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Numerical simulations of thermoelectrohydrodynamic convection in a dielectric liquid
inside a finite-length cylindrical annulus with a fixed temperature difference have been
performed with increasing high-frequency electric tension under microgravity conditions.
The electric field, coupled with the permittivity gradient, generates a dielectrophoretic
buoyancy force whose non-conservative part can induce thermoelectric convection in the
liquid. The liquid remains in a conductive state below a critical value of the applied electric
voltage. At a critical value, a supercritical bifurcation occurs from the conductive state to
a convective state made of stationary helicoidal vortices. A further increase of electric
voltage leads to oscillatory helicoidal vortices and then to wavy patterns before spoke
patterns dominate the convective flow. The dielectrophoretic force is shown to enhance the
heat transfer from the hot to cold walls due to induced convective flows. Particularly, these
results demonstrate that the dielectrophoretic buoyancy force holds promise to replace the
gravitational force to induce efficient heat transfer in microgravity conditions, and they
contribute to a better fundamental understanding of heat transfer in microgravity.
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1. Introduction

Thermal convection induced by electric fields in dielectric fluids has attracted significant
attention from many researchers over the last few decades due to its promising potential
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applications in geophysics (Hart, Glatzmaier & Toomre, 1986; Futterer et al. 2013)
and in heat exchange systems (Allen & Karayiannis, 1995; Laohalertdecha, Naphon &
Wongwises, 2007). Indeed, when a high-frequency electric voltage is imposed on a
dielectric fluid with a temperature gradient, a dielectrophoretic (DEP) force is generated
(Landau & Lifshitz, 1984), and it can lead to thermoelectric convective flow (Roberts,
1969; Turnbull, 1969; Chandra & Smylie, 1972; Yoshikawa, Crumeyrolle & Mutabazi,
2013; Travnikov, Crumeyrolle & Mutabazi, 2015, 2016; Mutabazi et al. 2016). The
thermoelectrohydrodynamic (TEHD) convection induced by the DEP force has been
demonstrated in experiments conducted in the microgravity environment of Spacelab 3
onboard the space shuttle Challenger (Hart et al. 1986), in the GeoFlow experiments
performed under microgravity conditions on the International Space Station (ISS)
(Futterer et al. 2008, 2013), in parabolic flight experiments with 22-second periods of
microgravity (Dahley et al. 2011; Meyer et al. 2017, 2018, 2019; Meier et al. 2018) and
recently in sounding rocket flight with a microgravity phase of six minutes (Meyer et al.
2023).

In recent years, particular attention has focused on theoretical investigations of THED
convection in a dielectric fluid inside a cylindrical annular cavity under microgravity
conditions. Yoshikawa et al. (2013) solved the linear stability problem of the thermal
convection driven by the DEP force under microgravity conditions and found that
the critical modes are stationary and non-axisymmetric (helices). The critical electric
Rayleigh number, based on an electric gravity, and the critical wavenumber depend
sensitively on the radius ratio. Travnikov et al. (2015, 2016) performed three-dimensional
(3-D) numerical simulations with periodic boundary conditions. These authors showed
that the bifurcation from the base state to convective flow is supercritical and that the
Nusselt number characterizing the heat transfer induced by the DEP force is sensitive to
the Prandtl number (Pr) and the radius ratio (η). Futterer et al. (2016) experimentally
studied heat transfer in a vertical annulus with a finite length subject to the DEP force
under Earth’s conditions and found that the DEP force enhances heat transfer. Meyer
et al. (2017) addressed the stability problem of a dielectric liquid with a high Prandtl
number under the combined influence of the Earth’s gravity and electric gravity. Their
theoretical analysis revealed that the critical mode is stationary columnar vortices with
axes parallel to the cylinder axis under the Earth’s gravity, whereas it consists of inclined
stationary (helical) vortices under microgravity conditions. Experiments performed in
parabolic flight (Meyer et al. 2017) and more recently in sounding rocket flight (Meyer
et al. 2023) confirmed the existence of non-axisymmetric modes. Since then, Meyer et al.
(2018) carried out numerical simulations of the problem incorporating time-varying axial
gravity, which corresponds to the parabolic flight scenario, with forces ranging from 0 g
to ∼1.8 g. These simulations revealed that the thermoelectric convection generated during
a precedent hypergravity phase is not completely dissipated during the microgravity phase
and affects the evaluation of the heat transfer. Meier et al. (2018) and Meyer et al. (2023)
utilized two different measurement techniques (particle image velocimetry (PIV) and the
shadowgraph technique) to determine the structure and temperature distribution of the
flow and hence gained a better understanding of the flow patterns and heat transfer. These
experimental results exhibited a good qualitative agreement with linear stability theory
(Yoshikawa et al. 2013; Meyer et al. 2017) and numerical simulations (Travnikov et al.
2015).

Recently, the authors of this work studied thermoelectric convection in a finite-length
cylindrical annulus under the Earth’s gravity using direct numerical simulations (DNS)
(Kang & Mutabazi 2019, 2021). It was revealed that the DEP force induces a
thermoelectric convective flow in the form of stationary columnar vortices at a threshold;
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these columnar vortices bifurcate to regular wave patterns and then to spatiotemporal
chaotic patterns with an increase in the electric tension. The heat transfer coefficient
associated with these TEHD flows was significantly enhanced with increased electric
tension.

In this study, we conduct DNS of the thermoelectric convection in a dielectric liquid
confined in a finite-length cylindrical annulus under microgravity conditions. A new code
has been developed to complement the work of Travnikov et al. (2015) by replacing the
periodic boundary conditions with realistic boundary conditions and to extend it to a
large range of values of the control parameter. Specifically, we have imposed a vanishing
velocity field and adiabatic conditions at the endplates of the annulus were employed for
a large range of applied electric tension values. The temperature difference imposed at the
cylindrical walls of the annular cavity is fixed and the magnitude of the electric tension
is varied in order to emphasize the effect of the electric tension in TEHD. We followed
the same protocol used in test experiments in parabolic and sounding rocket flights (Meyer
et al. 2017, 2023). Transitions from the base state (conduction state) are investigated as
the applied electric voltage increases, and the corresponding TEHD flow structures are
characterized by spatial and temporal analysis. In addition, the heat transfer coefficient is
calculated to evaluate the heat transfer capacity of TEHD convection inside the dielectric
liquid by varying the intensity of the electric field for a fixed temperature difference.

The paper is organized as follows. Section 2 describes the governing equations, defines
the dimensionless parameters and properties of the fluid and presents the numerical
scheme used in the DNS. The results are addressed in § 3 and discussed in § 4. The
conclusion is presented in § 5.

2. Formulation of the problem

We consider a Newtonian dielectric liquid with a density ρ, thermal expansion coefficient
α, kinematic viscosity ν, thermal diffusivity κ and permittivity ε. The liquid is contained
in a stationary cylindrical annulus of the length H and gap width d = R2 − R1, where
R1 and R2 are the radii of the inner and outer cylinders, respectively (figure 1). In the
simulation, we assume zero-gravity conditions (g = 0). Indeed, for the microgravity phase
of parabolic flight, the gravity is G ∼ 10−2 g while in sounding rockets G ∼ 10−5 g and
in the ISS G ∼ 10−6 g. The cylinders are maintained at different constant temperatures
T1 and T2, (where T2 = T1 − �T), respectively, leading to a radial temperature gradient
acting on the fluid. The top and bottom endplates are thermally isolated. A high-frequency
alternating electrical voltage V(t) = √

2V0 sin(2πft) is applied to the liquid inside the
annulus and coupled to the temperature gradient, and it induces a DEP buoyancy
force.

An electric field E applied to the dielectric fluid of permittivity ε and density ρ induces
an electrical body force whose density is given by (Landau & Lifshitz, 1984)

f = ρeE − 1
2

E2∇ε + ∇
[

1
2
ρ

(
∂ε

∂ρ

)
T

E2
]

, (2.1)

where ρe is the free electric charge density. The first term is the Coulomb force density.
The second and third terms represent the densities of the DEP force f dep and the
electrostriction force, respectively. The Coulomb force density is dominant only in the
static or low-frequency electric field regimes (Yavorskaya, Fomina & Belyaev, 1984).
When high-frequency electric tension is applied to the cylindrical capacitor (Kang &
Mutabazi, 2021), the fluid cannot respond to the rapid variations in the electric field and
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d
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�2V0 sin(2πft)

Figure 1. Flow configuration: two cylinders of inner and outer radii R1 and R2 kept at two different
temperatures T1 and T2, respectively. The annulus has a length H and a gap width d = R2 − R1.
A high-frequency electric tension with the effective value V0 is applied to the inner electrode, while the outer
one is grounded.

the Coulomb force does not affect the fluid motion. The high-frequency field variation
prevents the formation of the free charges in the fluid, provided that the frequency
f � (τ−1

ν , τ−1
κ , τ−1

e ), where τv = d2/ν, τκ = d2/κ and τe = σe/ε represent characteristic
times of viscous dissipation, thermal diffusion and electric relaxation, respectively (Kang
& Mutabazi 2019), where σe is the electrical conductivity of the fluid. The electrostriction
force, the third term in (2.1), can be lumped with the pressure force in the momentum
equation. It does not affect fluid motion for incompressible fluids without any interface
or moving boundary. Therefore, only the time-independent component of the DEP force
affects the fluid motion within the high-frequency approximation (Landau & Lifshitz,
2000; Smorodin, 2001; Zhakin, 2012). The DEP force in (2.1) pertains to the electric
energy and the inhomogeneity of the permittivity from either the temperature or the
composition variations in the fluid (Mutabazi et al. 2016, Kang & Mutabazi, 2021). In
the present study, this spatial variation of permittivity results from temperature gradients.

2.1. Governing equations
We employ the electrohydrodynamic (EHD) Boussinesq–Oberbeck approximation
(Roberts, 1969; Yoshikawa et al. 2013), in which all fluid properties are assumed to
be constant with respect to temperature (T) except for the density (ρ) and permittivity
(ε), which are assumed to vary linearly with the temperature, i.e. ρ(θ) = ρref (1 − αθ)

and ε(θ) = εref (1 − eθ). Here ρref and εref are the density and the electric permittivity
at a reference temperature Tref , i.e. ρref = ρ(Tref ) and εref = ε(Tref ), respectively. The
quantity θ denotes the temperature deviation from the reference temperature (θ = T −
Tref ), and e = −(∂ε/∂T)p/εref is the thermal coefficient of the permittivity. While
α ∼ 10−3 K−1 for most dielectric liquids, e covers a wide range from 10−3 K−1 to
10−1 K−1 (Mutabazi et al. 2016). The temperature of the outer cylinder T2 is chosen
as the reference temperature throughout the present manuscript, i.e. Tref = T2, thus
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εref = ε(T2) = ε2. Within the EHD Boussinesq approximation, the DEP force is
decomposed into a non-conservative force, which is a source of fluid motion, and a
conservative one, which is derived from a scalar potential, Ψe, as follows (Chandra &
Smylie, 1972; Malik et al. 2012; Yoshikawa et al. 2013, 2015; Kang et al. 2017):

− 1
2 E2∇ε = −ρref αθge + ∇Ψe, (2.2)

where ge is called the electric gravity and is defined as ge = −∇Φe. The potentials Φe
and Ψe are given by

Φe = −eεref E2

2αρ
, Ψe = eεref θ

E2

2
. (2.3a,b)

The quantity Φe, which is proportional to the density of electric field energy, is the
analogue of the geopotential (Hart et al. 1986). Accordingly, the non-conservative term
(−ραge) of the DEP force can be regarded as a buoyancy force (like the Archimedean
buoyancy (−ραg), but in response to the electric gravity field. This electric gravity
buoyancy term is responsible for thermoelectric convection (Smylie, 1966; Roberts, 1969;
Yoshikawa et al. 2013).

The governing equations of the fluid are the conservation laws of mass, momentum,
energy and Gauss’s law, as follows (Kang & Mutabazi 2019, 2021):

∇ · u = 0, (2.4a)

∂u
∂t

+ (u · ∇)u = −∇π + ν∇2u − αθge, (2.4b)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ, (2.4c)

∇ · (εE) = 0 with E = −∇φ, (2.4d)

where u represents the velocity vector (ur, uϕ, uz) in the cylindrical coordinate system
(r, ϕ, z). In (2.4d), φ is the potential of the effective electric field E acting on the fluid
(Yoshikawa et al. 2015; Kang et al. 2017; Kang & Mutabazi 2019, 2021). Indeed, the
frequency of the alternating electric field is sufficiently high compared with the inverses
of all flow characteristic times, such that the flow is described by the average values over
the period of the electric field oscillations (Yavorskaya et al. 1984; Landau & Lifshitz,
2000). The last term in (2.4b) indicates the DEP buoyancy force, which is the source of
the thermoelectric convective flow. Following Yavorskaya et al. (1984), we have neglected
the electric Joule heating in the energy equation (2.4c). The temperature is coupled with
the electric potential through (2.4d). The electric field introduces an electric pressure pelec
which comes from the conservative part of the DEP force and from the electrostriction
force (Yoshikawa et al. 2013). Accordingly, the total pressure acting on the fluid is given
by

ρπ = p − 1
2

[
eε2θ + ρ

(
∂ε

∂ρ

)
T

]
E2. (2.5a)

The Bernoulli function per unit mass π satisfies the following equation:

∇2π = 2Q − α∇θ · ge, (2.5b)

with Q = (ω2 − σ 2)/2 is the second invariant of the velocity gradient ∇u (Jeong &
Hussain, 1995) where ω2 = ω · ω is the enstrophy and σ 2 = u · (∇ × ω) measures the
local dissipation of the kinetic energy by viscosity.

991 A7-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.538


C. Kang, I. Mutabazi and H.N. Yoshikawa

The flow vorticity ω = ∇ × u satisfies the following transport equation:

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∇2ω − α∇θ × ge. (2.6)

Equation (2.6) shows that the DEP buoyancy is a source of vorticity. We use the cylindrical
coordinate system (r, ϕ, z), where the velocity vector u = (ur, uϕ, uz).

The electric gravity can be split in two terms as follows: ge = geb + g′
e, where geb =

geber is the electric gravity in the conduction state while g′
e is the electric gravity induced

by the perturbation. Thus, the source terms are expressed by

α∇θ×ge = α

[{
1
r

∂θ ′

∂ϕ
g′

e,z − ∂θ ′

∂z
g′

e,ϕ

}
er +

{
∂θ ′

∂z
(geb+g′

e,r) −
(

dθb

dr
+ ∂θ ′

∂r

)
g′

e,z

}
eϕ

+
{(

dθb
dr

+ ∂θ ′

∂r

)
g′

e,ϕ − 1
r

∂θ ′

∂ϕ
(geb + g′

e,r)

}
ez

]
,

(2.7)
where θ = θb + θ ′, with θb expressing the temperature in the conduction state.

From the governing equations (2.4), one can derive the variation of the kinetic energy
per unit mass K = u2/2 averaged over the flow volume,

d〈K〉V

dt
= −〈αθge · u〉V − 〈D〉V , (2.8)

where 〈X〉V = (1/V)
∫∫∫

X dV . The first term in the right-hand side of (2.8) is the power
of the DEP buoyancy and D represents the viscous dissipation of the kinetic energy. In
cylindrical coordinates (r, ϕ, z), the viscous dissipation D in an incompressible flow is
given by (Bird, Stewart & Lightfoot, 1960)

D = 2ν

[(
∂ur

∂r

)2

+
(

1
r

∂uϕ

∂ϕ
+ ur

r

)2

+
(

∂uz

∂z

)2
]

+ ν

[
r

∂

∂r

(uϕ

r

)
+ 1

r
∂ur

∂ϕ

]2

+ ν

[
1
r

∂uz

∂ϕ
+ ∂uϕ

∂z

]2

+ ν

[
∂ur

∂z
+ ∂uz

∂r

]2

. (2.9)

The power spectrum of the volume-averaged kinetic energy per unit mass P( f ) =∫ +∞
−∞ 〈K〉V(t) exp(−2πif (t)) dt will be used to study the time evolution of the

thermoelectric convective patterns.
The enstrophy ω2 = ω · ω is governed by the following equation (Pope 2000; Davidson

2013):

d〈ω2/2〉V

dt
=〈ωiωjSij〉V −ν〈(∇ × ω)2〉V +ν〈∇ · [ω×(∇×ω)]〉V − 〈ω · (α∇θ × G)〉V ,

(2.10)

where the Sij are the components of the strain rate tensor, the Einstein convention, i.e.
the summation rule over repeated indices, is applied in the first term on the right-hand
side of (2.10). This equation is an extension of the enstrophy equation for isothermal
flows (Davidson, 2013) to non-isothermal flows. The enstrophy balance is ensured by the
stretching and compression of vorticity tubes, the production by buoyancy forces and the
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η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.999

103C 8.84 9.82 9.27 8.10 6.69 5.23 3.81 2.47 1.24 0.22 0.13

Table 1. Values of C for γe = 10−2 for different values of the radius ratio η.

viscous dissipation. In cylindrical coordinates, the first term in the right-hand side of (2.10)
reads

ωiωjSij = ω2
r Srr + ω2

ϕSϕϕ + ω2
z Szz + 2(ωrωϕSrϕ + ωrωzSrz + ωϕωzSϕz), (2.11)

where the components of the strain tensor are given by

Srr = ∂ur

∂r
, Sϕϕ = 1

r
∂uϕ

∂ϕ
+ ur

r
, Szz = ∂uz

∂z
,

Srϕ = 1
2

[
r

∂

∂r

(uϕ

r

)
+ 1

r
∂ur

∂ϕ

]
,

Srz = 1
2

(
∂ur

∂z
+ ∂uz

∂r

)
, Sϕz = 1

2

(
1
r

∂uz

∂ϕ
+ ∂uϕ

∂z

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.12)

2.2. Dimensionless flow parameters
We choose the gap width d as the scale for lengths, the ratio ν/d as the scale for velocity,
the viscous diffusion time d2/ν as the scale for time, the temperature difference between
the cylindrical surfaces �T = T1 − T2 for the temperature scale and V0/d as the scale for
the electric field. Then, we can group the resulting control parameters into two categories:
geometrical and physical. First, the geometrical dimensionless parameters are the radius
ratio η = R1/R2 and the axial aspect ratio Γ = H/d. The radius ratio can be replaced
by the azimuthal aspect ratio Γϕ = 2πR̄/d = π(1 + η)/(1 − η), where R̄ = (R1 + R2)/2.
The physical control parameters are the Prandtl number Pr = ν/κ , which is the ratio of
diffusive time scales of the fluid, and the dimensionless electric tension VE = V0/Vc,
where Vc = √

ρνκ/ε2 is a characteristic electric tension of the dielectric fluid (Kang &
Mutabazi, 2021). The control parameter VE is related to the electric Rayleigh number
L = α�Tged3/νκ which can be expressed as L = CV2

E. Here, the conversion constant C
depends on the radius ratio η and the thermoelectric coupling coefficient, γe = e�T , as
follows:

C(η, γe) = γe

(
2(1 − η)

1 + η

)3(
γe

ln(1 − γe)

)2 ln η − γe[1 + ln{(1 + η)/2}]
[ln η − γe ln{(1 + η)/2}]3 . (2.13)

Some values of C are given in table 1 for γe = 10−2.

2.3. Numerical methods and computational details
The governing equations (2.4) were discretized in a cylindrical coordinated system using
the finite volume method. For the flow field, second-order-accurate central differencing
was utilized for the spatial discretization. For the temperature field, a central difference
scheme was used for diffusion terms, and the QUICK (quadratic upstream interpolation for
convective kinematics) scheme was employed for convective terms. A hybrid scheme was
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used for the time advancement; nonlinear terms and cross-diffusion terms are explicitly
advanced by a third-order Runge–Kutta scheme, and the other terms, except for the
pressure gradient terms, are implicitly advanced by the Crank–Nicolson scheme (Kang,
Yang & Mutabazi, 2015). A fractional step method was employed to couple the continuity
equation and pressure in the momentum equations (Kim & Moin, 1985). The Poisson
equation resulting from the second stage of the fractional step method was solved by
a multigrid method (Kang et al. 2015). The Laplace Equation (2.4d) for the electric
potential was solved by the PBCG (preconditioned biconjugate gradient) method (Kang
& Mutabazi, 2019, 2021).

In the time-averaged description, the boundary conditions are

u = 0, θ = 1, φ = 1 at r = η/(1 − η)

u = 0, θ = 0, φ = 0 at r = 1/(1 − η)

u = 0, ∂θ/∂z = 0, ∂φ/∂z = 0 at z = 0 and z = Γ

⎫⎪⎬
⎪⎭ . (2.14)

The no-slip condition was employed on all surfaces of the cylindrical annulus, including
the endplates. The lateral cylindrical surfaces were maintained at different constant
temperatures and electric potentials, while the Neumann conditions for the temperature
and the electric potential were applied on the top and bottom endplates.

Direct numerical simulations were conducted for a fixed temperature difference, i.e.
for γe = 10−2, and for Pr = 65 in the cylindrical annulus with η = 0.5 (or Γϕ = 3π)
and Γ = 20. The numbers of grid points determined by grid independence from a grid
refinement study are 96 × 256 × 512 in the respective radial (r), azimuthal (ϕ) and axial
(z) directions. The number of points chosen for optimal computing time gives results for
mean values of velocity and temperature which are 1 % less than those obtained with
doubled grid points in each direction for the highest value of the electric tension. More
resolution is allocated near the cylinder walls and end plates with �rmin = 0.004 and
�zmin = 0.01, while the grid cells in the azimuthal direction are uniform. The non-uniform
meshes were adopted in the radial and axial directions to allocate more resolution near
the cylinder walls and end plates. The following transformation (Abe, Kawamura &
Matsuo, 2001), which gives the location of grid points in the direction, was employed
for the clustering: xi = (1/2α) tanh[ξitanh−1α] + 0.5 where ξi = −1 + 2i/N. Here, α is
an adjustable parameter of the transformation (0 < α < 1) and it was determined to satisfy
the minimum grid sizes. Here, N is the grid number of each direction. In Rayleigh–Bénard
convection, the thickness of the thermal boundary is connected with the Nusselt number
by λθ /d = 1

2 Nu−1 (Grossman & Lohse, 2000). Although the present study is different
with the classical Rayleigh–Bénard convection, the thickness can be estimated by λθ /d ≈
6.34 × 10−2. The current resolution allows that several grid points are located within
the thermal boundary layer. Moreover, the resolution was also determined by a theory
suggested by Shishkina et al. (2010) who presented resolution requirements for DNS
of Rayleigh–Bénard convection by solving the laminar Prandtl–Blasius boundary layer
equations. They suggested the maximum cell size inside the boundary layer as hBL/d ≤
2−3/2a−1E−3/2Nu−3/2d for Pr > 3, where a and E are empirically obtained coefficients
for cylindrical cell of aspect ratio one. Although the relation is valid for Rayleigh–Bénard
convection with the specific aspect ratio and the cell shape, it roughly proposes the
guideline of grid resolution inside the thermal boundary layer. In this study, we set the
grid resolution to satisfy the above restriction in the boundary layer.

The code used in this study was validated by comparison with results from experimental
values in our previous works (Kang & Mutabazi, 2019, 2021). As the experiments were
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Figure 2. The temperature fields for VE = 450; contours of temperature (a) near the bottom plate, (b) in the
middle, (c) near the top plate and (d) the profile of temperate along the radial direction at the midplane z = 10.
The symbols are plotted for every other obtained point for clarity.

performed for fixed temperature difference �T, the control parameter VE is preferable to
characterize zero-gravity thermoconvective flow patterns rather than the electric Rayleigh
number L which combines both �T and VE. Table 1 gives the conversion factor
between L and V2

E for the fixed value of γe = 10−2; L = 6.69 × 10−3V2
E for the annulus

with η = 0.5.

3. Results

The current study aims to numerically simulate the thermal convection under microgravity
conditions and to complement results from experiments of the parabolic and sounding
rocket flight campaigns (Meyer et al. 2017, 2018, 2019, 2023; Meier et al. 2018). The
experiments were carried out with a silicone oil AK5 (Pr = 65) for which Vc = 3.859V in
an annular cylindrical cavity with a radius ratio η = 0.5 and an axial aspect ratio Γ = 20.
The details of geometric parameters and fluid properties were given in Meyer et al. (2017)
and Kang & Mutabazi (2019). The dimensionless electric tension VE is varied up to 104

to detect the convective flows induced by the DEP force. Values of VE are limited by the
breakdown voltage Vbreak

E = 104 of the silicone oil AK5 (Lide, 2017) corresponding to
Lbreak = 6.69 × 105.

3.1. Base state
When a temperature gradient is imposed on the fluid between two cylinders without the
electric field (VE = 0) under microgravity, there is no buoyancy and the heat diffuses from
the hot wall through the fluid towards the cold wall, leading to a stationary conductive
state in the fluid. At a weak electric tension, the DEP force does not affect this conduction
state. Figure 2 represents the base state at VE = 450. In the conductive state, there is
no azimuthal nor axial temperature gradient, i.e. ∂θ/∂ϕ = 0, ∂θ/∂z = 0. It varies in the
radial direction only because of the imposed radial temperature gradient (figure 2). In this
weak-field limit, the temperature distribution aligns with the theoretical profile given by
θ(r) = ln[(1 − η)r]/ ln η (Ali & Weidman, 1990).
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Figure 3. Flow and temperature fields for VE = 480; contours of the (a) axial vorticity (ωz) and
(b) temperature with velocity vectors at the central cross-section (z =Γ /2), contours of the (c) radial velocity
component (ur) and (d) the temperature (θ ) at the central surface (x = 0.5) and (e) isosurface of Q = 0.003.
Velocity vectors were plotted once every four points in each direction for clarity.

3.2. Stationary helicoidal vortices
Linear stability analysis (LSA) predicts that, at the threshold of the thermoelectric
convection VLSA

E,c = 473.1375 for η = 0.5, the critical modes are stationary helical modes
(Yoshikawa et al. 2013). Using DNS with periodic boundary conditions, Travnikov et al.
(2015) found the threshold VDNS

E,c = 472.29. The expected number of pairs of vortices is
given by the integer part of the azimuthal aspect ratio, i.e. N = [Γϕ/2] = 4, where [q]
indicates the integer part of a number q. In our DNS, at VE = 480, the DEP buoyancy
force triggers an instability that breaks the invariance and causes thermal convection.
The primary instability of the conduction state is manifested by the appearance of four
pairs of helicoidal vortices, which are stationary counter-rotating vortices that are regularly
spaced in the azimuthal direction (figure 3). These vortices transfer the heat through the
dielectric liquid between the two cylinders. The hot fluid is transported towards the outer
cylinder by the outward flow, while the inward flow carries the cold fluid towards the inner
one (figure 3b). The counter-rotating vortices form bands of positive and negative radial
velocities, and of high and low temperatures at the central surface (figure 3c,d). The 3-D
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Figure 4. Flow and temperature fields for VE = 500; contours of the (a) radial velocity component (ur) and
(b) the temperature (θ ) at the central surface (x = 0.5) and (c) isosurface of Q = 0.015.

vortical structures are visualized by the isosurfaces of Q (Jeong & Hussain, 1995) which
clearly illustrate their helical structure (figure 3e). The eight vortices are built around the
inner cylinder, dissipating near the end plates, where the velocity field vanishes.

As the electric tension increases, stationary defects appear in the vortices at VE =
500 (figure 4). These defects arise from the broken axial symmetry of the base state,
because the perturbations hesitate to choose between the (+z) and (−z) orientations. As a
consequence, two modes with opposite helicity occur in the annulus.

Figure 5 illustrates the state of helicoidal vortices characterized by alternating positive
and negative vorticity components for VE = 500. The vorticity is distributed in a spiral
pattern, following the vortices. At the intersection of two helical modes, the radial and
azimuthal vorticity components vanish while the axial vorticity is continuous along the
vortices. As expected, the axial vorticity component shows an identical structure with that
of the helicoidal vortices (figure 5c). Therefore, we conclude that helicoidal vortices are
mainly dominated by the axial vorticity, as already observed by Travnikov et al. (2015).

With the increase of the control parameter of electric tension, the small pattern with
helicoidal vortices of negative helicity disappears and a pattern is formed of stationary
helicoidal vortices with positive helicity. Figure 6 shows the stationary patterns obtained
for VE = 600 and 700. The number of helicoidal vortices is also reduced to six (three
pairs). Simultaneously, the intensity of the positive helicity helicoidal vortices grows
gradually with the increase of the electric tension VE, i.e. the increase of the DEP
buoyancy.

To compare the intensity of vortices quantitatively, we have evaluated the enstrophy
(ω2) and the contributions from the three components of vorticity. The axial variations
of the enstrophy and of the component terms (ω2

r , ω
2
ϕ, ω2

z ) averaged on the (r, ϕ)
cross-section of the annulus are displayed in figure 7. The averaged enstrophy 〈ω2〉A and
its different components are constant except for near the end plates and near the defect at
VE = 500 where the radial and azimuthal components of vorticity vanish. However, the
enstrophy sharply rises in the immediate vicinity of top and bottom of the annular cavity
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(a) (b) (c)

Figure 5. Isosurface of vorticity components for VE = 500; (a) radial vorticity ωr = ±0.02, (b) azimuthal
vorticity ωϕ = ±0.15, (c) axial vorticity ωz = ±0.3.

due to the rapid growth of the radial (ω2
r ) and azimuthal (ω2

ϕ) parts of the enstrophy.
The main contributions to the enstrophy come from the azimuthal (ωϕ) and axial (ωz)
vorticities. Indeed, (2.6) and (2.7) show that the vorticity is generated by the DEP
buoyancy originating from temperature gradients coupled to the electric gravity and only
the azimuthal and axial components contribute to the source of vorticity (Travnikov et al.
2015). Since the electric field is applied in the radial direction, the radial component of
the electric gravity (ge,r) is dominant compared with the other components (ge,ϕ, ge,z).
The latter components pertain to electric field perturbations induced by thermoconvective
flows. In consequence, the radial vorticity is small because its source term is related
to ge,ϕ and ge,z, as presented in (2.7). On the other hand, ωϕ and ωz are dominant in
the helicoidal vortices since they are created by the radial component of the electric
gravity ge,r coupled to temperature gradients. Accordingly, the enstrophy and the intensity
of helicoidal vortices increase with VE because the electric energy density (i.e. electric
gravity) grows as VE rises (figure 7).

3.3. Oscillatory helicoidal vortices
At VE = 800, we obtain a new pattern of two helical vortices with opposite helicity and
separated by a dislocation at z ≈ 9, i.e. almost at the middle of the cavity (figure 8). This
dislocation travels in the azimuthal direction with a constant speed cϕ ≈ 0.025 (figures 9
and 10). This oscillatory behaviour of the dislocation can be clearly detected by the time
variation of the pattern of the kinetic energy K (figure 11a). Figure 11 gives the signal of
the thermoelectric convective pattern and its power spectrum for VE = 800. The kinetic
energy oscillates periodically with a very weak amplitude in time, and the spectrum reveals
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Figure 6. Contours of temperature (θ ) with velocity vectors at the central cross-section (z =Γ /2) and radial
velocity component (ur) at the central surface (x = 0.5), and 3-D vortical structures for VE = 600 (a–c) and
VE = 700 (d–f ); (c) isosurface of Q = 0.1, ( f ) isosurface of Q = 0.2.

a distinct peak f = 0.0083 corresponding to the travelling wave of the dislocation in the
azimuthal direction and a second harmonic peak.

For VE = 900, the defects found at VE = 800 disappear and one helical time-dependent
pattern appears with three pairs of helicoidal counter-rotating vortices travelling along
and around the annulus (figure 12). The signal of the volume-averaged kinetic energy
(figure 13a) has two different ‘amplitudes’ due to the reflection of the travelling pattern
at the endplates (figure 14), leading to a spectrum with two peaks corresponding to the
fundamental mode with a frequency f = 0.008 and its second harmonic (figure 13b).

As the electric voltage (VE) increases, new dislocations appear in the pattern and
propagate along the azimuthal and the axial directions, although they are located in the
zone 6 < z < 10. Collisions between helical vortices and the reflection of the wave pattern
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Figure 7. Profiles of the (r, ϕ)-averaged enstrophy (〈ω2〉A) and the components (〈ω2
i 〉A) for three values of
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Figure 8. The flow and temperature fields for VE = 800; contours of (a) temperature (θ ) and (b) radial
velocity component (ur) at the central surface (x = 0.5), (c) isosurface of Q = 0.4.

to the endplates (figure 15) lead to significant noise in the signal (figure 16a). The power
spectrum of the volume-averaged kinetic energy (figure 16b) reveals a fundamental mode
of f1 = 0.0155 and its harmonics, together with a new low-frequency peak f2 = 0.0045
corresponding to a slow long-wavelength modulation of the pattern in the axial direction
due to the dislocations (see supplementary movies 1–4, which are available at https://doi.
org/10.1017/jfm.2024.538).
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Figure 10. The space–time diagrams of the temperature field (a) along the axial direction at (x = 0.5, ϕ =π,
z) and (b) along the azimuthal direction at (x = 0.5, ϕ, z =Γ /2) for VE = 800. The dotted lines indicate the
constant speed in the azimuthal direction.

3.4. Wavy helical vortices
At VE = 1500, a new mode emerges which consists of the travelling waves along the
helical vortices (figure 17). Collisions and splitting events of the wavy helical vortices
are observed in the pattern (see supplementary movies 5–8). The cross-section of the
pattern shows that thermal plumes are intensified, leading to strong inward and outward
flows between two cylinders. Moreover, a pinching mechanism occurs in convection cells
leading to a local rearrangement of the convection field (Busse & Whitehead, 1971). This
mechanism merges two vortices by joining their nearby ends.

The signal and the power spectrum of the volume-averaged kinetic energy, displayed
in figure 18, show that the pattern has a disordered behaviour due to the collisions and
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Figure 11. The time signal of the kinetic energy per unit mass (〈K〉V ) and its power spectrum (P( f )) for
VE = 800.
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Figure 13. The time signal of the kinetic energy per unit mass (〈K〉V ) and its power spectrum (P( f )) for
VE = 900.
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VE = 900.
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Figure 15. Flow and temperature fields for VE = 1000; contours of (a) the temperature (θ ), (b) radial velocity
component (ur) and (c) isovalue of Q = 0.6 at the central surface (x = 0.5), (d) isosurface of Q = 0.6.

splitting events. However, two dominant peaks with frequencies f1 = 0.187 and f2 = 0.061,
related to the travelling waves and the collision-splitting events, are identified.

3.5. Bimodal convection
For VE = 2000, wavy helical vortices with opposite helicity propagate in opposite
directions with cross-rolls (see supplementary movies 9–12). This pattern might arise
from two different instability mechanisms (zig-zag and cross-roll instabilities) which are
characteristics in high-Pr convections (Busse & Whitehead, 1971). First, the ‘zig-zag
instability’ appears when the wavenumber of the convection rolls is too small compared
with the optimal value. Then, the effective wavenumber can be increased by bending the
straight rolls into wavy rolls, as illustrated in figure 19. The wavy modes are unstable.
Each of the two waves travels in opposite directions along the helicoidal patterns. Second,
‘cross-roll instability’ occurs. This instability triggers disturbances in the velocity and
temperature fields in the form of rolls perpendicular to the existing rolls (Busse &
Whitehead, 1971). As a result, new rolls perpendicular to the wavy helical rolls are formed
and the rolls join to neighbouring wavy rolls (figure 19). The propagating wavy helical
vortices and the cross-rolls regularly oscillate in time, except in the vicinity of the top and
bottom walls where vortices are dissipated and vibrate chaotically.
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Figure 16. The time signal of the kinetic energy per unit mass (〈K〉V ) and the power spectrum (P( f )) for
VE = 1000.

0

0.2

0.4

0.6

0.8

1.0

20

15

10

5

0

20

15

10

5

0

20

15
600

ur

300

0

–300

–600

10

5

02 4 6 8

z

θ

rϕ
2 4 6 8

rϕ
2 4 6 8

rϕ

(b)(a) (d )(c)

Figure 17. Flow and temperature fields for VE = 1500; contours of (a) the temperature (θ ), (b) radial velocity
component (ur), and (c) isovalue of Q = 1.5 at the central surface (x = 0.5), (d) isosurface of Q = 1.5.

The spectrum of the volume-averaged kinetic energy shows two peaks at f1 = 0.268 and
f2 = 0.242 with their linear combinations (figure 20). These two frequencies correspond
to the waves propagating in opposite directions. A peak with the frequency fmin =
0.0135(∼=( f1 − f2)/2) corresponds to the reflection of the waves at the end plates.

3.6. Spoke patterns
At VE = 3000, the propagating helical patterns are disordered and the convective flow
undergoes a transition leading to spoke patterns (figure 21). Each spoke pattern is triggered
by the collective instability mode in which several cells are combined into one cell
exhibiting a spoke structure (Busse & Whitehead, 1974). The convection structure is
formed by central plumes which are fed by spoke-like ridges of hot and cold fluids in the
respective boundary layers (see supplementary movies 13–15). The whole pattern contains
two subpatterns that connect themselves around z = 11.

As the electric tension increases, the spoke structures gradually dominate the helical
patterns (figures 22 and 23). The corresponding power spectra of the volume-averaged
kinetic energy demonstrate that the convective patterns are more disordered due to the
spokes. However, two incommensurable frequencies f are dominant, revealing bimodal
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Figure 18. The time signal of the kinetic energy per unit mass (〈K〉V ) and the power spectrum (P( f )) for
VE = 1500.
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Figure 19. Flow and temperature fields for VE = 2000; contours of (a) the temperature (θ ), (b) radial velocity
component (ur) and (c) the isovalue of Q = 3 at the central surface (x = 0.5), (d) isosurface of Q = 3.

convection (figure 24). The low-frequency peaks correspond to the reflections at the
endplates.

3.7. Turbulent convection
Travelling helical patterns fade away gradually as VE further increases (figure 25). At
high VE (≥7000), spoke structures randomly oscillate in time showing the features of
turbulent convection. Moreover, small-scale vortical structures are prevailing and their
intensity grows with the electric voltage (figure 26). The power spectra do not show any
dominant frequency, revealing the characteristics of fully developed turbulent convection
(figure 27). The energy spectra are dissipated with a power-law relationship ∼f −10/3.

3.8. Heat transfer rate
The efficiency of the heat transport by the TEHD convection has been estimated by
evaluating the heat transfer rate for various VE. The dimensionless heat transfer coefficient

991 A7-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.538


C. Kang, I. Mutabazi and H.N. Yoshikawa

0.180
(a) (b)

500

400

300 0.0135

0.242

0.268

200
P( f )

100

0

0.178

0.176

0.174

0.172

0.170
1100 1200 1300

t
1400 1500 1600 0.2 0.4

f
0.6 0.8 1.0

〈K〉V

Figure 20. The time signal of the kinetic energy per unit mass (〈K〉V ) and the power spectrum (P( f )) for
VE = 2000.
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Figure 21. Flow and temperature fields for VE = 3000; contours of (a) the temperature (θ ), (b) radial velocity
component (ur) at the central surface (x = 0.5) and (c) the isosurface of Q = 10.

is called the Nusselt number, defined as follows:

Nu = Jth
r

Jcond
r

, (3.1)

where Jcond
r = κ�T/ ln η is the heat current density of the conduction state, and the heat

current density across the cylindrical surface A (= 2πrH) of radius r is given by (Kang &
Mutabazi, 2019)

Jth
r = r

〈
urθ − ∂θ

∂r

〉
A
. (3.2)

Thus, the heat transfer coefficient at the inner cylinder (where the radial velocity
component vanishes) is given by (Kang & Mutabazi, 2019)

Nui = −η ln η

1 − η

(
∂θ

∂r

)
r=R1

. (3.3)
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Figure 22. The contours of temperature (θ ) at the central surface (x = 0.5) for (a) VE = 4000, (b) VE = 5000
and (c) VE = 6000 (see supplementary movies 16 and 17).
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Figure 23. The 3-D vortical structures for (a) VE = 4000 (Q = 20), (b) VE = 5000 (Q = 30) and
(c) VE = 6000 (Q = 30) (see supplementary movies 18 and 19).
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Figure 24. Power spectra of the kinetic energy per unit mass (P( f )) for (a) VE = 3000 and (b) VE = 5000.
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Figure 25. Contours of temperature (θ ) at the central surface (x = 0.5) for (a) VE = 7000, (b) VE = 8000 and
(c) VE = 10 000.

We have calculated time-averaged values Nui of the Nusselt number for different values
of VE. Figure 28 displays the variation of Nui with the potential VE. For the base state,
which is a conductive state (VE ≤ 470), the heat transfer is only due to molecular diffusion
and it yields Nui = 1. As the helicoidal vortices appear in the flow for VE ≥ VE,c, the heat
transfer is enhanced by counter-rotating helicoidal vortices. At the onset of thermoelectric
convection VE ∈ [480, 550], i.e. for stationary helicoidal vortices, Nui − 1 varies linearly
with VE, i.e. Nui = 1 + 2.359ε where ε = (VE − VE,c)/VE,c. The linear growth changes
into an almost parabolic dependence when the time-dependent helicoidal vortices occur,
and the averaged Nusselt number steadily grows with the increase of VE with a power
law Nui = 0.54V0.541

E for VE ≥ 2000. Moreover, for relatively large values of VE, we have
expressed the dependence of the Nusselt number as a new power law Nu ∼ (V2

E)γ (i.e.
Nu ∼ Lγ ) and we found the scaling exponent γ = 0.27. This value is slightly out of the
range of values of scaling exponents of the Rayleigh–Bénard convection for large values
of Pr where γ = 0.28 ∼ 0.33 (Grossmann & Lohse, 2000), because the computed patterns
are below the turbulent convection for which the scaling laws have been developed. As
mentioned earlier, the computation interval is limited by the breakdown potential of the
dielectric liquid.
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Figure 26. The 3-D vortical structures for (a) VE = 7000 (Q = 100), (b) VE = 8000 (Q = 150) and
(c) VE = 10 000 (Q = 300).
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Figure 27. Power spectra of the kinetic energy per unit mass (P( f )) for (a) VE = 8000 and (b) VE = 10 000.

4. Discussion

The present study is an extension of the linear stability analysis (Yoshikawa et al. 2013)
and the DNS (Travnikov et al. 2015) with periodic boundary conditions for thermoelectric
convection in the cylindrical annulus. We have confirmed the supercritical nature of
thermoelectric convection in microgravity that occurs in the form of helicoidal vortices
and computed the patterns for all admissible values of VE < Vbreak

E .
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Figure 28. Time-averaged Nusselt numbers at the inner cylinder for various VE.

4.1. Critical mode
The weakly nonlinear dynamics of stationary convective state can be described by the
Landau–Stuart equation for the amplitude Ap(t) of the perturbations

dAp

dt
= σ0(ε − l|Ap|2)Ap + · · · . (4.1)

The coefficient σ = σ0ε characterizes the linear growth rate of the perturbation and l
is the Landau constant whose sign determines the critical nature of the bifurcation (i.e.
supercritical if l > 0 versus subcritical if l < 0). We have used the norm of the radial
velocity component at the centre in the annulus to define the amplitude of the perturbation
|Ap|, as

|Ap| = 1
2πrm

∫ 2π

0
|ur(rm, ϕ, Γ/2)|rm dϕ, where rm = (ri + ro)/2. (4.2)

The values of the growth rate σ obtained from the evolution of the amplitude |Ap| near
the threshold are presented in figure 29(a). The linear extrapolation σ = σ0ε gives the
critical value VE,c of VE and the slope σ0. Table 2 gives the characteristic parameters of
the Landau–Stuart equation. The critical value of dimensionless electric tension (VE,c)
predicted by DNS is in a good agreement with that of LSA (VE,c = 473.137) within the
error of 0.22 %. The Landau constant l has been determined from the behaviour of the
instantaneous growth rate d ln |Ap|/dt as a function of |Ap|2 at a vanishing |Ap|2, i.e. ε → 0
(Kang et al. 2017). Figure 29(b) illustrates the behaviour of d ln |Ap|/dt versus |Ap|2 at
VE = 480 and shows that the bifurcation is supercritical (non-hysteretic).

4.2. Description of the pattern in the framework of the Ginzburg–Landau equations
The stationary pattern of helicoidal vortices observed at the threshold have opposite
helicity such that the temperature perturbation can be represented as follows:

θ ′(t, r, ϕ, z) = F(r)[A(t, ϕ, z) exp{i(qz − mϕ)} + B(t, ϕ, z) exp{i(qz + mϕ)}]. (4.3)
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Figure 29. (a) Growth rates of thermoconvective pattern near the critical dimensionless electric tension.
(b) The derivative of the amplitude logarithm plotted against the square of the amplitude for VE = 480.

VE,c σ0 ξ0 l

474.17 0.110 0.270 307.56

Table 2. Characteristic parameters near the threshold of the THED in microgravity (g = 0).

The complex amplitudes A(t, ϕ, z) and B(t, ϕ, z), describing the respective right and left
modes, satisfy the coupled Ginzburg-Landau equations,

τ0
∂A
∂t

= εA + ξ2 ∂2A
∂z2 − (l|A|2 + g|B|2)A, (4.4a)

τ0
∂B
∂t

= εB + ξ2 ∂2B
∂z2 − (l|B|2 + g|A|2)B, (4.4b)

where τ0 = σ−1
0 , ε = (VE − VE,c)/VE,c is the criticality, i.e. the relative distance from the

critical state, ξ is the coherence length of the perturbations along the axial direction, l
is the nonlinear saturation Landau coefficient and g is the nonlinear coupling coefficient
between the modes A and B.

To describe the travelling helicoidal vortices, we represent the temperature perturbation
as follows:

θ ′(t, r, ϕ, z) = F(r)

[
{A(z) + a(t, ϕ, z) eiωt} exp{i(qz − mϕ)}
+{B(z) + b(t, ϕ, z) eiωt} exp{i(qz + mϕ)}

]
, (4.5)

where the amplitude perturbations a(t, ϕ, z) and b(t, ϕ, z) satisfy the complex coupled
Ginzburg–Landau equations,

τ0

(
∂a
∂t

+ cϕ

∂a
∂ϕ

+ cz
∂a
∂z

)
= εa + ξ2

ϕ

∂2a
∂ϕ2 + ξ2

z
∂2a
∂z2 − (l|A|2 + g|B|2)a, (4.6a)

τ0

(
∂b
∂t

− cϕ

∂b
∂ϕ

− cz
∂b
∂z

)
= εb + ξ2

ϕ

∂2b
∂ϕ2 + ξ2

z
∂2b
∂z2 − (l|B|2 + g|A|2)b, (4.6b)

where ε = (VE − VE,c)/VE,c is the relative distance from the threshold of the travelling
helicoidal vortices, cϕ and cz represent the respective phase velocities along the azimuthal
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and the axial directions, and ξϕ and ξz are the respective coherence lengths of the
perturbations along the azimuthal and the axial directions. For VE = 900, only the
right-travelling helical mode dominates the flow and it is described by (4.6a) with B = 0.
The patterns observed in our simulations have a behaviour similar to what was observed
in Rayleigh–Bénard convection for which the amplitude-phase model has been found to
successfully describe the transition to spatiotemporal chaos (Cross & Hohenberg, 1993).

The biperiodic convective patterns and spoke patterns observed in our simulations are
similar to those reported by (Busse & Whitehead, 1971) in thermal convection in liquids
with high values of Pr. They bear highly nonlinear dynamics that has not been described
thus far in DNS. The spatial dynamics of the thermoconvective patterns have not been
investigated because of the limited size of the flow configuration.

4.3. Comparison with experiments
The experiments performed in microgravity on zero-gravity airbus during parabolic flight
or on sounding rockets do not allow to determine the threshold of the TEHD convection
and rely on critical values from LSA or DNS because of the limitation of the experiment
duration (22 sec in parabolic flight and 180 sec in sounding rockets). To excite well
developed thermoconvective structures on which to perform measurements in an imposed
short time, experiments must be performed away above the criticality.

Former experiments performed during parabolic campaigns aboard zero-gravity
airbus were sensitive to vibrations that pollute the zero-gravity environment. However,
shadowgraph pictures and PIV measurements performed during these parabolic flight
campaigns confirm the helical structures of thermoelectroconvective patterns above the
threshold although in short time of microgravity (Meyer et al. 2019).

Recent experiments of thermoconvection in a cylindrical annulus have been performed
in Sounding Rocket which guarantees 6 min of microgravity (Meyer et al. 2023) using
two dielectric liquids (silicon oils B3 and B5) inside four experimental cells. In each cell,
the temperature difference was fixed (�T ∈ [5K, 10K]) and values of VE ∈ [916, 1175]
corresponding to electric Rayleigh number L ∈ [2774, 9227]. The electric gravity varied
between 0.907 m s−2 and 2.317 m s−2. Shadowgraph pictures and PIV measurements
(radial and axial velocity components) made at different values of the applied voltage
clearly indicate the presence of helicoidal thermoconvective vortices (Meyer et al. 2023).
However, all the experiments have been performed in the range of VE well beyond the
threshold of the TEHD, time-dependent vortical structures were observed but the heat
transfer was not quantified The present DNS results will help in the design of the new
experiments to be performed aboard the zero-gravity airbus or aboard a sounding rocket
or on the ISS to cover a large range of values of VE and to measure the heat transfer
coefficient.

4.4. Heat transfer
For a fixed temperature difference between cylindrical electrodes, the electric voltage
above a critical value induces thermoelectric convective flows that transfer the heat away
from the inner cylindrical surface. The corresponding Nusselt number increases with the
magnitude of the applied voltage. Near the threshold of thermoelectric convection, Nu
increases linearly with the criticality ε with a slope of 2.359, which differs from the slope
value of 1.42 found by Travnikov et al. (2015) using periodic boundary conditions but with
L as a control parameter.
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For large values of VE, Nu exhibits a power law with the exponent γ ≈ 0.27 in the
oscillatory and chaotic regimes. The values reached by Nu ∈ [1; 8] are relatively weak
compared with those encountered in classic thermal convection when the temperature
difference is increased. However, these values are sufficient to show that the DEP force
may be useful to transfer heat from a hot wall to a cold one in microgravity.

Compared with the case of the parallel capacitors (Barry et al. 2023) where Nu ∈
[1; 2.2], the heat transfer in a cylindrical annulus under microgravity varies significantly
because of the electric field and the permittivity gradient responsible for the heat transfer
are much more intense due to the curvature.

5. Conclusion

A dielectric liquid with a high Prandtl number contained in a finite cylindrical annulus
subject to a high-frequency electric voltage and a fixed radial temperature difference
between two coaxial cylinders has been investigated numerically under the microgravity
condition. The high-frequency electric field generates a DEP buoyancy force which
induces a thermoelectric convection for a sufficiently high applied voltage. Critical modes
are made of stationary helical vortices. The critical and weakly postcritical states are in
good agreement with available experimental data from parabolic and sounding rocket
flights. As the voltage increases, oscillatory modes and then spoke patterns were obtained.
The analysis of the temporal signals and the power spectra of the volume-averaged kinetic
energy per unit mass have allowed the characterization of the convective patterns. The
heat transfer coefficient has been computed for all permissible values of the electric
voltage where breakdown does not occur. It is expected that these results will allow for
more efficient heating and cooling devices in microgravity and contribute to a better
fundamental understanding of fluid dynamics in the absence of gravity.

Supplemental material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.538.
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