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Abstract

Developing policies to reduce carbon emissions in agriculture is crucial for achieving the ‘dual
carbon’ goal. Therefore, scientifically analysing the temporal and spatial distribution character-
istics of agricultural carbon sinks and their driving factors holds paramount importance for the
coordinated and integrated development of regional agriculture and the realization of sustain-
able development. Based on the perspective of carbon cycle in agricultural production, the
measurement system of agricultural net carbon sink was established from the perspective of car-
bon sink/carbon source, this study conducted an analysis of the temporal and spatial variation
characteristics as well as driving mechanisms of agricultural net carbon sinks. The findings are
as follows: (1) The agricultural net carbon sink exhibited an increasing trend from 2009 to 2020,
with favourable intensity and level. (2) Agricultural land use and livestock and poultry produc-
tion constituted the primary sources of agricultural carbon emissions. Notably, agricultural car-
bon emissions demonstrated a decreasing trend during the study period. (3) The net
agricultural carbon sink displayed local spatial aggregation, indicating significant regional dif-
ferences. (4) Factors such as rural economic level, urbanization level and agricultural employ-
ment significantly promoted the net carbon sink. In contrast, the rural industrial structure,
technical level and crop seeding had inhibitory effects. Therefore, it is imperative to promote
the reduction of agricultural carbon emissions in the Beijing-Tianjin-Hebei region. This entails
accelerating the construction of new agriculture and rural areas, facilitating industrial upgrading,
promoting the development of low-carbon-sink regions into high-carbon-sink regions and
actively fostering the coordinated and integrated development of regional agriculture.

Introduction

In recent years, the rapid surge in greenhouse gas (GHG) emissions and the intensification of
the global greenhouse effect have rendered climate change a pivotal threat to the survival and
development of humanity. According to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, global surface temperatures in 2011–2020
were 1.1°C higher than in 1850–1900 (IPCC, 2022), with human activities very likely serving
as the primary driver of global warming. Since the inception of the Kyoto Protocol, carbon
emissions have garnered significant attention from the international community and academia
(Cui et al., 2021). In this context, measures such as energy conservation, emission reduction
and carbon sink compensation have emerged as pivotal strategies for achieving carbon neutral-
ity (Zhang and Deng, 2022). In 2020, China established the goals of ‘peaking carbon’ by 2030
and achieving ‘carbon neutrality’ by 2060, aiming to harmonize economic development with
environmental protection and facilitate the seamless realization of the ‘dual carbon’ goal (Shi
et al., 2022). Currently, China finds itself in a critical phase transitioning from traditional and
primarily modernized agriculture to comprehensively modernized agriculture (Tian and Chen,
2021). While the utilization of fertilizers, pesticides and agricultural machinery has boosted
crop yields, the rapid increase in agricultural production efficiency has concurrently led to a
significant rise in carbon emissions (Wang et al., 2020). To address the environmental and cli-
mate challenges arising from the swift development of agriculture and the associated increase
in carbon emissions, the implementation of low-carbon emission reduction measures in the
agricultural production process (Yu and Mao, 2022), and the enhancement of its carbon
sink effect (Zhang and He 2022), have become primary strategies to combat global climate
change and environmental crises (Liu et al., 2022). Therefore, exercising control over the
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carbon emissions of agricultural production factors, particularly
harnessing the carbon sink effect of agricultural ecosystems (Li
et al., 2021), will facilitate the promotion of low-carbon, green
and healthy development in agricultural production, playing a
pivotal role in advancing the early realization of the national ‘dou-
ble carbon’ goal (Luo, 2016).

Agricultural carbon emission refers to the direct or indirect
GHG emissions caused by the use of agricultural production fac-
tors and waste disposal in the process of agricultural production
(He et al., 2018). As the world’s second-largest source of carbon
emissions (Jia et al., 2011), according to the IPCC report, agricul-
ture and food systems were responsible for approximately 21–37%
of total GHG emissions during the period 2007–2016 (Valérie
et al., 2019). Agriculture production process has the dual attri-
butes of being a carbon sink and carbon source (Chen et al.,
2015a), and improving the agricultural carbon sink capacity and
adjusting the carbon sink and carbon source structure have
become major measures by which to mitigate agricultural carbon
emissions (Cui et al., 2022b). At present, the main research direc-
tions in the field of agricultural carbon sinks are the spatio-
temporal evolution characteristics of agricultural carbon sinks/
sources (Xie and Liu, 2022) and the analysis of the driving factors
of agricultural carbon sinks (Fang et al., 2007; Kuang et al., 2010).
The net primary productivity model (Tian and Zhang, 2013),
material balance method (Han et al., 2018), emission factor
method (Yan et al., 2018) and direct measurement method have
been used to estimate agricultural carbon sinks/sources. Among
them, direct measurement method and material balance method
are based on specific facilities and experimental processes to cal-
culate carbon emissions, which have high measurement accuracy
and can reflect the real carbon emissions, but the process is com-
plex and not suitable for larger scale research (Liu et al., 2017; Qiu
et al., 2022). When calculating agricultural carbon sink/carbon
source at regional scale, emission factor method based on carbon
source classification and net primary productivity model based on
crop yield are mainly used at present. Several scholars examined
the changes and spatiotemporal characteristics of agricultural car-
bon emissions in China over the 20 years following 1997 at the
provincial scale (Huang et al., 2019). Shan et al. (2022) analysed
the carbon emission efficiency and its influencing factors at the
municipal scale in Hubei Province. Temporal and spatial evolu-
tion is an important means to study agricultural carbon sink/car-
bon source, and to deal with the possible ‘carbon crisis’ by
understanding its changing characteristics and trends. Current
studies on spatial and temporal change mainly focus on the ana-
lysis of the evolution trend of single carbon convergence at the
national and provincial scales (Jiang et al., 2010; Cao et al.,
2018, 2022). It mainly shows the characteristics of regional carbon
sink/carbon source changes over timescale. Li et al. (2022b) stud-
ied the change characteristics of agricultural production efficiency
and carbon sink in China from 2000 to 2019 by using data
envelopment method. The analysis of driving factors can decom-
pose the driving mechanism of temporal and spatial changes of
agricultural carbon sink, which is of great significance for formu-
lating coping strategies and means. At present, the main methods
used are the Spatial Durbin Model (SDM), the Kaya identity
model, Data Envelopment Analysis (DEA)-Malmquist and other
research methods (Liu and Zhang, 2020; Guo et al., 2021; Zhu
and Huo, 2022). For example, Huang and Zhu (2022) and Tian
and Zhang (2020) used Geographically Weighted Regression
Model (GTWR) and the log-average D-exponential decompos-
ition method to analyse the influencing factors of the agricultural

carbon effect. Liu et al. (2022) and Liu and Gao (2022) used the
minimum distance to weak efficient frontier model to calculate
the carbon emissions in the agricultural areas of the Yangtze
River Economic Corridor, and conducted an empirical analysis
on the influencing factors of agricultural carbon emissions by
constructing the Tobit model. Deng et al. (2023) applied stochas-
tic forest algorithm to quantitative analysis of factors affecting
agricultural carbon emission efficiency, and achieved good results.
In summary, the research method based on the decomposition of
influencing factors is the most widely used method at present.

Several scholars have focused largely on the study of agricultural
carbon sinks, while there have been few studies on the agricultural
net carbon sink capacity (Yu et al., 2022; Li et al., 2022a).
Moreover, the research scale is mostly concentrated at the provin-
cial level, and research at the urban-regional scale is lacking (Zheng
et al., 2022). Net carbon sinks are an important premise for reflect-
ing the carbon effect of agricultural production. Furthermore, the
measurement of the carbon emissions of agricultural production
activities is mainly focused on the carbon emissions of crop pro-
duction; there is no consideration of the carbon emissions of
other links of agricultural production activities, such as animal hus-
bandry, straw burning and other agricultural production processes.
On the issue of regional agricultural carbon emissions, it is not
advisable to ignore the carbon absorption effect. Therefore, on
the basis of the research on agricultural carbon emissions, it is of
scientific significance to supplement the research on the capacity
and level of carbon sinks and net carbon sinks at the municipal
level, and understand their temporal and spatial distribution effects
and development characteristics for exploring the regional agricul-
tural development level and mitigation effects.

As one of the most open and populous urban agglomerations in
China, the Beijing-Tianjin-Hebei (BTH) region is an important
engine driving China’s economic development. However, it also
faces serious problems such as environmental pollution and
resource shortage, and excessive carbon emissions, which restrict
the speed of development. Moreover, as an indispensable grain pro-
ducing area in the Bohai Rim Economic Belt, agricultural industry
activities are intensive, and agricultural production is a critical
source of carbon emissions. Therefore, the improvement of regional
carbon sink capacity, dynamic monitoring and assessment of its
carbon sink capacity and level can provide support for the inte-
grated and coordinated development of the BTH region and the
implementation of green and low-carbon industrial economy.
Based on this, in the present work, the statistical data of agricultural
production in the BTH region were combined, and the issue of
agricultural carbon emissions was fully considered. Based on the
Theil index and spatial autocorrelation analysis, the spatial and
temporal evolution patterns of the net carbon sink capacity of agri-
cultural production in the BTH region were analysed, and the
Stochastic Impacts by Regression on Population, Affluence, and
Technology (STIRPAT) model was extended to decompose the
driving factors of the net carbon sink. Some development rules
of the net carbon sink in the BTH region are discussed and pro-
posed to promote the green, low-carbon, and sustainable develop-
ment of regional agricultural production.

Materials and methods

Profile of the study area

The BTH region is situated in the Bohai Sea Economic Belt in
northern China, covering a geographic range from 113°27′E to
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119°50′E and 36°05′N to 42°40′N (Fig. 1). It encompasses two
municipalities directly under the central government’s control,
namely Beijing and Tianjin, along with 11 prefecture-level cities
in Hebei Province. The total area is approximately 208 000 km2,
constituting about 2% of China’s total land area. The terrain is
higher in the northwest and lower in the southeast, with the high-
est elevation reaching 2691 m. The landform is characterized by
complexity and diversity, experiencing four distinct seasons and
favourable photothermal conditions. The region features a typical
warm temperate sub-humid continental monsoon climate, with
an annual average precipitation of around 500mm. In 2020, the
Gross Domestic Product (GDP) of the BTH region reached 8.6 tril-
lion RMB. Within this, the total agricultural output amounted to
700 billion RMB, reflecting a year-on-year increase of 10.7%.
The regional grain output contributed to 5.8% of the national total.

Source of data

The study covered a 12-year period from 2009 to 2020. Statistical
data on crop yield, gross agricultural product and planted area in
each region were obtained from the Hebei Agricultural and Rural
Statistical Yearbook (Hebei provincial Bureau of Statistics, 2021),
the Beijing Statistical Yearbook (Beijing Municipal Bureau of
Statistics, 2021) and the Tianjin Statistical Yearbook (Tianjin
Bureau of Statistics, 2021). The charts in this paper were analysed
using ArcGIS 10.2, Origin, Excel, SPSS and other software.

Measuring methods of agricultural net carbon sink

Measurement of agricultural carbon emissions
Due to the interaction and circularity of agricultural production
activities, the carbon cycle process becomes relatively complex.
When cities are chosen as the research scale, carbon emission

sources become numerous and challenging to uniformly quantify.
To simplify the calculation process, the Ran et al. (2017) estima-
tion method is employed, where agricultural carbon emissions are
calculated as the sum of each carbon emission source multiplied
by its corresponding carbon emission coefficient. As shown in
Eqn (1):

C =
∑

Ci =
∑

Ti × ui (1)

where C is the total agricultural carbon emissions, Ci is the agri-
cultural carbon emissions of carbon source class i in year t, Ti is
the amount of carbon source class i in year t and θi is the carbon
emission coefficient of the corresponding carbon source.

According to the characteristics of agricultural development in
the BTH region and the timeliness and availability of agricultural
data, agricultural carbon emissions were divided into the follow-
ing four aspects: (1) carbon emissions caused by agricultural
land production activities (Li et al., 2011); (2) carbon emissions
from crop life activities (Duan et al., 2011); (3) carbon emissions
generated by livestock and poultry breeding (Min and Hu 2012);
(4) carbon emissions from the open burning of crop straw (Cao
et al., 2005).

1) Carbon emissions from agricultural land-use activities

Carbon emissions from agricultural land use refer to GHG
emissions directly or indirectly caused by various production fac-
tors of agricultural activities. These emissions primarily include:
(1) carbon emissions generated directly or indirectly by fertilizers
and pesticides during soil decomposition; (2) indirect carbon
emissions resulting from the consumption of electricity during
agricultural irrigation activities; (3) carbon emissions produced
during the use of agricultural materials (plastic film, diesel,

Figure 1. Map of geographical location of the study area.
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etc.). The carbon emission coefficient for each production factor
is provided in Table 1.

2) Carbon emissions from crop life activities

GHG emissions from agricultural crops mainly include CH4

emissions from paddy fields and N2O emissions from wheat, corn
and other crops. Due to the significant impact of climate and tem-
perature differences on the growth habit of rice, there are evident
regional variations in rice varieties and planting seasons.
According to the research by Min and Hu (2012), the rice varieties
of the BTH region are mainly mid-season varieties (single-season
late rice, winter paddy rice and stubble rice). Combined with the
greenhouse emission coefficients of major crops measured by
domestic scholars via experimentation, to achieve uniform quantifi-
cation, when CH4 and N2O are uniformly replaced by standard C,
according to the Sixth Assessment Report of the IPCC, the green-
house effects caused by 1 t CH4 and N2O are equivalent to 6.8182
and 81.2727 t C, respectively (Table 2).

3) Carbon emissions from livestock and poultry farming

During livestock breeding and the life activities of livestock
and poultry, intestinal fermentation will produce CH4, while

faecal discharge will produce CH4 and N2O emissions. The car-
bon emission calculation formula is shown in Eqns (2) and (3):

CH4live =
∑n
i=1

Ti × fi (2)

where CH4live refers to CH4 emission from livestock breeding, Ti

refers to the annual average feeding quantity of livestock and
poultry of i species and ϕi refers to the CH4 emission coefficient
of i type of livestock.

N2Olive =
∑n
i=1

Ti × wi (3)

where N2Olive is the N2O emission of livestock and poultry breed-
ing, Ti is the annual average feeding quantity of the i type of live-
stock and poultry and wi is the N2O emission coefficient of i type
livestock and poultry; according to the main livestock breeding
types in the BTH region, which mainly include cattle, sheep,
pigs, rabbits and poultry (Table 3).

Due to the different feeding cycles of livestock and poultry, the
average annual feeding quantity of livestock and poultry should be
adjusted. Based on the calculation method proposed by Hu and
Wang (2010), the annual average feeding quantity of livestock
and poultry was adjusted based on the feedlot rate. For pigs,
sheep, rabbits and poultry, for which the feedlot rate is ⩾1, the
annual average feeding quantity was adjusted according to the
feedlot amount, refer to Eqn (4) for details:

Ti = Days−alivei × Ni

365
(4)

where Ti is the annual average breeding quantity of livestock or
poultry type i, Days−alivei is the average life cycle of livestock or
poultry type i and Ni is the average annual output of livestock
or poultry type i. The average life cycles of pigs, sheep, rabbits
and poultry were considered to be 200, 210, 105 and 55 days,
respectively.

For livestock whose exit rate is less than 1 (the exit rate of cattle
was considered to be less than 1 in this study), the average annual
breeding quantity was adjusted according to the stock quantity at
the end of the year, as shown in Eqn (5):

Ti = (Lit + Li(t−1))/2 (5)

Table 1. Carbon emission coefficient of production factors

Carbon emission
source

Carbon
emission
factor Unit Source of Data

Nitrogen fertilizer 2.12 kg(C)/kg Chen et al. (2015b)

Phosphate fertilizer 0.64 kg(C)/kg

Potash 0.18 kg(C)/kg

Compound fertilizer 0.89 kg(C)/kg Tian et al. (2014)

Pesticide 4.93 kg(C)/kg

Plastic film 5.18 kg(C)/kg Eggleston et al. (2006)

Diesel 0.59 kg(C)/kg

Irrigation 266 kg(C)/hm2 Duan et al. (2011)

C, carbon.

Table 2. Greenhouse gas emission coefficients of crops

Carbon
emission
source

Type
of gas

Carbon
emission
factor Unit Source

Rice N2O 0.24 kg/hm2 Wang (1997)

CH4 116 kg/hm2 Shang et al. (2015)

Spring wheat N2O 0.40 kg/hm2 Yu et al. (1995)

Winter wheat N2O 1.75 kg/hm2 Min and Hu (2012)

Corn N2O 2.53 kg/hm2 Huang et al. (1995)

Beans N2O 2.29 kg/hm2

Vegetables N2O 4.94 kg/hm2 Qiu et al. (2010)

Cotton N2O 0.95 kg/hm2 Shang et al. (2015)

Other crops N2O 0.95 kg/hm2 Wang (1997)

N2O, nitrous oxide; CH4, methane.

Table 3. Carbon emission coefficientsa of livestock and poultry breeding

Carbon
emission
source

Methane Nitrous
oxide

Enteric
fermentation

Manure
management

Discharge of
manure

Cow 47.8 1.00 1.39

Pig 1.00 3.50 0.53

Sheep 5.00 0.16 0.33

Rabbit 0.25 0.08 0.02

Poultry 0 0.02 0.02

aThe coefficients refer to the results of Min and Hu (2012) and Shang et al. (2015).
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where Ti is the annual average breeding quantity of livestock type
i, Lit and Li(t−1), respectively, represent the stock quantities of live-
stock type i and poultry at the end of the year and the stock quan-
tity at the end of the year t− 1.

4) Carbon emissions from straw burning

The process of straw incineration produces large amounts of
GHG such as CO and CO2. Due to the different proportions
and yields of straw incineration, the estimation formula for the
carbon emissions of straw incineration is established, as shown
in Eqn (6):

G =
∑

Mi × R×Wi =
∑

Vi × Si × R×Wi (6)

where G is the carbon emissions of straw incineration, Mi is the
straw yield of crop type i, R is the proportional coefficient of
straw incineration, Wi is the carbon emission coefficient of the
straw burning of crop type i and Vi is the yield of crop type i.
Moreover, Si is the ratio of the coefficient of the grain to the
grass of crop type i, i.e. the ratio of the crop straw yield to the
crop economic yield. According to the research of Cao et al.
(2005), the proportion of open straw incineration in Hebei is
30%, while those of Beijing and Tianjin are 0. The carbon emis-
sion coefficient of straw burning is shown in Table 4.

Measurement of the agricultural carbon sink
The agricultural carbon sink specifically refers to the carbon
uptake during the entire life cycle of crop growth, namely the
net primary production formed by crops through photosynthesis,
i.e. biological yield. In this study, the method for estimating the
carbon sink, based on the crop productivity model established
by Tian and Zhang (2013), is shown in Eqn (7):

Ct =
∑

Ci =
∑

ci × Di =
∑

ci × Yi × (1− ri)/Hi (7)

where Ct is the carbon uptake of crops, i.e. the carbon sink, Ci is
the carbon sink of the crop type i and ci, ri and Hi, respectively,
represent the carbon content coefficient, water-cut ratio and eco-
nomic coefficient of crop type i. Moreover, Di and Yi are the total
biomass and economic yield of crop type i, as shown in Table 5.

Measurement of the agricultural net carbon sink
The agricultural net carbon sink refers to the difference between
the carbon sink and carbon emissions in agricultural production
activities. To further analyse the temporal and spatial variation
characteristics of the net carbon sink and the level of carbon
sink intensity in the BTH region, the net agricultural carbon

sink and cultivated land area were used to reflect the intensity
of the agricultural net carbon sink. Additionally, the ratio of the
carbon sink to total carbon emissions was used to reflect the car-
bon sink level (Lyu, 2019). The calculation formula is shown in
Eqns (8)–(10):

Cnet = Ct − Ca (8)

Cs = Cnet/Sland (9)

Cl = Ct/Ca (10)

where Cnet is the net agricultural carbon sink; Ct is the total
amount of carbon absorbed by crops, also known as carbon
sink; Ca is total agricultural carbon emission; Cs is the agricultural
net carbon sink intensity; Sland is cultivated land area; Cl is the
level of agricultural carbon sink.

Theil index

The Theil index is a special form of a generalized entropy index
system used to measure income inequality between individuals
or regions (Yuan and Liu, 2018); it demonstrates good decompo-
sability and the ability to independently measure the contribu-
tions of intra-group and inter-group differences to total
differences based on the ‘entropy’ theory in information theory.

Table 4. Carbon emission coefficientsa of crop straw burning

Carbon
emission
source

Carbon
emission

factor kg (C)/kg

Carbon
emission
source

Carbon
emission

factor kg (C)/kg

Rice 0.18 Rapeseed 0.22

Wheat 0.16 Beans 0.15

Corn 0.17 Cotton 0.13

aThe carbon emission coefficients are based on the research by Liu et al. (2011).
C, carbon.

Table 5. Carbon content coefficient, economic coefficient and water-cut ratio of
crops

Name of crop

Carbon
content

coefficient
(kg C/kg)

Coefficient of
economy
(kg/kg)

Water-cut
ratio
(kg/kg)

Rice 0.41 0.45 0.12

Wheat 0.49 0.40 0.12

Corn 0.47 0.40 0.13

Millet 0.45 0.42 0.13

Sorghum 0.45 0.35 0.13

Beans 0.45 0.35 0.13

Potato 0.42 0.70 0.70

Peanut 0.45 0.43 0.10

Canola seed 0.45 0.25 0.10

Sunflower seed 0.45 0.30 0.10

Bast fibre plants 0.45 0.10 0.13

Cotton 0.45 0.10 0.08

Sugar beet 0.41 0.70 0.75

Tobacco 0.45 0.55 0.85

Vegetables 0.45 0.65 0.90

Fruit 0.45 0.70 0.90

Other crops 0.45 0.40 0.12

‘Carbon content coefficient’ represents the ratio of carbon mass to crop yield. ‘Coefficient of
economy’ signifies the ratio of agricultural economic yield to biomass yield. ‘Water-cut ratio’
denotes the ratio of water content to crop yield. All the above variables are ratios without
dimensions. The coefficient mainly refers to the studies of Cao et al. (2018) and Han et al.
(2012).
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Its value is generally within the interval [0,1]; the smaller the
value, the smaller the regional difference. Therefore, based on
the original model improved by Cui et al. (2022a), the new
Theil index and its decomposition model were obtained as
shown in Eqns (11)–(18):

T =
∑
i

Ci

C

( )
ln

Ci/C
Xi/X

( )
(11)

Twi =
∑
i

C ji

Cj

( )
ln

Cji/Cj

X ji/Xj

( )
(12)

Tw =
∑
j

Cj

C

( )
Twi =

∑
j

∑
i

Cj

C

( )
Cji

Cj

( )
ln

Cji/Cj

X ji/Xj

( )
(13)

Tb =
∑
j

Cj

C

( )
ln

Cj/C

Xj/X

( )
(14)

T = Tw + Tb =
∑
j

Cj

C

( )
Twi + Tb (15)

Ra = Tw

T
(16)

Rb = Tb

T
(17)

Rj =
Xj

X
Twi

T
(18)

In these equations, T, Twi, Tw and Tb represent the total unit of
carbon sink Theil index (%), the carbon sink Theil index (%),
the carbon sink Theil index (%) within the region and the carbon
sink Theil index (%) between the regions, which can reflect the
differences of the BTH region as a whole, each sub-region, within
the region and between regions, respectively.

Moreover, Ci, C, Cji and Cj are carbon sinks (t) by urban area,
total carbon sinks (t) by BTH, carbon sinks by urban area (t) by
sub-region and total carbon sinks by sub-region (t). Xi, X, Xji

and Xj represent the total agricultural output value (100 million
RMB) or rural population (10 000 people) of each urban area,
BTH region, city and sub-region, respectively. Eqn (15) indicates
that the total difference is made up of intra-regional and inter-
regional differences (%). Ra, Rb and Rj represent intra-regional,
inter-regional and sub-regional contribution rates (%), respectively.
When X represents population size, it represents the per capita car-
bon sink Theil index, expressed by T(P); when X represents GDP, it
represents the carbon sink intensity Theil index, expressed by T(G).

Spatial autocorrelation analysis

Spatial autocorrelation analysis is used to measure whether phe-
nomena exhibit agglomeration, dispersion or random distribu-
tions in space. In this study, the Global Moran’s I Index was
employed to test for correlations between net carbon sinks in
the BTH region. The calculation formula is shown in Eqn (19):

I =
∑n

i=1

∑n
j=1 wij(xi − �x)(xj − �x)

S2
∑n

i=1

∑n
j=1 wij

(19)

where I is the Global Moran’s I Index, the range of which is [−1,1].
The closer the value is to 1, the higher the spatial positive correl-
ation, and the closer the inter-regional connection. The closer the
value is to −1, the higher the spatial negative correlation, and the
further the inter-regional connection. A value of 0 indicates no spa-
tial correlation. Moreover, n represents the number of regions, xi
and xj represent the net carbon sink values of regions i and j,
respectively; �x represents the sample mean, S2 represents the attri-
bute variance and wij represents the spatial weight matrix of regions
i and j, constructed based on the inverse distance weight standard.

Local spatial autocorrelation can be used to explore whether
similar or dissimilar index values are clustered together in a local
region. Therefore, the Local Moran’s I Index was used to analyse
the agglomeration situation of the agricultural net carbon sink in
the BTH region, and the calculation formula is shown in Eqn (20):

Ii = (xi − �x)
S2

∑n
j=1

wij(xj − �x) (20)

where Ii is the Local Moran’s I Index and the other letters have the
same meaning as in Eqn (19) above. Positive values indicate the
existence of high-high (H-H) or low-low (L-L) spatial agglomer-
ation in this region, while negative values indicate the existence
of high-low (H-L) or low-high (L-H) spatial agglomeration in
this region. The greater the absolute value of the Local Moran’s I
Index, the higher the degree of spatial agglomeration.

STIRPAT model

The STIRPAT model, developed on the basis of the Impact,
Population, Affluence, and Technology (IPAT) model, overcomes
the quantity limit of the IPAT model and avoids the influence of
the same scale change on the IPAT model (Huang et al., 2021). It
is widely used to study the impact of population, economy and
technology on the environment, reflecting the impact of economic
and social development (Liu et al., 2023). The model has been
studied by many scholars on carbon emissions and related issues
(Jiang et al., 2023). The factors influencing the net carbon sink in
the BTH region were examined using the extended STIRPAT
model, with the standard form referred to Eqn (21):

I = aPbAcTde (21)

where a is the model coefficient, and I, P, A and T are the environ-
mental impact, population size, economic affluence and technological
level, respectively. Moreover, b, c and d are the elastic coefficients of
population, wealth and technology, and e is the error term. By taking
the natural logarithms of both sides, the model is shown in Eqn (22):

ln (I)= ln (a)+ b× ln (P)+ c× ln (A)+ d× ln (T)+ ln (e) (22)
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where b, c and d are the regression coefficients of the corresponding
explanatory variables, which reflect the influence of the changes of
each driving factor on the dependent variable. Each 1% change in
P, A and T will result in a b%, c% and d% change in I, respectively,
while the other coefficients remain constant.

To further study the influences of factors such as rural eco-
nomic development, agricultural technology level, agricultural
industry structure, urbanization degree and rural population on
the carbon sink capacity of the BTH region, based on existing
research findings and the availability of data, we have selected
eight indicators to expand the model. The model construction
is shown in Eqn (23):

CE = a× Pb × Ac × Td × Ve × Uf × Cg × Rh × Yi × e (23)

By taking the logarithms of both sides of the equation, the for-
mula can be obtained as shown in Eqn (24):

lnCE = ln a+ b ln P + c lnA+ d lnT + e lnV + f lnU

+ g lnC + h lnR+ i lnY + ln e
(24)

where CE is the net agricultural carbon sink in the BTH region
(104 t), P is the total agricultural output value (AOV) (100 million
RMB) and A is the proportion of the agricultural output value
among the total output value of agriculture, forestry, husbandry
and fishery (AP) (%). Moreover, T is the urbanization rate,
which is expressed as the proportion of the urban population
among the total population of the BTH region (UR) (%), and V
is the technical factor, which represents the development level
of agricultural technology and is represented by the total power
of agricultural machinery (AMP) (104 kW). Additionally, U is
the sown area of crops (ACR) (hm2), C is the number of agricul-
tural employees (AE) (10 000 people), R indicates the develop-
ment level of the agricultural economy, expressed by the per
capita agricultural output value of rural areas (ARV) (RMB/per-
son), and Y represents the affected area of farmland (AFA) (hm2).

The multi-collinearity between factors is the primary short-
coming of the STIRPAT model, addressed through partial
least-squares regression. Utilizing SPSS software, dimensionality
reduction analysis extracted the principal components of eight
influencing factors: total agricultural output value, proportion of
the agricultural output value, urbanization rate, total agricultural
machinery power, crop sown area, number of agricultural
employees, rural per capita agricultural output value and affected
area of farmland. A regression analysis ensued. Following dimen-
sionless processing of the original data, KMO and Bartlett tests
were performed on the eight indicators. Results showed a KMO
value of 0.690, meeting the factor analysis standard, and a P
value of 0.000 (P < 0.05 indicating correlation between indicators);
the findings rejected the null hypothesis, indicating the correl-
ation between the indicators and the suitability of factor analysis.

Subsequently, principal component analysis of the index was
conducted with the criterion that the eigenvalue exceeded 1 and
the cumulative variance contribution rate was no less than 70%.
The extracted components served as common factors, and the fac-
tor load matrix was further rotated through orthogonal rotation of
maximum variance to obtain the factor score coefficient state.

According to Table 6, the first two variables from the principal
component analysis summarize 93.2% of all independent variable
information, demonstrating strong representativeness. The final
principal component factor variables, denoted as FAC1 and Ta

b
le

6.
Co

nd
uc
ti
ng

pr
in
ci
pa

l
co
m
po

ne
nt

an
al
ys
is
on

in
flu

en
ci
ng

fa
ct
or
s
pr
ov
id
ed

re
su
lt
s
on

th
e
co
nt
ri
bu

ti
on

ra
te
s
of

fa
ct
or

va
ri
an

ce

In
gr
ed

ie
nt

In
it
ia
l
ch
ar
ac
te
ri
st
ic

va
lu
e

Ex
tr
ac
t
th
e
lo
ad

sq
ua

re
ra
ti
o

Ro
ta
ti
on

al
lo
ad

sq
ua

re
d
ra
ti
o

Ch
ar
ac
te
ri
st
ic

ro
ot

Va
ri
an

ce
in
te
rp
re
ta
ti
on

%
To

ta
l

%
Ch

ar
ac
te
ri
st
ic

ro
ot

Va
ri
an

ce
in
te
rp
re
ta
ti
on

%
To

ta
l

%
Ch

ar
ac
te
ri
st
ic

ro
ot

Va
ri
an

ce
in
te
rp
re
ta
ti
on

%
To

ta
l

%

1
5.
70

71
.3

71
.3

5.
70

71
.3

71
.3

4.
74

59
.2

59
.2

2
1.
75

21
.9

93
.2

1.
75

21
.9

93
.2

2.
72

34
.0

93
.2

3
0.
32

3.
97

97
.2

4
0.
18

2.
23

99
.4

5
0.
04

0.
46

99
.9

6
0.
01

0.
07

10
0

7
0.
00

0.
05

10
0

8
0.
00

0.
00

10
0

In
gr
ed

ie
nt

re
pr
es
en

ts
th
e
ne

w
va
ri
ab

le
ex
tr
ac
te
d
th
ro
ug

h
pr
in
ci
pa

l
co
m
po

ne
nt

an
al
ys
is
,
an

d
ch
ar
ac
te
ri
st
ic

ro
ot

re
pr
es
en

ts
th
e
va
ri
an

ce
of

th
e
pr
in
ci
pa

l
co
m
po

ne
nt

fa
ct
or
,
re
pr
es
en

ti
ng

th
e
m
ag

ni
tu
de

of
th
e
va
ri
an

ce
of

th
e
da

ta
in
te
rp
re
te
d
by

th
e

pr
in
ci
pa

l
co
m
po

ne
nt
.

The Journal of Agricultural Science 7

https://doi.org/10.1017/S0021859624000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859624000121


FAC2, are obtained by performing maximum orthogonal variance
rotation on these two variables. Table 6 shows the process and
results of principal component analysis. Table 7 shows the math-
ematical relationship between principal component variables and
initial variables. Then, the two principal component factors and
the multiple regression analysis were carried out. The regression
results revealed that the R2 value of the model was 0.943, coeffi-
cient P < 0.05, the model is significant indicating that the equation
was well-fitted. The regression equation between lnCE and FAC1

and FAC2 can be obtained as follows:

lnCE = −0.071FAC1 + 0.071FAC2 − 1.252 (25)

Equation (25) is the final regression equation obtained through
principal component analysis. However, in order to more intui-
tively and obviously see the impact of influencing factors on car-
bon sinks, we replaced the principal component variable with the
initial variable according to the mathematical relationship in
Table 7, and obtained the regression equation between the initial

variable and the carbon sink as follows:

ln (CE) =− 1.252+ 0.022× ln (P)− 0.002× ln (A)+ 0.018

× ln (T)− 0.009× ln (V)− 0.013× ln (U)+ 0.017

× ln (C)+ 0.023× ln (R)− 0.014× ln (Y)

(26)

The obtained STIRPAT extended model of the net carbon sink in
the BTH region is as follows:

CE = 0.286

× P0.022A−0.002T0.018V−0.009U−0.013C0.017R0.023Y−0.014

(27)

All letters in formulae (26–27) have the same meaning as in Eqn
(24).

Robustness of the model refers to whether the evaluation and
indicators can maintain the stable interpretation of the model
when some parameters of the model are changed. Therefore,
employing the Trimming method to assess the robustness of the
STIRPAT model involves removing portions from both the begin-
ning and end of the modelling data, shortening the time range,
and observing whether the model exhibits any noticeable varia-
tions. The comparison of model parameters is shown in Table 8.

Upon review, it is evident that, compared to the original
model, the symbols and parameters of the model after tail reduc-
tion treatment have shown no significant changes. The order of
the degree of influence has also remained unchanged, with a sig-
nificance level of 0.000, indicating a high level of model
credibility.

Results

Temporal and spatial characteristics of net carbon sinks

Temporal and spatial characteristics of the net carbon sinks
Applying the method outlined in the previous section, we calcu-
lated the agricultural carbon sinks, carbon emissions and net car-
bon sinks for the 13 regions in the BTH region from 2009 to 2020.
The changes in net carbon sinks during the study period are
reported in Table 9.

Statistical results in Table 9 and Fig. 2 show that the net carbon
sink in the BTH region was 24 648 500 t in 2009, increasing to 34
592 900 t in 2020. The growth rate was 40.34%, with an average
annual growth rate of 3.67%. Sequential growth was generally
positive, except for slight decreases in 2014 and 2018.
Agricultural carbon emissions underwent two stages: a stable per-
iod from 2009 to 2015, followed by a gradual decrease from 2016

Table 7. Principal component score coefficient matrix of FAC1 and FAC2 shows
the corresponding relationship between principal component factors and
influencing factors

Name of factor

Composition

1 2

lnP 0.17 0.47

lnA 0.29 0.27

lnT −0.12 0.14

lnV 0.21 0.08

lnU 0.21 0.04

lnC 0.16 −0.08

lnR 0.06 0.38

lnY 0.16 −0.04

FAC1 and FAC2 are the final principal component factor variables; P, total agricultural output
value (AOV) (100 million RMB); A, proportion of the agricultural output value among the total
output value of agriculture, forestry, husbandry and fishery (AP) (%); T, urbanization rate,
which is expressed as the proportion of the urban population among the total population of
the BTH region (UR) (%); V, technical factor (i.e. the development level of agricultural
technology, represented by the total power of agricultural machinery (AMP) (104 kW)); U, is
the sown area of crops (ACR) (hm2); C, number of agricultural employees (AE) (10 000
people); R, development level of the agricultural economy, expressed by the per capita
agricultural output value of rural areas (ARV) (RMB/person); Y, the affected area of farmland
(AFA) (hm2).

Table 8. Comparison between the Trimming method and the original model

Model P A T V U C R Y e

Primitive 0.02 0.00 0.02 −0.01 −0.01 −0.02 0.02 −0.01 −1.25

Tail reduction treatment 0.01 −0.01 0.02 −0.01 −0.01 −0.01 0.02 −0.01 −1.25

P, total agricultural output value (AOV) (100 million RMB); A, proportion of the agricultural output value among the total output value of agriculture, forestry, husbandry and fishery (AP) (%);
T, urbanization rate, which is expressed as the proportion of the urban population among the total population of the BTH region (UR) (%); V, technical factor (i.e. the development level of
agricultural technology, represented by the total power of agricultural machinery (AMP) (104 kW)); U, is the sown area of crops (ACR) (hm2); C, number of agricultural employees (AE) (10 000
people); R, development level of the agricultural economy, expressed by the per capita agricultural output value of rural areas (ARV) (RMB/person); Y, the affected area of farmland (AFA)
(hm2); e, error term.
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onwards at a rate of 3.84%. Figure 3 illustrates the composition of
agricultural carbon emissions, indicating an inflection point in
2016. Carbon emissions from agricultural land use, accounting
for 53.37% of total emissions, showed high levels for nearly 10
years after 2009, decreasing annually post-2016. Livestock and
poultry farming, the second-largest agricultural carbon source,
accounted for 25.01% of emissions. Despite fluctuations, the over-
all trend was a slow decline. Crop respiration and straw burning,
contributing smaller proportions, followed similar trends to live-
stock and poultry farming. Overall, increasing crop yield and

continuous reduction in carbon emissions led to a rising agricul-
tural carbon sink and net carbon sink.

Analysing the change in the net carbon sink for each region,
Shijiazhuang, Handan, Baoding, Hengshui and others contributed
the most, while Qinhuangdao, Zhangjiakou, Chengde and others
had the lowest net carbon sink. Spatially, high carbon sinks were
mainly concentrated in the southern region, with generally low
net carbon sinks in the north. Southern regions exhibited signifi-
cantly higher crop yields than the north, and the eastern coastal
region surpassed the west. Climate differences between the

Table 9. Carbon sink/carbon source change in Beijing-Tianjin-Hebei Region, 2009–2020

Year

Total
carbon

sink (104 t)

Agricultural land
use carbon

emissions (104 t)

Crop carbon
emissions
(104 t)

Carbon emissions
from livestock and
poultry farming

(104 t)

Carbon
emissions from
straw burning

(104 t)

Net
carbon
sink (104

t)

Net carbon sinks
increased

month-on-month (%)

2009 4215 944 191 446 170 2465 /

2010 4263 944 193 416 168 2542 3.14%

2011 4547 937 192 409 184 2825 11.1%

2012 4586 947 195 419 177 2848 0.85%

2013 4680 943 196 421 171 2949 3.53%

2014 4667 943 195 431 169 2929 −0.67%

2015 4660 935 195 431 163 2936 0.23%

2016 4735 881 197 426 159 3073 4.65%

2017 4876 854 178 419 167 3258 6.02%

2018 4736 787 177 400 162 3210 −1.46%

2019 4782 745 172 367 163 3334 3.87%

2020 4853 690 178 362 163 3459 3.74%

Figure 2. Change of urban net carbon sink in
Beijing-Tianjin-Hebei, 2009–2020.
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northwest and southeast regions, with the former being higher
and the latter lower, contributed to this spatial variation. The
North China Plain, located in the southeast and blocked by the
Yanshan Mountains in the north, is not suitable for large-scale
crop cultivation, resulting in significantly higher crop yields in
the southern region. From the perspective of change, Tangshan,
Langfang, Cangzhou and others maintained a stable net carbon
sink, while all other regions, excluding Beijing, experienced vary-
ing degrees of increase.

Spatio-temporal variation of the net carbon sink intensity
The efficiency of the regional agricultural net carbon sink is
reflected in the intensity of the net carbon sink. Illustrated in
Fig. 4, the net carbon sink intensity in the BTH region rose
from 261.01 kg/hm2 in 2009 to 403.05 kg/hm2 in 2020, displaying

a fluctuating increasing trend. Apart from the years 2011 and
2017, the increasing trend remained relatively stable. This indi-
cates continuous enhancement in the efficiency of the agricultural
net carbon sink in the BTH region, with a significant increase in
net carbon sink per unit of cultivated land. The net carbon sink
intensity in the BTH region was categorized into five levels at
four time points in 2009, 2012, 2016 and 2020.

Analysing the change in Fig. 5, from a distribution perspective,
the net carbon sink intensity in the southern region generally
exceeded that in the northern region, indicating a tendency of
aggregation. Based on net carbon sink intensity, the BTH region
can be divided into three areas: (1) the northern region with low
net carbon sink intensity, primarily including Zhangjiakou,
Chengde, Qinhuangdao, etc.; (2) the region with medium net car-
bon sink intensity, mainly comprising coastal regions around the

Figure 3. Carbon emission composition of the
Beijing-Tianjin-Hebei region from 2009 to 2020.

Figure 4. Changes of net carbon sink intensity and car-
bon sink level in the Beijing-Tianjin-Hebei region from
2009 to 2020.
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Bohai Rim, such as Tianjin, Tangshan, Cangzhou, etc.; (3) the
region with high net carbon sink intensity in the south, encom-
passing Shijiazhuang, Handan, Xingtai and others. From the per-
spective of local region changes, the net carbon sink intensity of
most regions increased, indicating significant overall improve-
ment in the net carbon sink efficiency of the BTH region.
However, the Chengde, Zhangjiakou and Qinhuangdao regions
remained stable without a significant increase. Additionally, the
net carbon sink intensity of Beijing exhibited a noticeable decreas-
ing trend during the study period; it decreased from 257.40 kg/
hm2 in 2009 to 175.89 kg/hm2 in 2020, marking a decline of
31.67%. This may be attributed to the direction of economic
development. Agricultural development is not the primary focus
of Beijing’s economic direction; its crop output has experienced
a significant decreasing trend, and most of its agricultural forms
are small and micro-agriculture. This indicates a gradual decline
in the scale and efficiency of agricultural production.

Spatiotemporal variation of carbon sink levels
The agricultural carbon sink level reflects the regional structure of
the agricultural carbon sink/source, with a higher ratio indicating
a higher carbon sink level. As indicated in Fig. 4, the agricultural

carbon sink level in the BTH region has shown a consistent and
increasing trend, signifying a greater change range in the carbon
sink compared to carbon emissions. The accounting results of the
net carbon sink reveal a decreasing trend in agricultural carbon
emissions in the BTH region, coupled with a continuous increase
in the carbon sink due to improved crop yield. This forms the
fundamental reason for the ongoing enhancement of the carbon
sink level.

Examining the 12-year change in carbon sink level in the BTH
region, as illustrated in Fig. 6, the alterations in agricultural car-
bon sink level and net carbon sink intensity align closely. The
southern region exhibits a greater degree of change in carbon
sink level compared to the northern region. Handan and
Cangzhou display the most noticeable changes, experiencing a
significant increase in their carbon sink levels during the study
period, although these levels significantly differ from those
observed in the southern region. Langfang undergoes minimal
change, while Beijing demonstrates a decreasing trend. Over
time, the BTH region forms a circular distribution with Beijing
as the centre, showcasing an increase in carbon sink level from
the north to the south. This pattern suggests well-developed agri-
cultural carbon sinks in the southern region, while the northern

Figure 5. Change of urban net carbon sink intensity in Beijing-Tianjin-Hebei from 2009 to 2020. (a) 2009; (b) 2012; (c) 2016; (d) 2020.
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region maintains a stable state. The ratio of carbon sink to carbon
emission in Beijing declined from 2.17 in 2009 to 1.76 in 2020,
making it the sole region in the BTH region with a decreasing car-
bon sink level. In general, regional disparities are the primary dri-
vers of changes and variations. Therefore, developing agriculture
with local characteristics according to regional conditions has
become a crucial strategy to address this situation. Due to its
unique urban positioning, Beijing’s agricultural production is
gradually diminishing. In this scenario, it should compensate
for the ‘carbon sink’ from alternative perspectives to mitigate
the potential risk of a ‘carbon deficit’.

Spatial autocorrelation analysis based on Moran’s index

Global spatial autocorrelation analysis
The Moran’s I Index of the net carbon sink in the BTH region
during 2009–2020 was calculated, and the results are reported
in Table 10.

As indicated in Table 10, the Moran’s I Index for the total
net carbon sink in the BTH region consistently showed positive
values, z is a multiple of the standard deviation, accompanied
by P values below 0.05 (indicating a successful 95% confidence
test). This suggests the presence of autocorrelation among the
net carbon sinks from 2009 to 2020, signifying a prevalent

Figure 6. Change of urban carbon sink level in Beijing-Tianjin-Hebei from 2009 to 2020. (a) 2009; (b) 2012; (c) 2016; (d) 2020.

Table 10. The spatial autocorrelation analysis results of agricultural net carbon sink in the BTH region

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Moran’s I value 0.39 0.42 0.43 0.44 0.45 0.47 0.47 0.45 0.58 0.55 0.53 0.54

Z score 2.23 2.33 2.37 2.45 2.47 2.59 2.56 2.47 3.10 2.97 2.85 2.92

P value 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Moran’s I value is the slope of the line that best fits the relationship between neighbouring income values and each polygon’s income in the dataset; Z score describes how far away from the
mean (or average) the data lies in a normally distributed sample.
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trend of mutual influence and interaction within the net carbon
sinks in the BTH region. The Moran’s I Index values ranged
between 0.393 and 0.542, averaging 0.476. Despite fluctuations
in the Moran’s I Index during the latter part of the study per-
iod, an overall increasing trend persisted, reaching its peak at
0.581 in 2017, showcasing the strongest spatial autocorrelation.
This trend illustrates an ongoing enhancement in the spatial
aggregation of net carbon sinks in the BTH region over time.

Local spatial autocorrelation analysis
The Local Moran’s Index was employed to depict the spatial clus-
tering of net carbon sinks in the BTH region, with Local
Indicators of Spatial Autocorrelation (LISA) cluster maps gener-
ated for the years 2009, 2012, 2016 and 2020 (refer to Fig. 7).
The analysis reveals a distinct local spatial aggregation phenom-
enon and a noticeable differentiation pattern in the net carbon
sinks across the BTH region. The highly aggregated areas are pre-
dominantly situated in the southern region, prominently featuring
Shijiazhuang, Hengshui and Xingtai. These regions, characterized
by a warm climate, serve as crucial agricultural production hubs

in the BTH region, showcasing substantial advantages in agricul-
tural industry development. Conversely, Chengde stands as the
core of the L-L cluster area in the north, where the climate
tends to be colder, and agricultural production conditions are
relatively weaker. In terms of development and change, the highly
aggregated area assumes a radiating and driving role, with its clus-
tering remaining consistent over the study period and exhibiting a
weak radiating driving effect on surrounding regions. In contrast,
the low clustering area, centred around Chengde, undergoes con-
tinuous changes throughout the study period, expanding to sur-
rounding areas. Tangshan only displayed H-L clustering in
2009, and over time, the agglomeration effect weakened, possibly
influenced by surrounding regions and exhibiting a regional
development-oriented industrial structure. Hebei, characterized
by diverse landforms and topographic features, has scattered
mountains, grasslands and hills in the northwest and north, lack-
ing spatial uniformity. However, the southern part of Hebei, pre-
dominantly plains, is suitable for large-scale agricultural
development, displaying better spatial integrity and a relatively
concentrated spatial aggregation effect than the northern part.

Figure 7. Local Indicators of Spatial Autocorrelation (LISA) cluster map of urban net carbon sinks in the Beijing-Tianjin-Hebei (BTH) region, 2009–2020. (a) 2009; (b)
2012; (c) 2016; (d) 2020.
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Analysis of inequality

Per capita carbon sink Theil index regional inequality
We calculated the Thiel indexes T(G) and T(P) with agricultural
GDP and agricultural population as weights. These indexes reflect
the correlation between the economic development level and agri-
cultural population size with the agricultural net carbon sink. The
study area was divided into five regions for analysing regional dif-
ferences: eastern Hebei, northern Hebei, central Hebei, southern
Hebei and Beijing-Tianjin.

In Table 11, the T(P) index consistently remained above 0.102,
with an average of 0.122, exhibiting a gradual ‘N’-shaped change.
This suggests that the per capita net carbon sink in the BTH
region showed significant regional differences with fluctuating
trends from 2009 to 2020. According to Figs 8(a) and (d), the
ratio of intra- and inter-regional difference contribution rates
for the per capita net carbon sink was 15.7: 84.3% in 2009 and
27.2: 72.8% in 2020. This indicates that the overall difference in
the per capita net carbon sink in the BTH region was mainly

due to inter-regional differences. Among intra-regional differ-
ences, the five regions had varying impacts. The central Hebei
region had the highest contribution rate, averaging 29.5%, while
Beijing, Tianjin and southern Hebei contributed 22.1 and 18%,
respectively. The regional differences showed a steady increasing
trend, except for a significant fluctuation in 2010.

Carbon sink intensity Theil index of regional inequality
Table 11 shows that the T(G) index consistently remained above
0.07 throughout the study period, with an average of 0.083. The
peak occurred in 2009, followed by a linear decreasing trend. By
2020, the index had decreased to 0.070 with noticeable regional
differences. This decreasing trend was more pronounced than
that of the T(P) index. When examining Figs 8(c) and (d) and
decomposing regional differences, the ratio of intra- and inter-
regional difference contribution rates for the net carbon sink
intensity of agricultural output value was 15.7: 84.3% in 2009
and changed to 77.1: 22.9% in 2020. This suggests a shift from

Table 11. Changes in Theil index from 2009 to 2020

Index 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

T(P) 0.14 0.13 0.10 0.12 0.11 0.13 0.12 0.12 0.14 0.12 0.12 0.12

T(G) 0.12 0.08 0.07 0.08 0.08 0.09 0.09 0.08 0.09 0.08 0.07 0.07

T(P), per capita carbon sink Theil index; T(G), the carbon sink intensity Theil index.

Figure 8. Change of T(P) and T(G) contribution rates in BTH cities from 2009 to 2020. (a) T(P) contribution rate of intra-regional and inter-regional differences; (b) T
(P) regional contribution rate; (c) T(G) contribution rate of intra-regional and inter-regional differences; (d) T(G) regional contribution rate.
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intra-regional to inter-regional differences in the net carbon sink
intensity of the agricultural output value in the BTH region. The
intra-regional contribution rate of each region showed continuous
increase. Central Hebei had the highest contribution rate, aver-
aging 23.0%, while southern and eastern Hebei contributed 11.9
and 3.79%, respectively. The contribution rate of regional differ-
ences increased, with the most noticeable change observed in
Beijing, Tianjin and southern Hebei.

Overall, the mean values of T(P) and T(G) over the 12-year
study period were 0.122 and 0.070, respectively. This indicates
that the Thiel index T(P) weighted by agricultural population
was larger than T(G) weighted by agricultural GDP. T(P) better
reflects regional differences in the agricultural net carbon sink
in the BTH region. However, the matching degree between
regional net carbon sink and agricultural output value was higher
than that between agricultural population size, and agricultural
population is a significant factor contributing to regional differ-
ences in net carbon sinks. As can be seen from Table 11, over
the past 12 years, T(P) and T(G) values showed an overall declin-
ing trend. This suggests that the severe imbalance in agricultural
development in Beijing, Tianjin and Hebei has improved, but
there are still noticeable coordination challenges among different
regions that need further improvement.

Driver analysis based on the extended STIRPAT model
According to the regression equation of Eqn (27), the degree of
influence of each factor on the net carbon sink in the BTH region
was as follows: ARV > AOV > UR > AE > AFA > ACR > ATL > AP.
Each 1% change in AOV, AP, UR, AMP, ACR, AE, ARV and AFA
will result in a change of 0.022, 0.002, 0.018, 0.009, 0.013, 0.017,
0.023 and 0.014% in net carbon sink. Among them, AOV, UR, AE
and ARV were found to have significant promoting effects on the
net carbon sink, among which the promoting effect of ARV was
the strongest. AP, AMP, ACR and AFA had reverse inhibitory
effect on agricultural net carbon sink, among which the inhibiting
effect of AFA area was the strongest. AP was the least restrictive.

The total agricultural output value and rural per capita output
value were found to be the main contributors to the increase of
the agricultural net carbon sink, which indicates that the rural
economic development level is the main factor that promotes
the agricultural net carbon sink. The total agricultural output
value and per capita rural output value in the BTH region contin-
ued to grow from 2009 to 2020. This indicates that the continuous
growth of the rural economic level led to the increase of the agri-
cultural industry input and the promotion of the development of
agriculture towards low-carbon agriculture. The urbanization
level and the number of agricultural employees were found to
be secondary factors that promote the net carbon sink. The
urbanization level of BTH increased from 50.19% in 2009 to
64.83% in 2020, indicating that urban expansion does not inhibit
the net carbon sink effect, but instead promotes the net carbon
sink effect. In addition, affected by the increase of the urbaniza-
tion rate, the proportion of the rural population decreased con-
tinuously during the study period, and the number of
agricultural employees in the BTH region presented an obvious
declining trend. According to the analysis results, the number
of agricultural employees is a positive factor that promotes the
growth of the net carbon sink. Therefore, to compensate for the
negative effect brought by the decline of agricultural employees,
agricultural professionals should be vigorously developed to
achieve the efficient management of agricultural production to
offset the consequences of urbanization.

The sown area of crops and the affected farmland area are key
factors hindering the agricultural net carbon sink. In the BTH
region, the crop sown area exhibited a declining trend, contrary
to the net carbon sink trend. The increase in net carbon sink inten-
sity compensates for the negative impact of reduced crop sown area.
The relationship between affected farmland area and net carbon
sink aligns with expectations, as farmland disasters directly impact
crop yield and, subsequently, the carbon sink. The rural technical
level is a significant inhibiting factor. Improved agricultural mech-
anization has not positively contributed to increased carbon sink
effectiveness, primarily due to the overuse of machinery and the
resulting energy consumption, leading to higher carbon emission
intensity. Therefore, it is crucial to address excessive carbon emis-
sions resulting from agricultural mechanization.

Discussion

Issues facing agricultural development and carbon neutrality

Based on the aforementioned research findings, we can summarize
the key trends in the development of agricultural carbon sinks in the
BTH region. In recent years, there has been notable improvement in
both the capacity and effectiveness of carbon sinks, significantly
contributing to the advancement of agricultural development
(Sun et al., 2023). However, it is crucial to acknowledge and address
the challenges accompanying this positive trend. The predominant
challenge lies in the current regional development imbalance. The
agricultural carbon pooling in the BTH region exhibits a discernible
pattern of north-south differentiation and aggregation. Over time,
this disparity has shown a tendency to widen, closely linked to
the overall imbalance in agricultural development (Gan et al.,
2023). According to the research conducted by Kong and Cheng
(2017), Hebei surpasses Beijing and Tianjin in both land output
rate and its growth rate. Additionally, the primary industry’s pro-
portion in Hebei is considerably higher than that in Beijing and
Tianjin, highlighting substantial developmental differences.
Nevertheless, within Hebei, internal disparities are also pronounced.
Li et al. (2019) discovered, through their study on agricultural green
factor productivity in Hebei, that hot spots have predominantly
expanded to central and eastern Hebei, while cold spots have shifted
from northern Hebei to the two wings. This spatial concentration
and distribution of hot and cold spots persist over time. Excessive
industrial concentration poses challenges to the coordinated devel-
opment of these regions. Various factors contribute to this phenom-
enon. Scholars argue that the primary reasons behind the
agricultural coordinated development challenges in Beijing,
Tianjin and Hebei include the inequality in regional administrative
status, inconsistency in development interests and the absence of an
effective cooperation mechanism (Guo et al., 2017). Given Beijing’s
role as the political and cultural centre at the core of the BTH
region, the coordinated development plan primarily positions
Tianjin and Hebei to support the capital’s economic development
on the supply side (Fan et al., 2022), Consequently, the agricultural
functions of the central and southern Hebei regions become more
pronounced (Jiao et al., 2020). Despite China’s efforts to promote
coordinated agricultural development in the BTH region, there is
still ample room for improvement (Xiao et al., 2022).

Provide guidance based on the challenges faced

In order to ensure the efficient and stable development of carbon
sink capacity in the BTH region and realize regional collaborative
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integration as soon as possible, the following development sugges-
tions are put forward according to the development characteristics
and functional positioning of the BTH region and combined with
the research results:

(1) According to the regional agricultural production characteristics,
agricultural emissions reduction and industrial structure upgrad-
ing should be carried out according to the local conditions.

The government should pay attention to the unbalanced devel-
opment of regional agricultural production. For areas with high
net carbon sinks, focus should be placed on carbon emission
reduction, transition to low-carbon agriculture, industrial layout
planning and the reduction of agricultural inputs such as pesti-
cides and fertilizers. In Hebei, the proportion of straw burning
should be reduced, and carbon emission targets should be con-
strained. In areas with a low net carbon sink, the industrial struc-
ture should be optimized, the agricultural production cost input
should be increased, the agricultural production efficiency should
be improved and characteristic and ecological agriculture should
be developed according to the local conditions. Moreover, the
agricultural industrial structure should be avoided, the further
widening of regional differences should be prevented and the col-
laborative integration of high-carbon-sink demonstration areas
should be jointly established by Beijing, Tianjin and Hebei.

(2) The construction of agricultural regions with a high carbon sink
and regional coordinated development should be promoted.

High-carbon-sink areas should play a leading and exemplary
role for the radiating surrounding areas, thus driving the develop-
ment of regional rural low-carbon industries and realizing the bal-
ance of regional agricultural industries. For regions with a declining
agricultural carbon sink capacity, the carbon sink/source structure
should be adjusted according to the industry type to avoid a carbon
deficit. Via the driving effect of the high-carbon-sink regions in the
BTH region on the surrounding areas, support can be provided for
the integration of agriculture in the region.

(3) The construction of new energy in rural areas should be pro-
moted and the energy efficiency should be improved.

The technical level of rural areas has a negative effect on the net
carbon sink, indicating that mechanized agricultural production
leads to a serious carbon emission problem. It is necessary to
strengthen technological innovation and industrial upgrading,
innovate the technical level of agricultural mechanization and pro-
mote the development and application of energy-saving and envir-
onmental protection technologies, e.g. the use of clean energy such
as electric energy and solar energy. Moreover, the proportion of fos-
sil fuels such as diesel should be reduced, and importance should be
attached to the efficiency of agricultural resource utilization. The
waste of ineffective resources should also be reduced.

(4) The construction of high-quality agricultural talents should be
promoted and resource management should be coordinated.

The government should pay attention to the negative impact of
the improvement of the urbanization level on the decrease of the
number of rural employees. It should also promote the construc-
tion of new urbanization, the centralized management of the agri-
cultural production process, the development of high-quality and

professional agricultural talents and the centralized planning of
rural surplus labour. Moreover, it should aggregate the manage-
ment of the population, land and other production resource fac-
tors to achieve efficient agricultural production. This will provide
a solid guarantee for the construction of the BTH high-carbon
sink demonstration zone, as well as strong support for the
regional agricultural integration of BTH by establishing an agri-
cultural demonstration zone for population-intensive industries.

Most of the data sources used in this research method are from
statistical yearbooks, and the statistical types are relatively limited.
For counties and smaller research scales, the proportion of char-
acteristic agricultural industry is higher than that of main agricul-
ture in some regions, and the statistical data of statistical
yearbooks cannot reflect the degree of regional agricultural devel-
opment. Therefore, this method is suitable for research at the pro-
vincial and municipal scale. It should be optimized according to
the local agricultural development conditions. In addition, most
of the parameters used in this study are summarized from previ-
ous research results and have universal applicability. However, for
research on a small regional scale, these parameters may be differ-
ent from the actual local situation. If detailed estimates are
required, these parameters should be adjusted according to the
actual situation in the study area.

Limitations and future prospects

In addressing carbon emissions within agricultural production,
this study takes into account the dual attributes of carbon sink/
carbon source. It avoids the singular perspective of carbon storage
or emissions found in previous research and calculates the effects
of carbon sink, carbon source and net carbon sink in agricultural
production from multiple angles. The study analyses the carbon
sink effect and its change trends in China’s typical agricultural
production agglomeration areas over time and space, aiming to
provide guidance for the development of regional green agricul-
ture with low-carbon production practices.

It is crucial to note that the focus of this study on carbon sink
and carbon emission pertains to the storage and release of carbon
in the agricultural production process. However, it is well-known
that carbon undergoes constant recycling in nature, and most of
the carbon stored in crops will eventually return to nature through
biological consumption. Therefore, preserving carbon reserves as
much as possible during the consumption process remains an
important issue we must confront.

In the realm of agricultural production, reducing carbon emis-
sions and increasing the ratio of carbon sink to carbon source are
also critical considerations. Fortunately, our research indicates
that crop yields and carbon sinks continue to increase in agricul-
tural activities in the BTH region between 2009 and 2020, while
carbon emissions show a downward trend. This suggests that
the carbon sink effect of agricultural production is moving in a
positive direction, offering valuable insights for the establishment
of low-carbon agriculture.

Conclusions

The net carbon sink in the BTH region demonstrates a gradual
increasing trend, with a concurrent decline observed in agricul-
tural carbon emissions. Agricultural land use emissions and live-
stock farming emissions stand out as the primary sources of
carbon emissions. Meanwhile, the efficiency of agricultural net
carbon sequestration and the level of agricultural carbon sink
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are continually improving. The regional net carbon sink exhibits
evident spatial autocorrelation, with notable north–south dispar-
ities and pronounced spatial inequalities. The level of rural eco-
nomic development emerges as a key factor promoting the
increase in agricultural net carbon sequestration. In summary,
from 2009 to 2020, both the quantity and level of carbon seques-
tration in the BTH region have significantly increased. However,
regional development imbalances persist, emphasizing the
importance of coordinated and integrated regional development
as a crucial direction for achieving agricultural carbon neutrality.
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