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NON-ARCHIMEDEAN #-FRAMES AND FM-SPACES

N. DE GRANDE-DE KIMPE, C. PEREZ-GARCIA! AND W. H. SCHIKHOF

ABSTRACT.  We generalize the notion of t-orthogonality in p-adic Banach spaces by
introducing r-frames (§2). This we use to prove that a Fréchet-Montel (FM-)space is of
countable type (Theorem 3.1), the non-archimedean counterpart of a well known theo-
rem in functional analysis over R or C ([6], p. 231). We obtain several characterizations
of FM-spaces (Theorem 3.3) and characterize the nuclear spaces among them (§4).

1. Preliminaries. Throughout this paper X is a non-archimedean non-trivially val-

ued complete field with valuation | . |. For the basic notions and properties concerning
normed and locally convex spaces over K we refer to [11] and [7]. However we recall
the following.

1. Let E be a K-vector space. Let X C E. The absolutely convex hull of X is denoted
by co X, its linear hull by [X]. For a (non-archimedean) seminorm p on E we denote by
E, the vector space E/ Kerp and by 7,: E — E, the canonical surjection. The formula
[lmp(x)|| = p(x) defines a norm on E,,.

2. Let (E, || - ||) be a normed space over K. For r > 0 we write B(0,r) := {x €
E: |lx| < r}. Leta € E, X C E. Then dist(a,X) := inf{|la — x| : x € X}.
Forn € N and xy,...,x, € E we consider Vol(xi,...,x,) := |jx1] - dist(x, [x1]) -
dist(x3, [x1,x2]) - - - dist(xy, [x1, . . . , x,—1]). For properties of this Volume Function (in par-
ticular, its symmetry), we refer to [10]. A linear continuous map E — F, where F is a
normed space, is said to be compact if it sends the unit ball of E into a compactoid set
(see below).

3. Now let E be a Hausdorff locally convex space over K. A subset X of E is called
compactoid if for every zero-neighbourhood U in E there exists a finite set S of E such
that X C coS+U. E is said to be of countable type if for each continuous seminorm p the
normed space E, is of countable type (Recall that a normed space is called of countable
type if it is the closed linear hull of a countable set). E is called nuclear if for every
continuous seminorm p on E there exists a continuous seminorm g on E with p < ¢, and
such that @, is compact, where ®,, is the unique map making the diagram

E
n N
E — E
q o, p
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commute. E is called Montel if it is polar, polarly barrelled and if each closed bounded
subset is a complete compactoid. A Fréchet space which is Montel is called an FM-space.
The closure of a set X C E is denoted by X.

2. t-frames in p-adic Banach spaces. Throughout §2 E is a normed space over K.
We introduce a concept which generalizes the notion of t-orthogonality and it allows us
to prove one of the main Theorems in the paper (Theorem 3.1).

DEFINITION 2.1. Letr € (0,1], and let X C E be a subset not containing 0. We call
X a t-frame if for every n € N and distinct x1,...,x, € X we have Vol(xy,...,x,) >
O 51 IR EA R

We make the following simple observations. Let ¢ € (0, 1].

1. Any t-orthogonal set in E is a t-frame. (Let {e; : i € I} be a r-orthogonal set in E,
let iy, ..., i, be n distinct elements of /. Then, by the definition of the Volume Function
and by #-orthogonality,

Vol(e;,, ..., e1,) = ||e; || - dist(e;,, [e;,]) - - - - - dist(e;,, [e;,, ..., e;,_,])
> leill - 1-llewll - - -1+ lleg ]l = 2" - lleq || - - lles]D. .

2. Every t-frame in E is a linearly independent set.

3. Every subset of a t-frame is itself a t-frame.

4. Every t-frame in E can be extended to a maximal t-frame.

By a t-frame sequence we shall mean a sequence x|, X, . .. in E such that {xl,xz, .. }
is a t-frame.

PROPOSITION 2.2 (COMPARE [8], THEOREM 2). A bounded subset X of E is a com-
pactoid if and only if for every t € (0, 1] every t-frame sequence in X tends to 0.

PROOF.  Suppose X is a compactoid. Suppose, for some ¢ € (0, 1], and some « > 0,
X contains a t-frame sequence xj,xy, ... for which ||x,|| > « for all n. Then, for each
néeN,
Vol(x, .., x2) > 7l o - x| > @

implying lim,,_,o, inf v/ Vol(xy, ..., x,) > at > 0 conflicting the compactoidity of X ([8],
§2). This proves one half of the statement. The other half is obvious. u
The following two Propositions are crucial for Theorem 2.5.

PROPOSITION 2.3. Let 0 <t < 1, let X be a maximal t-frame in E. Then X1=E

PROOE. Let D := [X]. If D # E then we can find a nonzero a € E with dist(a, D) >
t- ||lal| ([11], Lemma 3.14, here we use that t # 1). So we shall prove that dist(a, D) <
t-||a|| for every a € E — D. By maximality {a} U X is no longer a t-frame, yielding the
existence of a k € N and distinct xy, ..., x; € X such that

Vol(a, x1,...,x) <2 -a|| - lxll - - - |lxell.
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On the other hand we have

Vol(a, x1,...,x;) = dist(a, [x1,...,x]) - Vol(xq,...,x;)
> dist(a, D) - 7 ||| - - - |-

So dist(a,D) < t - ||a]|. "

REMARK. We now can easily find examples of ¢-frames X that are s-orthogonal for
nos € (0,1]: Let 0 < ¢ < 1, let E have no base, choose for X a maximal 7-frame (Observe
that the clause 7 # 1 is essential!).

PROPOSITION 2.4. Every uncountable subset of cy contains an infinite compactoid.

PROOF. Let X be an uncountable subset of cy; it has a bounded uncountable subset
Y. Let ey, e3, ... be the standard basis of co. We have B(0, 1) + [e, e2,...] = ¢g so there
exists an n; € N such that

Y1 :=YN(BO,1) +[e1,e2,...en,])
is uncountable. In its turn, there exists an n, € N such that
Y2:=YiN(BO,1/2)+[e1,e2,...,e,])

is uncountable. We obtain uncountable sets Y; D Y> D - - - such that ¥, C B(0, 1 / n)+D,
for each n where D, is a finite-dimensional space. Choose distinct x, x2, ... where x, €
Y, for each n, and set Z := {x;,x,,...}. Then Z is infinite, bounded, in X. Also, for each
n € N we have

ZC{xt, .., X1 }UY, Clx1,..., X1+ B(0,1/n)+ D, C B(0,1/n)+ D,

where ﬁ,, is a finite-dimensional space. It follows that Z is a compactoid. »

THEOREM 2.5. The following assertions about the normed space E are equivalent.
(i) Eis of countable type.

(ii) Foreveryt € (0,1), every t-frame in E is countable.

(iii) For somet € (0, 1), every t-frame in E is countable.

PROOF. (i) = (ii). We may assume E = ¢j. Let X be a ¢-frame in E. For each n €
NsetX, := {x € X : |x| > 1/n}.If, for some n, X, were uncountable it would
contain an infinite compactoid {x;, x2, . . . } by Proposition 2.4. Then from Proposition 2.2
limy_,, x;, = 0, a contradiction.

(i) = (iii) is obvious.

(iii) = (i). Let X be a maximal ¢-frame in E. By assumption X is countable. By Propo-
sition 2.3, E = [X] is of countable type. .

REMARK. The question if Theorem 2.5 remains true when we consider in (i) and (ii)
t-orthogonal sets instead ¢-frames is an open problem in non-archimedean analysis ([11],
p- 199).
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3. Characterizations of FM-spaces among F-spaces. From now on in this paper
E is a polar Hausdorff locally convex space over K.

It is proved in [6], Theorem 11.6.2, that a Fréchet Montel space over R or C is sep-
arable. It does not simply carry over the non-archimedean case because K may be not
locally compact; so we have to deal with compactoids (§1.3) rather than compact sets.
This modification is obstructing the classical proof which is essentially based upon sep-
arability. It is here where the r-frames of §2 come to the rescue as will be demonstrated
in the following theorem (for other applications of ¢-frames in p-adic analysis, see [9],
p. 51-57).

THEOREM 3.1. An FM-space is of countable type.

PROOF. Let the topology of the FM-space E be defined by the sequence of semi-
norms p; < py <---.SetU, = {x €E: py(x) < 1}. Choose A € K, |\| > 1.

It suffices to show that E; := E,,, is of countable type. Let X be a r-frame in (E}, || - [|1)
for some ¢ € (0, 1); we show (Theorem 2.5) that X is countable. Suppose not. We may
assume that inf{||x||; : x € X} > 0. Choose an A; C E such that 7, (A;) = X. Since
E = U, \"U, there exists an n, such that A; := A; N AU, is uncountable. Inductively
we arrive at uncountable sets A} D Ay D - - - such that A, is p,-bounded for each n > 2.
Choose distinct ay, as, ... with a, € A, for each n. Then {aj,a,,...} is bounded in E.
As E is Montel, it is a compactoid. By Proposition 2.2, lim,_., 7, (a,) = 0 conflicting
inf{||x|}; : x € X} > 0. =

LEMMA 3.2. Every bounded subset B of a Fréchet space E, is compactoid for the
topology of uniform convergence on the B(E',E)-compactoid subsets of E' (where
B(E', E) denotes the strong topology on E' with respect to the dual pair (E,E')).

PROOE. Consider the canonical map Jg: E — E"” = (E’, B(E' ,E))/. It is easy to see
that the set Jg(B) is equicontinuous on (E’ ,B(E, E)) By [7] Lemma 10.6 we have that on
JE(B) the topology 75, (on E") of the uniform convergence on the 3(E’, E)-compactoid
subsets of E', coincides with the weak topology o(E"”, E'). Hence Jg(B) is 74.-compactoid
in E”. Since Jg is an homeomorphism from E onto a subspace of E” ([7], Lemmas 9.2,
9.3) we are done. n

THEOREM 3.3.  For a Fréchet space E, the following properties are equivalent.
(i) Eis an FM-space.
(ii) Every bounded subset of E is compactoid.
(iit) In E every weakly convergent sequence is convergent and (E’ , B(E ,E)) is of
countable type.
(iv) In E' every o(E', E)-convergent sequence is 3(E', E)-convergent and E is of
countable type.
(v) Both E and (E', B(E', E)) are of countable type.
(vi) (E’,B(E',E)) is nuclear.
(vii) (E',3(E',E)) is Montel.

https://doi.org/10.4153/CMB-1992-062-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1992-062-4

~FRAMES AND FM-SPACES 479

(viii) Every o(E', E)-bounded subset of E' is 3(E', E)-compactoid.

PROOF. The implications (i) < (ii) ¢ (iii), (i) = (vi) = (viii) and (i) = (vii)) =
(viii) are known (see [7]) or easy. Also, from Theorem 3.1 we can easily prove (i) = (iv)
and (i) = (v).

Now we prove (viii) = (ii): Since E is a polar Fréchet space, its topology T is the
topology of uniform convergence on the o(E’, E)-bounded subsets of E'. By (viii) these
subsets are 3(E', E)-compactoid. Now apply Lemma 3.2.

The implication (v) = (iii) follows from [7] Proposition 4.11.

Finally, for the proof of (iv) = (ii) observe that the topology on a polar Fréchet space
of countable type is the topology of uniform convergence on the o(E’, E)-null sequences
in E' (see [4], Theorem 3.2). By (iv) these sequences are 3(E’, E)-convergent. Now apply
Lemma 3.2. u

REMARK. It is known that a Fréchet space E over R over C is nuclear if and only if
(E',B(E', E)) is nuclear ([6], p. 491).

In the non-archimedean case the situation is essentially different. Indeed, in 4.1 we
will give an example of an FM-space which is not nuclear (while its strong dual is by (i)
& (vi)). To do that we need some preliminary concepts and results.

DEFINITION 3.4. Let A = (af) be a matrix of strictly positive real numbers such
that a¥*! > a* for all i and all k. Then the corresponding Kéthe sequence space K(A) is
defined by

K(A) = {a= (@) : lim|ey] - @ = 0 for all k}.

On K(A) we consider the sequence of norms (py), where

pk(a):max[ail-af‘, k=1,2,...; «a€KA).
1

It is known that K(A) is a polar Fréchet space of countable type. For the importance
of this class of spaces and for their further properties we refer to [3].
We then have:

PROPOSITION 3.5. Let A = K(A) be a Kothe space and let A* the corresponding
Kothe dual space. Then the following properties are equivalent:
(i) Ais an FM-space.
(ii) (A*, B(A¥, A)) is of countable type.
(iii) (A*, B(A*, A)) is nuclear.
(iv) (A, B(A*,A)) is Montel.
(v) The unit vectors ey, ey, ... form a Schauder basis for A*, B(A*, A).
(vi) n(A*,A) = B(A*, A) (where n(A*, A) is the natural topology on A*).
(vii) No subspace of A is isomorphic (linearly homeomorphic) to cop.
(viii) The sequence of coordinate projections (P;), where Pi: A — A : o = (a;) —
ae;, converges to the zero-map uniformly on every bounded subset of A.
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(ix) The sequence of sections-maps (S,), where S;:A — A : a = (o) —
(ay, az,...,0,,0,0,...) converges to the identity map 1d uniformly on every
bounded subset of A.

PROOF. We only have to prove (i) = (v) = (vi), (vii) = (viii) and (ix) = (i). The
other implications are easy.

(i) = (v): The unit vectors ey, e,, ... form a Schauder basis for (A*, o(A*, A)). Then,
apply (i) = (iv) in 3.3.

(v) = (vi): By [4], p. 21 it suffices to prove that 3(A*, A) is compatible with the duality
(A*, A) and this is done as in [1], Proposition 20.

(vii)=> (viii): Suppose A contains a bounded subset D on which (P;) does not converge
uniformly to the zero-map. We show that A contains a subspace isomorphic to cp.

From the assumption it follows that there exist ¢ > 0, k € N and an increasing
sequence of indices (i,) such that, for all n, there exists " = () € D with |o] | -ag > g,
n=12,....Weputz, = a;'" -e;,,n=1,2,.... Then, the sequence (z;,) is bounded in
A.

Now we can define a linear map

T:co— A:0=(0,)— ) 0OnZi.
n

We prove that T is an isomorphism from ¢ into A. It is easy to see that T is injective and
continuous. Also, T: co — Im T is open.

Indeed, for 0 = (04) € co, we have pi(T(0)) = max;2 | |o,al |- af > e [|oc,-

(ix) = (i): We prove that Id: A — A transforms bounded subsets into compactoid
subsets. Observe that (ix) means that lim, S, = Id in Lg(A, A). Then apply Proposition 4
in [2]. u

The next corollary is for later use.

COROLLARY 3.6. Ifforevery k € N and every subsequence (i,) of the indices there
exists h > k such that the sequence (a}' | a} ), is bounded, then K(A) is an FM-space.

PROOF.  An analysis of the proof of (vii) = (viii) shows that if K(A) is not an FM-
space, there exist a subsequence of the indices (i,) and elements n;, in K, n = 1,2,...
such that the linear map T: co — Im T : (¢,) — (0,7;,) is an isomorphism of ¢y into A.

Consider now in cg the subspace cgg generated by the unit vectors e, ez, . ... Then ¢y
is isomorphic to the subspace F of K(A) generated by e;,, e;,, . .. . Therefore the topology
induced by K(A) on F is normable. This means that there exists k such that for all 4 > k
there exists £, > 0 with pp(6) < t; - pr(d) for all 6 € K(A). In particular, for é = ¢;,
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n = 1,2,..., we have that there is a k such that for all # > k, there exists #;, > 0 with

al <t,-at forall n, and we are done. ]

4. Characterizations of nuclear spaces among FM-spaces. We start this section
with the construction of an FM-space which is not nuclear.

EXAMPLE 4.1. Fork =1,2,..., consider the infinite matrix
1% ok N
1% 2k Jk
k= (gh) = : :
A== p 1 oo (D o kDR —Gk+1)

k+2y - (k+2)F oo (k+2)

We can think of A as a sequence for some order, k = 1,2, ... (we fix the same order
for all k). We then consider the Kothe space

KA) = {8 = (By): liiJm|B,-j| ay=0k=12..}

equipped with the sequence of norms (p,) where p(3) = max;; | 3] - afj.

We first show that K(A) is not nuclear. If £ > 1, then the sequence (a,-'j / aé) contains a
constant sequence. Then by [3] Proposition 3.5 the conclusion follows.

We now apply Corollary 3.6 in order to prove that K(A) is an FM-space.

Choose k and any subsequence of the indices (i, jm)n.m- We consider the correspond-
ing elements a; ; of A*. There are several possibilities.

a) The subsequence (af.‘n ,i,..)"~m contains an infinite number of elements of some row of
Ak,

If this row is between the rows 1,...,k, take & = k + 1. Then the sequence of the
quotients (! il at jn)nm is unbounded.

If this row is the (k + r)-th row for some r > 1, thentake h = k + r.

b) The subsequence (af-‘n m )nm consists of finitely many elements of an infinite number
of rows. Consider then a subsequence with one element in an infinite number of rows
below the kth row. Such a subsequence looks like

(k+ DK, (k+ )X, (k+ 1), ...

with (), increasing to infinity. Take now & = k + 1. ]
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Finally we investigate what the situation exactly is.

DEFINITION 4.2. A locally convex space X is said to be quasinormable if for every
zero-neighbourhood U in X there exists a zero-neighbourhood V in X, V C U, such that
on U° the topology B(X’, X) coincides with norm topology of X}, .

DEFINITION 4.3. Let X be a locally convex space. A sequence (a,) C X' is said
to be locally convergent to zero if there exists a zero-neighbourhood U in X such that
(an) C X} and limy, ||a,||ge = 0.

THEOREM 4.4. For an FM-space E the following properties are equivalent.
(i) Eis nuclear.

(ii) E is quasinormable.

(iii) Every B(E', E)-convergent sequence in E' is locally convergent.

PROOF. The implications (i) = (ii) and (ii) = (iii) follow by [2], Proposition 14 and
[5], 5.2 respectively.

(iii) = (i) Since E is of countable type (Theorem 3.1) its topology can be described
by the o(E’, E)-null sequences on E’ ([4], Theorem 3.2). By Theorem 3.3 (i) = (iv) these
sequences are null-sequences in S(E’, E) and by (iii) they are locally convergent to zero.
The conclusion then follows from [5], 4.6.1). .

COROLLARY 4.5. The Kothe space in 4.1 is also an example of an FM-space which
is not quasinormable.
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