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1. Introduction. McShane (5, 6) has introduced the concept ofl ' Dedekind 
completeness" for partially ordered sets, which seems to be a natural general­
ization of the usual concept of completeness for lattices. It is the purpose of 
this paper to discuss some of the properties of Dedekind completeness, par­
ticularly with respect to a rather natural class of partially ordered sets which 
we call "uniform." Among our results we obtain an analogue of MacNeille's 
"completion by cuts." We also extend the well-known fixed-point theorem, 
due to Tarski (7), and then generalize the characterization of a complete 
lattice due to Davis (3). 

2. Dedekind completeness. Let P be a partially ordered set (poset) with 
respect to a relation < . We assume that P has a greatest element / and a least 
element 0. 

DEFINITION 1. We say that a set S C P is up-directed if and only if for 
each a £ S, b £ S, there exists c £ S with a < c, b < c. Dually, S is down-
directed if and only if for each a Ç 5, b Ç S, there exists c £ S with c < a, 
c < b. 

Thus, any subset of P which has a greatest element is up-directed, and 
dually. The following definition is essentially that of McShane. 

DEFINITION 2. A poset P is Dedekind complete if and only if every up-
directed subset of P has a least upper bound in P and every down-directed 
subset has a greatest lower bound in P. 

Example 1. It is clear that the concepts of Dedekind completeness and 
ordinary completeness coincide if P is a lattice. A simple example of a Dede­
kind complete poset, which is not a lattice, is provided by the set C of all 
closed disks in the Euclidean plane E2, partially ordered by set inclusion, 
and with 0 and / elements adjoined. To show that C is Dedekind complete, 
let A be an up-directed subset of C, and let 

X = {x\x 6 E2 and x Ç a for some a £ A}. 

If X is an unbounded subset of E2, then clearly 1. u. b. (A) = I. If X is bounded 
choose two points x and y in the closure of X such that the distance from 
x to y is equal to the diameter of X. Let m be a closed disk with the line seg-
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ment connecting x and y as its diameter. Straightforward arguments then 
show that 

(i) no point of X is exterior to m, and 
(ii) every interior point of m is a point of X. Thus m = 1. u. b. (A). The 

obvious dual argument will then show that any down-directed subset of C 
has a g. 1. b. 

UAQP, let 

A* = {x\x G P and x > a for all a G -4}, 
A+ = {x|x Ç P and x < a for all a Ç ^4}. 

We shall write A*+ for the set (A*)+. We shall make important use of the 
following concept: 

DEFINITION 3. A poset P is uniform if and only if A* is a down-directed 
set for every up-directed subset A, and dually, B+ is up-directed for every 
down-directed subset B. 

Any lattice is obviously a uniform poset. As an example of a uniform poset, 
which is not a lattice and not Dedekind complete, we may take the set of all 
closed disks in the plane with rational radii, partially ordered by set inclusion, 
and with 0 and / elements adjoined. 

We have the following trivial lemma: 

LEMMA 1. A uniform poset P is Dedekind complete if and only if every up-
directed subset of P has a l.u.b. in P (or every down-directed subset of P has a 
g. 1. b. in P). 

We shall also use a strong form of Zorn's lemma due to Bourbaki (2): 

LEMMA (Bourbaki). If every well-ordered chain in a poset S has an upper 
bound in S, then S has a maximal element. 

As a consequence of the above lemma the reader may easily deduce 

LEMMA 2. If Z is any chain in a poset P , then there exists a well-ordered 
chain C <Z Z with C* = Z*. 

We now have the following theorem: 

THEOREM 1. A poset P is Dedekind complete if and only if P is uniform and 
every well-ordered chain in P has a 1. u. b. 

Proof. If P is Dedekind complete, and S is up-directed in P , then S* has a 
least element and hence is down-directed. The obvious dual statement also 
holds: thus P is uniform and the conclusion follows. Conversely, let P be 
uniform and suppose that every well-ordered chain in P has a 1. u. b. Let A 
be any down-directed subset of P , and let Z be a maximal chain in A+. We 
assert that Z has a 1. u. b., m, for otherwise Lemma 2 would provide us with a 
contradicticn of our hypothesis. If a Ç A, we have a > z for all z £ Z; 
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hence a > m and m £ A+. By maximality of Z, m is a maximal element of 
A+. We assert that m is the greatest element of A+. For suppose that there 
exists c (:\ A+ with c > m. Since A+ is up-directed, there exists x Ç 4 + with 
x > m, x > c, contradicting the maximality of m. Thus m = g. 1. b. (A), and 
P is Dedekind complete by Lemma 1. 

As a corollary we have the following known result, for which a proof seems 
to have thus far been lacking in the literature: 

COROLLARY. A lattice L is complete if and only if every well-ordered chain 
in L has a 1. u. b. 

Let us call a chain Z in P inversely well-ordered if and only if every subset 
of Z has a greatest element. We then have obvious dual formulations of Lemma 
2 and Theorem 1. We shall also need the following lemma, which extends a 
result of Davis (3, Lemma 1, p. 311); our proof of it becomes trivial by em­
ploying Zorn's lemma (rather than transfinite induction as in (3)): 

LEMMA 3. Let P be a uniform poset, and let Z be an inversely well-ordered 
chain in P with no g. 1. b. in P . Then there exists a well-ordered chain Y in 
P such that 

(i) y £ Y implies y < z for all z <E Z, and 
(ii) Y* n Z+ is empty. 

Proof. Z+ is up-directed, by our hypothesis of uniformity; hence Z + has no 
maximal elements. Then by the lemma of Bourbaki there exists a well-ordered 
chain Y in Z + such that F* Pi Z + is empty. 

3. Imbedding of a uniform poset in a Dedekind complete poset. We 
shall now obtain an analogue of MacNeille's well-known imbedding of a 
poset in a complete lattice (4; also see 1, p. 58). 

DEFINITION 4. A subset J of a poset P is a normal ideal in P ("closed 
ideal" in the terminology of Birkhoff) if and only if /*+ = J. A subset of P 
of the form 

J(l = [x\x r P and x < a} 

is called a principal ideal. 

LEMMA 4. A subset of P is a normal ideal if and only if it is the intersection 
of a set of principal ideals (cf. 1; p. 62, problem 4). 

Proof. Let S C P and let 

i = ru. 
xtS 

Then A = S+. In general we have S C 5+*; hence S+ 3 (S+*)+, or A D A*+. 
Since in general A C A*+, it follows that A is a normal ideal. Conversely, if 
A is a normal ideal in P, then 

A = 04*)+ = n JX 
ztA* 
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For uniform posets we now have another characterization of Dedekind com­
pleteness, which generalizes a known result for complete lattices (1; p. 59, 
exercise 2): 

THEOREM 2. A uniform poset P is Dedekind complete if and only if every up-
directed normal ideal in P is principal. 

Proof. Let P be Dedekind complete, and let / be an up-directed normal ideal 
in P . Then / has a 1. u. b. m, and m Ç /*+ = J. It follows that / is principal. 
To prove the converse, let A be a down-directed subset of P. By Lemma 4, 

-i+ = n /„ 
a eA 

is a normal ideal, which by hypothesis is up-directed. Hence A+ has a 1. u. b., 
which is the g. 1. b. of A. Thus P is Dedekind complete by Lemma 1. 

Now let N(P) be the set of all up-directed normal ideals of P, partially 
ordered by inclusion. The correspondence x <-> Jx is a one-to-one order-
preserving mapping of P into a subset of N(P). Furthermore, we have 

THEOREM 3. If P is a uniform poset, then N(P) is Dedekind complete. 

Proof. Let 2 be an up-directed subset of N(P), and let 

A =\J J 

(where U denotes set union). It is easily seen that A is an up-directed subset 
of P . Hence A* is down-directed, and A*+ is up-directed. Since A*+ is the 
smallest normal ideal containing A, we have A*+ = 1. u. b. (S). Now let 
0 be a down-directed subset of N(P). We first show that 

B = U /* 
JeSl 

is a down-directed subset of P . Let a and b be arbitrary elements of B\ then 
there exist J i , 72 € Œ with a Ç JV, b G J2*. By our hypothesis on 0, there 
exists / 8 G 0 with 73 C / i H / 2 . Then J3* D (Ji H 72)* D A* U J2*. But 
J"3* is down-directed, by uniformity of P : hence there exists c Ç /3* with 
c < a, c < &, and thus 5 is down-directed. Now let 

K= n /. 
Jefi 

But 

n j = n J*+ = c u j*y = 5+. 
J«fi J«Î2 \jeU / 

Hence i£ is an up-directed normal ideal, and K — g. 1. b. (Q). 

Example 2. Let P be the set of all closed disks in the plane with rational 
radii, ord^ed by inclusion. If z is an arbitrary closed disk in the plane, then 
the set 

S(z) = {a\a £ P and a C z] 
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is an up-directed normal ideal in P ; and conversely, the reader may verify 
that every such ideal is of the form S(z) for some disk z. Hence the "Dedekind 
completion" N(P) is isomorphic to the set of all closed disks in the plane. 

Example 3. If P is not uniform, then N(P) may fail to be Dedekind complete. 
We construct an example of such a poset P as follows. Let A = {a0} 
(i = 1, 2, . . . ; j = 1, 2, . . . ) be an infinite rectangular array, in which i 
denotes the column index, j the row index. We partially order A by defining 
dij < amn if and only if i < m or j < n. We surmount this array with a 
sequence {zt} of mutually incomparable elements (with respect to our ordering) 
such that dij < zt for each i and each j . We adjoin two more incomparable 
elements x and y which are upper bounds for the set {zi). We then let P be 
the set consisting of the array A = {a0}, the set {zt}y the elements x and y, 
and 0 and / elements; and let P be partially ordered as described above. Thus 
we have atj < zk if and only if i < k. We see that A is an up-directed subset 
of P. (Note, however, that A*+ is the union of A and the set {s,j, and hence 
is not up-directed. Thus A*+ is not an element of N(P)). Hence 

2 = {Ja\a G A} 

is an up-directed subset of N(P). But the set 2* contains Jx and Jv as minimal 
elements; hence S has no 1. u. b. in N(P). 

4. The fixed-point theorem. I f / is a function mapping a poset P into 
itself, we say t h a t / is isotone if and only if x < y implies/(x) < / ( y ) . x is a 
fixed-point of/ if and only if x = f(x). For any isotone function / on P let us 
write H (J) = {x\x £ P and x < / ( * ) } . 

DEFINITION 5. An isotone function / on a poset P is directable if and only 
if H(f) is an up-directed subset of P. 

The reader may verify that any isotone function on a lattice is directable. 
Thus the following theorem generalizes the fixed-point theorem of Tarski 
(7, Theorem 1): 

THEOREM 4. If every up-directed subset of a poset P has a 1. u. b. in P, then 
every directable function on P has a fixed-point. 

Proof. L e t / be a directable function on P and let u = 1. u. b. [H(f)]. We 
easily prove, precisely as in the proof of Theorem 1 of (7), that u is a fixed-
point of / We omit the details. 

We now obtain a generalization of the result of Davis (3, Theorem 2) : 

THEOREM 5. If every directable function on a uniform poset P has a fixed-
point, then P is Dedekind complete. 

Proof. Assume P is not Dedekind complete. Applying the dual formulation 
of Theorem 1 and then Lemma 3, we infer that there exist two chains Y 
and Z in P such that 
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(i) F is well-ordered and Z is inversely well-ordered, 
(ii) y Ç Y implies y < z for all z (E Z, 

(iii) F* H Z+ is empty. 
We shall proceed to obtain a contradiction by defining a directable function 

/ on P which has no fixed-points. We do this exactly as in (3, pp. 313-314). 
To define/(xo) for an arbitrary xo G P we distinguish two cases: 

(1) xo e Z+, (2) xoiZ+. 

In case (1) we have xo $ F*. Let F(x0) = {y\y Ç F and ^ > x0\. Y(x0) 
has a least element yo, which we define as /(x0). In case (2), let Z(x0) = 
\z\z £ Z and s < x0}. Z(x0) has a greatest element 20, which wre define as 
f(xo). It is clear t h a t / can have no fixed-points. The proof t h a t / is isotone is 
identical with that in (3, p. 314): we therefore omit the details. It remains to 
show that / is directable. From our definition of / it is clear that x Ç H(f) 
implies that/falls in case (1) above; i.e., x G Z+. Also it is clear that F C H(J). 
Now suppose that we have a G H(f), b Ç H(f). Then a < / ( a ) , b <f(b), 
and f(a) Ç F, /(ft) Ç F. Let c = max {/(a), /(&)}. We have c > a, c > b, 
and c G H{f), thus completing the proof. 

Combining Theorems 4 and 5, we obtain the following characterization of 
Dedekind completeness: 

COROLLARY. A uniform poset P is Dedekind complete if and only if every 
directable function on P has a fixed-point. 

REFERENCES 

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications, 25 (1948). 
2. N. Bourbaki, Sur le théorème de Zorn, Archiv. der Math., 6 (1949-50), 434-437. 
3. Anne C. Davis, A characterization of complete lattices, Pacific J. Math., 5 (1955), 311-319. 
4. H. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc, 42 (1937), 416-460. 
5. E. J. McShane, Order-preserving maps and integration processes, Annals of Math. Studies, 

31 (Princeton, 1953). 
6. E. J. McShane, Partial orderings and Moore-Smith limits, Amer. Math. Monthly, 59 (1952), 

1-11. 
7. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 

(1955), 285-309. 

University of Connecticut 

https://doi.org/10.4153/CJM-1957-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-047-5

