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In a previous paper we studied the asymptotic distribution of the multiparameter eigenvalues of uniformly
right definite multiparameter Sturm-Liouville eigenvalue problems. In this paper we extend the analysis to
deal with multiparameter Sturm-Liouville problems satisfying uniform left deflniteness, and non-uniform left
and right deflniteness.

1980 Mathematics subject classification: 34L20, 34B24.

1. Introduction

Consider the /c-parameter Sturm-Liouville eigenvalue problem

(1.1)

ur(0)cosar-u;(0)sinar = 0, ur(l)cos/?r-u;(l)sinj3r=0, r= l , . . . , f c , (1.2)

where qr, r=l,...,k, are real valued, continuous functions on the interval t/ = [0,1], vn,
r , s = l k, are real valued, twice continuously differentiable (C2) functions on U and
a,, /?re[0,27r]. A fe-tuple A = (A1,...,Alk) of real numbers is called an eigenvalue of (1.1),
(1,2) if, for each r, there exists a non-trivial solution ur of equation (1.1) satisfying the
boundary conditions (1.2).

For all \={x1,...,xk)eUk we define the determinant

A(x)= det vrs(xr).

The multiparameter eigenvalue problem (1.1), (1.2) is said to be uniformly right definite if
A(x) > 0 for all x e Uk, and is said to be right definite if A(x) > 0 for almost all x e Uk. If
the system (1.1), (1.2) is right definite then the basic result regarding the existence of
eigenvalues is Klein's oscillation theorem (see [1] or [9] for the case of uniform right
deflniteness, and [4] for right deflniteness);

Theorem 1.1. For each multi-index i = (i1,...,ik) where ilt...,ik, are non-negative
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integers, there exists a unique eigenvalue X' of (1.1), (1.2) such that, for each r, a
corresponding solution of (1.1), (1.2) has precisely ir zeros in the open interval (0,1). There
are no other eigenvalues.

In [10] we studied the asymptotic behaviour of the eigenvalues X' of (1.1), (1.2), for
large ||i|| (where | | | | denotes the Euclidean norm in R*), and we showed that if the
system is uniformly right definite then the eigenvalues have the asymptotic form

where iJf:Rk+ nSl->Rk is Holder continuous and non-zero on R
(R±={xeR: ±x>0}, S1 = {xeRt:||x|| = l}). Conditions were also given which made $
Lipschitz continuous and reduced the size of the error term in (1.3) to O(||i||), see
Theorem 3.1 of [10]. In this paper we investigate the asymptotic behaviour of the
eigenvalues under other definiteness conditions and discuss to what extent the behaviour
described by (1.3) is preserved. Specifically, we consider uniform left definiteness and
(non-uniform) right and left definiteness (each of these conditions are sufficient to ensure
that an analogue of Klein's theorem is valid, see [5]).

The asymptotic behaviour of the eigenvalues has not been considered before under
conditions other than uniform right definiteness. In the case where k = 2 and the system
is uniformly right definite this problem has been studied in great detail by Faierman in
the papers [7], [8]. The two parameter case has also been studied recently by Browne
and Sleeman in [6]. In [6] the asymptotic estimates given in [10] are improved for the
case of those eigenvalues which lie in certain cones in the parameter space.

2. Notation and preliminary results

In this section we briefly recall some notation and results from [10]. We begin with a
basic result on the number of zeros of solutions of a Sturm-Liouville type differential
equation which was proved in [10].

Hypothesis F. Suppose that the function / : t/->R is C2 and the set {xeU:f(x)>0} can
be decomposed into the union of a finite number of disjoint, open intervals It=(a\,df),
i= 1,..., n, together with any of the end points a{, which are not zeros of f, and there exists
a constant K>1 such that on each interval /, either:

l , = !,...,„; (2.1)(i) ffsx, ^/(*) /(*)
(ii) there is an increasing function Jt such that,

K-lUx)£f(x)£Kjixyi (2.2)

or (i) holds with a\ replaced by of, and (ii) holds with J decreasing.
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Hypothesis UF. Suppose that the function / : U xX-»R is such that for each £eX the
function /(•,£): l/-*R satisfies hypothesis F, and let n{£), K(£) denote the number of
intervals and the constant in hypothesis F. Then f is said to satisfy hypothesis UF if n(£)
and K(£) are uniformly bounded for £eX, i.e. there exist constants n>0, K>0, such that

For any function /:[/->R, let ||/||=sup{|/(x)|:xe[/} and let [/]+ denote the
function x-nnax {f(x),0}, xeU.

Lemma 2.1. Consider the differential equation

w"(x) + p(x)W(x)+tif(x,Qw(x)=O, xeU, £eX, (2.3)

where p is a real-valued, continuous function in U and f satisfies hypothesis UF. Then for
all (t>0, and £eX, the number of zeros v(w) of any solution w of (2.3) in the interval (0,1)
satisfies

} (2.4)

^ 2(n +1)(«"»IJpH1'2 + (X2 + ||p||)X2 + 5).

To show that a significant class of functions / satisfy hypothesis UF, the following
lemma was proved in [10].

Lemma 2.2. Suppose that X is a compact topological space and A is a complex
domain containing U, and suppose that f:AxX-+C is continuous on AxX and,for each
£eX, the function f(-,£)^0 is analytic on A. Also suppose that f\UxX (tne restriction of
f to U xX) is real-valued. Then f\UxX satisfies hypothesis UF.

We now introduce some further notation. For any set A, we let A, dA, int A denote
the closure, boundary and interior of A respectively. Constants ch i= 1,2,...,will be
strictly positive and may depend on k and the functions pr, vn, but will not depend on
A, or on any other variables. For any two quantities a, b, possibly depending on other
variables, we will use the notation axb if there exist constants cu c2, such that

For aeR\ we write a>0 (respectively a^O) if, and only if, ar>0 (respectively ar^0), for
all r=l,...,k. For any real (or vector) valued function /, we use the notation / > 0 (or
/>0) to mean /(x)>0 (or /(x)>0) for all x in the domain of / ; the meaning of the
notation / ^ 0 (/^0), / # 0 (/#0), etc. is defined similarly.
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For each r=l,...,k, we let rr:D(Tr)<=L2([/)-»L2((7) denote the self-adjoint differential
operator on L2(U) associated with the differential expression o n the left-hand side of
(1.1), with A = 0, together with the boundary conditions (1.2). Also, for r=\,...,k, we
define the functions

k

yr(xr)=(vrl{xr),...,vrk(xr)), k-\r(x,) = £ Kvrl*-,), xreU, AeR\

Clearly, the function <f>:Rk->Rk is continuous and <f>(k)^O. Also, for any real c^O,

1/2 (2.5)

Let Q denote the set of points k for which <f>(k)>0. It follows from (2.5) that the sets Q
and Q are cones (a set AcRk is said to be a cone if, for any a 6 / 4 , cae-4 for all c>0) .

Throughout the paper we will assume that the functions (x,k) —*k-vr(x), (x,k)eUxQ,
r=\,...,k, satisfy hypothesis U F , so that the result of Lemma 2.1 holds for the
differential equations (1.1).

3. Radial behaviour of k'

The estimate (1.3) shows that if the multiparameter system (1.1), (1.2) is uniformly
right definite, then ||̂ .'|| %: | | ' j | 2 for large ||i||. In this section we consider whether this
behaviour holds in general.

Suppose that, for some multi-index i, the eigenvalue k'% exists. By definition, for each
r=l,...,k, there is a solution of the differential equation (1.1) with ir zeros in (0,1).
Thus, by Lemma 2.1,

i = 7r-V(*) + 0(l), (3.1)

where the term 0(1) is bounded by a constant (given in Lemma 2.1) depending on the
functions pr, vrs, but not on k. Next, we observe that from the definition of 0,

Hence, if ||i|| is sufficiently large,

i.e. for any multiparameter problem of the form (1.1), (1.2), the eigenvalues k' cannot
grow more slowly than ||i||2.
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Example. Consider the system

0) (3.2)

(3.3)

(where n is any positive integer) with the boundary conditions

ur(0) = 0, nr(l)=0, r = l , 2 . (3.4)

For this system the determinant A(x) = x", so the system is right definite, but is not
uniformly right definite.

We now study the behaviour of the eigenvalues A(lim) as m-*ao. For a solution of
(3.3) to have exactly m interior zeros it is necessary that X^xm2. For a solution of (3.2)
to have exactly 1 interior zero it is necessary that 01(A)»s 1. Now,

<t>i(l)= 7 (A-A2^)1/2dx1 = J(A1-A1
0 0

(substituting x1=(A1/A2)
1/"z). Therefore we must have A2«An,/2 + I x m n + 2 , and so ||A(1-m)||

xmn+2.
This example shows that if we weaken uniform right definiteness to right definiteness

then the eigenvalues A1 can grow faster than ||i||a, for any positive a. We will now
describe a simple condition which ensures that ĤL1!! ŝs ||i||2>

For each r = 1,..., k, let

The sets Nr are cones and, for each r, 0eNr and 0edNr unless Nr = Rk, which only
happens if vrs=0 for all s.

Lemma 3.1. Suppose that the cones Nr satisfy

Qnf]dNr = {0}. (3.5)
r = l

Then there exist constants c5, c6>0, such that for all XeQ,

^c6\\X\\. (3.6)

Proof. We know that the second inequality holds in general, so we must prove the
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first inequality. Let mr(A) = max{Avr(xr):xr6[/}. If A eg, then for each r, mr(A)>0. Now
suppose that there exists a sequence of unit vectors A"eQ, n = l,2,..., such that
mr(A")-»0, for all r=l,...,k. By taking a subsequence, if necessary, we may suppose that
An->A°°eQ, A°°^0. Also, for each r we have ror(A

n)>0, n=l,2,..., but mr(A°°) = 0 (by
continuity), so A°°edNr, which, since A^^O, contradicts (3.5). Thus there exists c7>0
such that for any unit vector keQ there is an r for which mAfy^c-,. Hence, since the
functions vr, are C2, it follows that for any AeQ, there is an r, and an interval U^U of
length | t / J^c 8 , such that

and so the result follows from the definition of <f>.

We observe that in the above example A=(0, l)eQndNi ndN2, which is the
direction of rapid growth of the eigenvalues A(lm).

Corollary 3.2. 7/(3.5) holds, then there exists a constant c l o >0 such that if the
eigenvalue X' exists and A' e Q, then

ol ie (3-7)

We necessarily have k'eQ if, for instance, the operators, TT are negative definite
(which is assumed in the left definite case, see Section 4). Thus, in this case (3.5) implies
(3.7). Similarly, (3.5) implies (3.7) if the operators Tr can be made negative definite by an
eigenvalue transformation (as is the case under uniform right definiteness, for example).

The condition (3.5) in Lemma 3.1 does not depend on any particular definiteness
conditions, but various such conditions ensure that it holds. For instance, it follows
easily from Lemma 2.4 of [10] that uniform right definiteness implies (3.5). Also, it will
be shown below that left definiteness (uniform and non-uniform) implies (3.5) (see
Section 4 below for the definition of left definiteness and Sections 4 and 6 for the proof
of this result). The above example shows that right definiteness does not imply (3.5);
however, it will be shown in Section 5 that if the system is right definite and, for each r,
the functions {vrs:s= l,...,k} are linearly independent then (3.5) holds.

4. The uniformly left definite case

Let

, vki(xk)

The determinant A(x) = det V{\), and we define Ara(x) to be the cofactor of vr,(xr) in the
expansion of the determinant A(x).

https://doi.org/10.1017/S0013091500006088 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006088


MULTIPARAMETER STURM-LIOUVILLE SYSTEMS II 307

Definition. We say that the multiparameter system (1.1), (1.2) is uniformly left definite
if the following two conditions hold:
LD,:each operator Tr, r=l,...,k, is strictly negative definite.
LD\: ArJ(x) > 0, for all x e Uk, r, s = 1,..., k.
We say that the multiparameter system (1.1), (1.2) is left definite if LD, and the following
conditions holds:
LDS: AJx) > 0, for almost all x e Uk, r, s = 1,..., k.

Clearly a uniformly left definite system is left definite. Note that what we are calling
uniform left definiteness has often been called simply left definiteness in the literature.
Note also that conditions LDg is different to the condition used in the definition of
(uniform) left definiteness in, for example, [11]; however, it is shown in [2] that the
definitions are equivalent (after an invertible linear transformation of the eigenvalues, if
necessary).

Suppose that (1.1), (1.2) is left definite. We define the cones Q± c Q by

Q± = {AeRk:3xeC/(l such that Avr(xr)>0,r=l,...,fc, and ±A(x)>0}.

The cones Q± are the analogues, in the present setting, of the cones C± defined in
section 4.1 of [3] in an abstract setting. For any keQ, there are open intervals UrczU
such that k • vr(xr) > 0, xr e Ur, r = 1,..., k, so, from LDa, there is a point x e Uk such that

A(x)A,= £ Ar((xKs(xr)As= £ Ar,(x)*vr(xr)>0, 1=1,...,k.
r , s = l r = l

It follows that A(x)#0, so keQ-uQ + and the components kh l=l,...,k, of A are
non-zero and have the same sign as A(x). Thus, Q = Q- u Q + , and g ± c R ' ± .

In the left definite case we have the following Klein type oscillation theorem, see
Corollary 5.6 of [5].

Theorem 4.1. Suppose that the multiparameter system (1.1), (1.2) is left definite. Then
for each multi-index i, and each non-empty cone Q± there exists a unique eigenvalue
kii:eQ± of (1.1), (1.2) such that, for each r, a corresponding solution of (1.1), (1.2) has
precisely ir zeros in the open interval (0,1). There are no other eigenvalues.

We remark that Corollary 5.6 of [5] uses a slightly weaker condition than LD,, but
condition LD, is required in the proofs of the main theorems below to ensure that the
eigenvalues lie in the set Q.

Note also that Q ± ^ 0 «> 3x e Uk such that + A(x)>0. To avoid the trivial case of no
eigenvalues we assume that A#0, and hence, by reordering the system if necessary, we
may suppose that A(x)>0 for some x, and so Q + ¥=0- We will discuss the distribution
of the eigenvalues k'+ in Q+; a similar discussion applies to the k'~ eQ_ if Q_ # 0 .

For the remainder of this section we suppose that the system (1.1), (1.2) is uniformly
left definite. The distribution of the eigenvalues in the (non-uniform) left definite case
will be discussed in Section 6.
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We now define the matrices Vr(\), r = \,...,k, to be the matrices obtained by replacing
the rth row of V(x) with the vector «=(1 , . . . , 1). Condition LD'S implies that for each r
and each x e Uk, det Vr(x) > 0, so the matrix Kr(x) is non-singular. Also, let cu1 denote the
set

Lemma 4.2. For any veto1, there exist integers r± such that

Proof. Choose any unit vector ve©1. Now suppose that for some r, and all
there exist points x°. such that v• vr.(x°) = 0. Then letting x° = (x?,...,x°), with \°=j say,
we have J/

r(x°)v=0 (where Fr(x°)v denotes the standard matrix product, with v regarded
as a column matrix), which contradicts the non-singularity of the matrix Vr(\°). Hence,
for each r there is an r'^r such that vvr.#0; therefore, letting R(v) denote the set of
integers r for which v • vr # 0, the number of elements of R(v) is at least 2. Now suppose
that v• vr>0, reR(v). By the definition of R(v), there exists a point xe Uk such that

vv,(xr) = pr, r=\,...,k, (4.1)

where pr>0, reR(v), and pr = 0, r$R(v). From (4.1) and LDS
S we obtain

A(x)v ,= £ Ar /(x) £ vrs(xr)vs= £ A r , (x )p r >0 , / = 1 , . . . , * ,
r = l s = l r = l

so the numbers vr, r=l,...,fe, are all non-zero and have the same sign. However, this
contradicts the hypothesis that v w = 0, and so our supposition that vv r >0, reR(v),
must be false. Similarly, we cannot have vvr<0, re/?(v). Therefore, letting R±(y) denote
the set of integers r for which ± v vP>0, each set R±(v) must be non-empty for any unit
vector veto1.

Now suppose that there exists a sequence of unit vectors v"6tox, n = l,2,..., such that
for all reR+(v"), min{vnvr(xr):xret/}<n~1. By taking a subsequence, if necessary, we
may assume that v"-»vcoeeo1, and the sets R±(v"), n = l,2,..., are constant, and equal to
R±, say. By continuity, for each reR+ the function v°°vr has a zero, so r^/?+(v<o); for
each reR- the function v°°vr^0, so r£R+(v°°); for each r$R+uR- the function
v^v,. has a zero, so r£/?+(v°°). However, this contradicts the fact proved above that
K+(v°°) must be non-empty. Therefore there exists a constant c1 2>0 such that for all
unit vectors veto1, we have v v r ^ c 1 2 , for some reR+(v). We can obtain a similar result
for the set R-{v), so the lemma follows.

Lemma 43. If the system (1.1), (1.2) is uniformly left definite then condition (3.5) holds.

Proof. Suppose that X=£0 and keQ n f]k
r=idNr. Since the set Q = Q- u Q+ is a cone

and 6±cR*± ) there exists a vector veto1 such that X+veQ. However, since Aef)*=1

https://doi.org/10.1017/S0013091500006088 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006088


MULTIPARAMETER STURM-LIOUVILLE SYSTEMS II 309

dNr, we have A v r ^ 0 for all r, and it follows from Lemma 4.2 that vv r 5^0 , for some r',
hence (>l + v ) v r . ^ 0 , which contradicts X + veQ and so proves the lemma.

The discussion on Section 3 now yields the following corollary.

Corollary 4.4. If the system (1.1), (1.2) is uniformly left definite then ||Al+||«||i||2, for
all i. A similar result holds for the eigenvalues X'~, if they exist.

Lemma 4.5. Suppose that XeQ+ and ||A|| = 1. Then for any /ieRk with | |AI| |^1 and
X+/ieQ + , we have:

(0 ||tf>(A+/i)-4>(A)||^c13|H|3; (4.2)

(ii) if, for some e, 0 < e < 1, we have <j>(k) ^ (e,. . . , a) and <f>(X + fi) ̂  (e,..., e), then

y . (4.3)

Proof. Since AeQ+<=Rk
+ and cu=( l , . . . , l ) , fi can be written in the form /i=<xX + v,

where veto1 and a, v are uniquely defined and satisfy

c 1 5 y^|a | + ||v||gc16||4 (4.4)

We may suppose that a^O (the case <x<0 can be dealt with similarly). Now suppose
that a>c17| |v| |1 /2, where c17 is sufficiently large (the specific criterion will be given
below). Then, if # r (^)^c 1 8 (this is true for some r by Lemmas 3.1 and 4.3), we have

if Cn is sufficiently large (the first inequality above is obtained from the integral defining
(f>r((l+a)X + v) by applying the general inequality [a + fc]V2^M + 2 —
2\b\l'2,a,beR; the second inequality uses the fact that a^c 1 6 ) .

Now suppose that <xgc17||v||1/2, (and hence ||/i||^c22||v||I/2, by (4.4), since
||v||^C23||v||1/2) and suppose that

(this is true for some r by Lemma 4.2). This inequality is (2.25) in the proof of Lemma
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2.6 of [10] (in the notation used there, we have (l+a)X = k1, (l+a)>l + v = A2 and
v = k2 — k1), and leads to inequality (2.31) in [10], which in the present case is

Similarly, if the hypotheses of part (ii) of the lemma hold, inequality (2.31) in [10] leads
to

Thus, in the general case we have

and, if the hypotheses of part (ii) of the lemma hold, we have

<p,(k + ft) - (t>,W = <t>A

These results prove the lemma.

We now let Rj denote the closed set in R* consisting of those vectors k^O such that
| | | |^(6,. . . ,e), together with 0. Also, we let <l>+ denote the restriction of 4> to t n e set

Theorem 4.6. The mapping <f>+:Q + -»fi*+ is a homeomorphism. Let <f>+l:Rk
+-*Q+

denote the inverse of this homeomorphism. The restriction of <f>+1 to R+nS j is Holder
continuous with exponent 3. The eigenvalues i}+ of the multiparameter problem satisfy

for all multi-indices i#0. For any e with 0 < e ^ l , the restriction of 0+1 to RjnSx is
Lipschitz continuous with Lipschitz constant c^e'1, and for all ieRj,
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Proof. The proof is almost identical to the proof of Theorem 3.1 of [10], using the
results of Lemma 4.5.

We observe that the error estimate O(||i||5/3) is larger than the corresponding estimate
O(||i||4/3) obtained in Theorem 3.1 of [10]. This is due to the fact that we cannot assert
that for all >l#0 there is an r such that A v r # 0 , as we can under uniform right
definiteness (c.f. Lemma 2.4 in [10] and Lemma 4.2 above). Probably both these
estimates are too pessimistic for many multiparameter systems (in particular, see the
third part of Theorem 3.1 of [10]).

5. The right definite case

In this section we suppose that the system (1.1), (1.2) is right definite. Lemma 3.1 gave
a condition which ensures that the radial behaviour of the eigenvalues X1 is as described
in (1.3) for large ||i|| (assuming, in addition, that condition LD, holds; see the discussion
in Section 3). We will now discuss a condition which ensures that the 'angular'
behaviour of the A' is as described in (1.3), at least in subcones of Q which lie 'strictly'
inside Q.

We begin with some constructions which will enable us to deal with the loss of
uniformity compared with the uniform right definite case. For any u = (u1,...,uk)e
0J=iL2(C7), let W(u) denote the kxk matrix with (r,s) element equal to (vrsur,ur),
where (•,•) denotes the inner product in L2(U). It can easily be seen that right
definiteness implies that if u has wr#0, r=l,...,k, then detH/(u)#0, i.e. the matrix W(a)
is non-singular.

Lemma 5.1. For any keRk there exists r such that XeNr\jPr.

Proof. Suppose that there exists X#0 such that A$NrvPr for all r = 1,. . . ,k (i.e. the
functions X\r attain both positive and negative values). Then since the rth element of
the matrix product W(u)A is given by

]k-vr(xr)\uAxr)\
2dxr,

0

we can choose non-zero functions ureL2(U), r=l,...,k, such that W(u)X=0, which
contradicts right definiteness, and so proves the lemma.

Now, for each r=l,...,k, let

Z r = { k R ' : A v r = 0 o n a subset of U with positive measure}.

The set Z, need not be a subset of Nr u Pr, but if Zr intersects Nr u Pr then
Zrn(Nru Pr)czdNrv dPr (to see this suppose that k e Zr n (Nr u Pr). Right definiteness
implies that at least one of the functions vrs, s=\,...,k, is non-zero somewhere on the
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interval on which Avr=O, so there exist points A* arbitrarily close to A for which

Lemma 5.2. Suppose that

Zrn(NruPr)c{O}u(j( intAr tuintP,) , r=l,...,k. (5.1)

Then, for any e with 0 < e ^ 1, there is a number y(e)>0 such that for any AeR* there is an
integer r, for which k e Nr u Pr and

| | | | | , x,$Ur(k,e),

where the set Ur(k, e) <= U has measure \ Ur(k, e)| < £.

Remark. If Zr = {0}, r=\,...,k (e.g. if the functions vrs, s=l,...,k, are analytic and
linearly independent for each r), then condition (5.1) is satisfied.

Proof. Suppose that the assertion of the lemma is false and there exists an e > 0 and
a sequence of unit vectors k", n=l,2,..., such that, for those r for which k"eNruPr,
the sets

Un
r = {xr 6 U: \k" • vr(xr)\ ^ 1/n} c U

have measure |[/"|^e. By taking a subsequence, if necessary, we may assume that
A"-^A0O#0, and that there is a set of integers R such that k"eNrvProreR, for all n.
Letting U? = f)%=l\Jn=NUn

r, reR, we have |t/r°°|^e (see Q.2 in Exercises 13.2, p. 340 of
[12]), and by continuity, Acovr(xr) = 0, xpet/r°°. Thus: for reR we have kxeZr, and so
A00£int7VruintPr (since Zrn(Nru Pr)cdNr<u dPr); for r$R we have A°°^intiVru
intPr (since k"$Nr\jPr, n=l,2,. . .) . This contradicts condition (5.1), and so complete
the proof of the lemma.

Lemma 53. Suppose that (5.1) holds and that 0<e< 1. There exists a number <5(a)>0
such that if kleQ + , p ^ g l , 0(A') ^(e,..., e), i=l ,2, and I^-A1!! is sufficiently small,
then

l ^ - A 1 ! ! . (5.2)

Proof. Let p = k2—A1. By definition, for any r,

2 l \(xr)dxr, (5.3)

where ^r(xr) = [AJ vr(x,.) + //-vr(xr)]
1

+
/2-[A1 vr(xr)]V

2. Now, the maximum of the func-
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tions A'vr in U is greater than e2, and since the functions vr, are C2, it follows that
k'-\r^e2/2 on an interval Ur of length at least 2c3ie

2. Also, by Lemma 5.2, there is an r
such that

p-vJixr)Zy(c3ie
2)\\4, xr$U'r, (5.4)

where U'rc:U is an interval with |[/^|<c31e2 or (/rvr(x)^ — y(c31e
2)||/i||, xeU'r, in which

case we interchange kl and k2 to obtain (5.4)). Thus, the set U" = Urr\(U\U'r) has
measure |t/'r'|^c31£2, and

P• vr(xr)^y(c3l£
2)|H|, A1 • vr(xr)^e2/2, xr e

It follows from these inequalities that

if |||i|| is sufficiently small. The inequality (5.2) now follows from this estimate, (5.3) and
the estimate for \U"\.

Note that <5(e) may tend to zero as e->0.

Theorem 5.4. If (3.5) and (5.1) hold then the mapping <f>:Q-*Rk
+ is a homeomorphism,

with inverse <f>~1:Rk+-*Q. Also,for any e with 0 < e ^ l , the restriction of<p~l toRknSi is
Lipschitz continuous with Lipschitz constant S(e)~1. If condition LDt also holds then, for
a/ZieR*.

Proof. The proof is almost identical to the proof of Theorem 3.1 of [10] using
Lemmas 3.1 and 5.3.

We will now give a simple criterion for condition (3.5) to be satisfied when the system
is right definite.

Lemma 5.5. If, for each r, the functions {vrs:s=l,...,k} are linearly independent then
(3.5) holds.

Proof. Suppose that A#0, XeQnf]k
r=l dNr, and let k"eQ, n = 1,2,..., be a sequence

of vectors such that k"^k. It follows from Lemma 5.1 that, after taking a subsequence if
necessary, there is an r such that k"ePr for all n. But, by assumption, kedNr, so by
continuity we must have k\r=0. However, this contradicts the linear independence of
the functions {vrs:s=l,...,k} and so proves the lemma.
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Remark. The conditions (3.5) and (5.1) are independent of each other in the sense
that either can hold without the other. To see this let

and consider the 2 x 2 arrays of coefficient functions vrs given by

'1 - /A .... /1 / ;
»G / > » ( - •

It can be verified that both these arrays are right definite, but for (i), (3.5) holds and
(5.1) does not, while for (ii), (3.5) does not hold and (5.1) does.

6. The left definite case

In this section we suppose that the multiparameter system (1.1), (1.2) is left definite as
defined in Section 4. As noted in Section 4, the oscillation theorem, Theorem 4.1, is
valid under this hypothesis. Again we will assume that A(x)>0 for some x, and so
<2+#0, and we will discuss the distribution of the eigenvalues Xl+ in Q + . A similar
discussion applies to the A'~ eQ_ if Q_ # 0 .

For any u = (u1,...,Mk)e©Jl=1 L
2(U) we let W£u), r=l,...,k, denote the matrix

obtained by replacing the rth row of W(u) (defined in Section 5) with the vector
tu = (l , . . . , 1). Left defmiteness implies that for each r and each u with ur#0, r=l,...,k,
det Wr(a) > 0, so the matrix Wr(n) is non-singular.

Lemma 6.1. For any veto1 there exist integers r± such that

+ vvr ±(xr)>0, a.e. xr±eU.

Proof. The proof of this lemma is similar to the proof of Lemma 4.2, but using the
matrices Wr(u) instead of the matrices Vr{x), as in the proof of Lemma 5.1.

Lemma 6.2. If the system (1.1), (1.2) is left definite then condition (3.5) holds.

Proof. The proof of this lemma is similar to the proof of Lemma 4.3, but using
Lemma 6.1, rather than Lemma 4.2.

Corollary 63. If the system (1.1), (1.2) is left definite then ||Ai+1|«\\\\\2, for all i.

Thus, of all the defmiteness conditions considered in this paper, only (non-uniform)
right defmiteness allows the eigenvalues to grow faster than Hill2.
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Lemma 6.4. Suppose that

k

Zrn(7VruPr)n<oxc{0}u U(intN,uintP(), r=\,...,k. (6.1)
1 = 1

Then, for any e with 0 < e ^ 1, there is a number y(fi)>0 such that for any v e o 1 , there are
integers r±, for which

±vy,(xr±)£y(e)||v||, xr±4Ur±(v,e),

where the sets Ur±{y,e)aU have measures |C/r±(v,e)|<e.

Proof. The proof of this lemma is similar to the proof of Lemma 5.2.

Remark. When k = 2, it follows from Lemma 6.1 that Z r n c u 1 = {0}, so in this case
condition (6.1) holds automatically.

We can now use Lemma 6.4 to obtain the following theorem on the distribution of
the multiparameter eigenvalues in the left definite case, using similar methods to those
used to obtain Theorems 4.6 and 5.4.

Theorem 6.5. //(6.1) holds then the mapping <p+:Q + -*Rk+ is a homeomorphism, with
inverse <p + 1:Jtk+-*Q + . Also, for any e with 0<£5=l, there is a number <5(E)>0 such that
the restriction of 0 + 1 to R^nSi is Lipschitz continuous with Lipschitz constant
and, for all i eRj ,
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