre planes L(k, l) of type II.A.2
that depend on two parameters k and l.
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[9] R. Löwen and G. F. Steinke, ‘Actions of R · S̃L2R on Laguerre planes related to the Moulton

planes’, J. Lie Theory 17 (2007), 685–708.
[10] G. Pickert, ‘Projektive Ebenen’, Zweite Auflage, in: Die Grundlehren der mathematischen

Wissenschaften in Einzeldarstellungen, 80 (Springer, Berlin, 1975).
[11] B. Polster and G. F. Steinke, ‘Criteria for two-dimensional circle planes’, Beitr. Algebra Geom. 35

(1994), 181–191.
[12] B. Polster and G. F. Steinke, ‘Cut and paste in 2-dimensional projective planes and circle planes’,

Canad. Math. Bull. 38 (1995), 469–480.
[13] B. Polster and G. F. Steinke, Geometries on Surfaces, Encyclopedia of Mathematics and its

Applications, 84 (Cambridge University Press, Cambridge, 2001).
[14] B. Polster and G. F. Steinke, ‘On the Kleinewillinghöfer types of flat Laguerre planes’, Result.
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[15] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen and M. Stroppel, Compact Projective

Planes (de Gruyter, Berlin, 1995).
[16] J. Schillewaert and G. F. Steinke, ‘Flat Laguerre planes of Kleinewillinghöfer type III.B’,
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[21] G. F. Steinke, ‘More on Kleinewillinghöfer types of flat Laguerre planes’, Result. Math. 51 (2007),
111–126.

[22] G. F. Steinke, ‘A family of flat Laguerre planes of Kleinewillinghöfer types IV.A’, Aequationes
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