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ABSTRACT. X-ray microtomography has become an essential tool for investigating the mechanical and
physical properties of snow, which are tied to its microstructure. To allow a quantitative characterization
of the microstructure, the grayscale X-ray attenuation coefficient image has to be segmented into a binary
ice/pore image. This step, called binary segmentation, is crucial and affects all subsequent analysis and
modeling. Common segmentation methods are based on thresholding. In practice, these methods present
some drawbacks and often require time-consuming manual post-processing. Here we present a binary
segmentation algorithm based on the minimization of a segmentation energy. This energy is composed of
a data fidelity term and a regularization term penalizing large interface area, which is of particular
interest for snow where sintering naturally tends to reduce the surface energy. The accuracy of the
method is demonstrated on a synthetic image. The method is then successfully applied on
microtomographic images of snow and compared to the threshold-based segmentation. The main
advantage of the presented approach is that it benefits from local spatial information. Moreover, the
effective resolution of the segmented image is clearly defined and can be chosen a priori.

INTRODUCTION
The microstructure of snow, i.e. the three-dimensional (3-D)
configuration of the ice matrix, determines crucial snow
properties, such as albedo, which is relevant for the
computation of the surface energy balance, or mechanical
strength for avalanche hazard forecasting and evaluation.
The microstructure characterization based only on bulk
parameters (e.g. density) is often insufficient to model
precisely the mechanical and physical behavior of snow
(Mellor, 1975; Shapiro and others, 1997). A better under-
standing of the physical and mechanical snow properties
requires a 3-D representation of the microstructure at a scale
of a few microns (Schneebeli, 2002). Thanks to easier access
to 3-D imaging facilities (e.g. X-ray computed microtomo-
graphy) and increasing computational capabilities, 3-D
images of the snow microstructure are now available.
Numerical simulations directly based on the real 3-D
microstructure of snow have been successfully applied to
model thermal conductivity (Kaempfer and others, 2005;
Calonne and others, 2011), snow metamorphism (Flin and
others, 2003; Brzoska and others, 2008; Flin and Brzoska,
2008) and mechanical properties (Pieritz and others, 2004;
Schneebeli, 2004; Srivastava and others, 2010; Theile and
others, 2011). Acquiring 3-D images of snow is therefore a
key issue in snow research.

Different techniques can be used to capture the 3-D
microstructure of snow, the most common being serial
sectioning (Perla and others, 1986; Good, 1987; Schneebeli,
2001) and X-ray microcomputed tomography (mCT) (Brzoska
and others, 1999; Coléou and others, 2001; Freitag and
others, 2004; Schneebeli and Sokratov, 2004; Chen and
Baker, 2010). These methods differ in the way they
reconstruct a 3-D volume from two-dimensional (2-D) data.
Serial sectioning consists of an iterative slicing of the
sample and 2-D imaging with an optical camera. mCT uses

back-projection algorithms to obtain a spatial image from
several radiographs recorded at different projection angles.
mCT measures the 3-D distribution of the X-ray attenuation
coefficient, which differs between materials with different
chemical composition and density. Regardless of the im-
aging technique, the measurement output consists of a 3-D
grayscale image, whose gray levels are supposed to be
distinct between the different materials.

The material of interest then needs to be extracted from
the grayscale image. This image-processing step is called
binary segmentation. It consists of reducing the grayscale
image to a binary image object/background, which enables
the quantitative characterization of the microstructure. In the
present case, the object of interest is ice and the background
is generally constituted of air and possibly an impregnation
product used to strengthen fragile snow samples. Unfortu-
nately, the grayscale image is noisy and the transition
between materials is generally fuzzy. Thus, the binary
segmentation is not straightforward and might bias the
microstructure characterization and the result of subsequent
numerical models.

The segmentation technique used for snow is usually
based on thresholding (e.g. Coléou and others, 2001; Flin
and others, 2003; Schneebeli and Sokratov, 2004; Kerbrat
and others, 2008; Heggli and others, 2009): single gray
values are used to separate different materials. These
methods based on thresholding are commonly used in the
snow community because they are fast and their implemen-
tation is straightforward. However, they are not robust in
practice (Boykov and Funka-Lea, 2006), and are operator-
biased because of the subjectivity involved in the choice of
threshold values (Iassonov and others, 2009).

Nowadays, numerous advanced segmentation techniques
are available in computer sciences, benefiting from the
increasing computational capabilities of personal computers

Journal of Glaciology, Vol. 59, No. 217, 2013 doi: 10.3189/2013JoG13J035 859

https://doi.org/10.3189/2013JoG13J035 Published online by Cambridge University Press

https://doi.org/10.3189/2013JoG13J035


(PCs). Iassonov and others (2009) compared different
segmentation techniques on mCT images and concluded
that ‘the use of local spatial information is crucial for
obtaining good segmentation quality’. Therefore, global
thresholding methods might not be suited to deriving the
maximum information from the grayscale image. One class
of segmentation relying on the optimization of some energy
functions is particularly powerful (Boykov and Funka-Lea,
2006). These methods are hereafter referred to as energy-
based segmentation. In the comparison conducted by
Iassonov and others (2009), energy-based segmentation
has been shown to be superior to the other tested
segmentation techniques. The energy definition makes these
methods flexible and explicitly specifies the segmentation
criteria. In addition, global optimization via the graph-cut
approach (Boykov and others, 2001; Boykov and Funka-Lea,
2006) makes these methods repeatable and robust. Here we
propose to take advantage of the formalism of energy-based
techniques and to adapt it to the binary segmentation of
snow microtomographic images.

Energy-based segmentation techniques can benefit from
the a priori knowledge that the segmented object is snow.
Density and specific surface area (SSA) are classical
indicators to characterize the microstructure and can be
measured from snow samples using dedicated instruments
independent of mCT-based techniques (Matzl and Schnee-
beli, 2006; Kerbrat and others, 2008; Gallet and others,
2009; Arnaud and others, 2011). Threshold-based segmen-
tation techniques can already take into account the density
prior information by choosing the right threshold value, but
this is the only information that can be added in the
segmentation process. The energy-based segmentation is
more flexible and can also consider local spatial image
information such as curvature (El-Zehiry and Grady, 2010),
local smoothness (Boykov and Kolmogorov, 2003) and
shape (Freedman and Zhang, 2005).

Once fallen to the ground, snow undergoes metamorph-
ism (Fierz and others, 2009). Under equilibrium conditions,
it tends to evolve to a structure that minimizes its surface
and grain boundary energy (Flin and others, 2003; Vetter
and others, 2010). As a result, the ice surface of aged snow
tends to be smooth below a certain spatial scale. Kerbrat
and others (2008) compared the SSA measured by gas
adsorption and X-ray tomography. Except for fresh snow,
both measurements give identical results, with an uncer-
tainty of 3%. They concluded that the ice surface in an
alpine snowpack is essentially smooth up to a scale of

�30 mm which corresponds to the effective resolution of
their X-ray images. Flin and others (2011) estimated the SSA
of snow using microtomographic images of various snow
types. They compared the computed SSA for different image
resolutions. For coarse rounded or melt-refrozen grains with
a low SSA (<20m2 kg�1), the computed SSA is almost
independent of the image resolution in the range [5, 80] mm.
As a consequence, snow structures smaller than 80 mm do
not contribute significantly to the overall SSA for these types
of snow. Thus, we can expect aged snow or melt-refrozen
snow with a low SSA to be globally smooth even at a scale
of 80 mm. In this paper, we attempt to include this prior
information about local smoothness, which is linked to the
overall SSA, in the segmentation process.

First, the sampling and X-ray mCT measurement pro-
cedures used to obtain grayscale mCT images are described.
The gray-level distribution is analyzed and used to explain
why the measurement artifacts significantly complicate
the segmentation process. Second, the threshold-based
segmentation, commonly used in snow research, and the
new proposed energy-based segmentation are presented.
Finally, the segmentation techniques are applied on a 2-D
reference image and on the mCT images of snow, and the
results are compared.

X-RAY �CT IMAGES

Sampling and �CT measurement procedure
The natural snow samples used in this work were collected
at Col de Porte, Chartreuse, French Alps, during winter
2011/12. Three different types of snow were sampled.
Sample A is a melt–freeze crust (MFcr according to the
International Classification for Seasonal Snow on the
Ground (ICSSG; Fierz and others, 2009)). Sample B is
composed of solid faceted crystals (FCso) and presents a very
fine crust of frozen drizzle. Sample D is composed of depth
hoar (DH) and faceted crystals (FC). Density and SSA of
these samples are summarized in Table 1.

The snow samples were prepared according to the
procedure detailed by Flin and others (2003) and Flin
(2004). We only recall the main steps here. Once sampled in
the field, each snow core was impregnated with liquid
1-chloronaphthalene (melting point –15/–208C) at a tem-
perature of �–88C. The ice/chloronaphthalene mixture was
then allowed to freeze and stored in a refrigerator at –208C.
After complete freezing and strengthening, each sample was
machined into the shape of a cylinder of 16mm diameter
and 21mm height. This impregnation procedure enables
handling of very fragile snow samples and blocks meta-
morphism of the snow structure.

The X-ray attenuation coefficient 3-D images were
acquired with a cone beam tomograph (RX Solutions,
generator voltage of 100 kV, generator current of 100 mA)
using a specifically designed refrigerated cell. The image
borders are slightly distorted due to the conic form of the
X-ray beam. Thus, cubes of 10003 voxels were extracted from
the inside of the whole 3-D grayscale images (�15003
voxels). The voxel side-length of sample A is 9.6 mm. Samples
B and D were scanned twice with a voxel size of 7.2 mm
(images B7m and D7m) and 9.6 mm (images B and D).

With this sampling procedure, the scanned samples
present two main materials, namely ice and chloronaphtha-
lene (chl), and a secondary material composed of residual

Table 1. Description of the snow samples used in this study. Density
was measured in the field by weighting snow samples with a
volume of 50 cm3. The indicative SSA values correspond to
estimates obtained on the binary image resulting from the energy-
based segmentation (for r ¼ 1:0 voxel; see below)

Name Type Voxel size Density SSA

mm kgm�3 m2 kg�1

A MFcr 9.6 280 8
B FCso 9.6 215 19
B7m FCso 7.2 215 19
D DH/FC 9.6 125 25
D7m DH/FC 7.2 125 28
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air bubbles due to incomplete impregnation of the sample
(Fig. 1). These three materials can be distinguished by their
X-ray attenuation coefficient, i.e. their grayscale value I. The
attenuation coefficients, initially encoded on 4-byte floats,
were rescaled and encoded with unsigned shorts (0–65 535).
In the figures, they are plotted with a gray level (0: black;
65 535: white). Dark, intermediate and light gray values
correspond to air, ice and chl, respectively.

The segmentation method described in this paper is thus
applied to X-ray images composed of three materials,
resulting from snow samples impregnated with 1-chloro-
naphthalene. However, this approach is, in fact, rather
general and can be applied to any multiple-material
grayscale image from which one material needs to be
extracted. Other sampling procedures to prepare snow
samples for mCT imaging exist in the literature. When a
mCT is directly available in a cold room, the snow samples
generally do not require any specific preparation to be
scanned (e.g. Kerbrat and others, 2008). In this case, the mCT
image is composed of only two phases: air and ice. Besides
the technique described in this paper, fragile snow samples
can also be prepared for a mCT scan using the snow replica
method (Heggli and others, 2009). This method consists of
casting snow samples with diethyl phthalate and then
sublimating ice in high vacuum. In this case, the scanned
sample is composed of two materials: the impregnation
product and air. In all cases, however, regardless of the
reconstruction technique or the sampling procedures, the
measurement output consists in a 3-D grayscale image
whose values are supposed to be distinct between the
different materials, and to which the developed segmenta-
tion technique can be applied.

Image artifacts: noise and fuzzy transition between
materials
The mCToutput images are only approximate representations
of the true X-ray attenuation coefficient. The grayscale
images are affected by optical transfer function, scatter and
noise (Kaestner and others, 2008). As a consequence, they
are altered by two main artifacts: (1) the gray values of

voxels belonging to the same material are slightly spread
around the noiseless attenuation coefficient of the material,
and (2) the transition between different materials is fuzzy
(Fig. 1). These artifacts yield ‘mixed voxels’ whose gray value
does not directly determine whether they belong to ice or to
the background, and the segmentation of these mixed voxels
can significantly affect the final segmented image. This
explains why binary segmentation of mCT images is not
straightforward.

The grayscale histogram representing the distribution of
voxels with a given gray level (Fig. 2) can be used to estimate
the material proportions and their intensity peaks. Its
analysis can also be used to quantify the noise amplitude
and the size of the transition zone between materials. Noise
is inherent to the X-ray sensor and the measurement
environment. Due to the acquisition method, noise is often
spatially correlated along annuli centered on the rotation
axis of the mCT scan. As shown in Figure 2, the noisy gray-
level distribution for each material can be fitted by a
Gaussian distribution Nð�,�Þ, defined as

Nð�,�ÞðIÞ ¼ 1
�
ffiffiffiffiffiffi
2�

p exp �ðI � �Þ2

2�2

 !
: ð1Þ

The standard deviation � and the mean � of these
distributions can be automatically determined using data
adjustment algorithms (minimization of the square error), for
ice and chl. Automatic fit for air is generally not possible
because the amplitude of the air peak is too small to clearly
emerge in the histogram. As expected, it is found that the
standard deviation of noise is the same for chl and ice, since
noise does not depend on the material but is inherent to the
imaging procedure. The fitting domain was thus reduced by
using the same � value for ice and chl. In the example
images (Figs 1, 3 and 10), the value of this standard
deviation of noise � is �20% of the contrast between the
attenuation coefficients of ice (�ice) and chl (�chl).

The fuzzy transition between different materials is partly
due to partial volume effect (Fig. 1). The real limit between
materials does not exactly follow the voxel grid. Therefore,
the gray value of a frontier voxel is a barycenter between
gray values of pure materials. In principle, the transition
width should thus be on the order of the voxel side-length. In
fact, this zone is slightly larger (�2–3 voxels). This is due to
the tomography back-projection reconstruction algorithm
that is affected by a noisy input. On the histogram, this effect
leads to a transition zone between ice and chl (Fig. 2).
Empirically, a Gaussian distribution centered on the mean
gray level � ¼ ð�chl þ �iceÞ=2 and with a standard deviation
of e� ¼ ð�chl � �iceÞ=4 was found to provide a good fit to this
transition zone (Fig. 2).

Hence, the normalized grayscale histogram F can be well
reproduced by the following model eF :

eF ¼�ice � N ð�ice,�Þ þ �chl � N ð�chl,�Þ
þ ð1� �ice � �chlÞ � N ð�, e�Þ, ð2Þ

where ð�ice,�chlÞ represent the proportions of ice and chl,
respectively. As a consequence, the undetermined voxels
whose gray value is between ice and chl are either very
noisy pure material or transition voxels between the two
materials. As described below, this automatic histogram
analysis is used to set the parameters of the energy-based
segmentation algorithm.

Fig. 1. X-ray scale image (5002 pixels) extracted from sample B, and
its corresponding grayscale histogram. The image is composed of
three materials: the impregnation product (1-chloronaphthalene,
light gray), ice (intermediate gray) and residual air bubbles (dark
gray). The contour of ice resulting from segmentation is plotted in
red. The zoom box (top right) was enlarged five times to show the
fuzzy transition between the different materials.
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METHOD
Various binary segmentation methods have been proposed
in the literature (Boykov and Funka-Lea, 2006; Iassonov and
others, 2009). In the snow community, global thresholding
with pre- and post-processing smoothing filters is commonly
used (e.g. Coléou and others, 2001; Flin and others, 2003;
Schneebeli and Sokratov, 2004; Kerbrat and others, 2008;
Heggli and others, 2009). This threshold-based segmentation
method and its drawbacks, which have motivated the
development of a more advanced segmentation method,
are first described. The proposed energy-based segmentation
is then presented.

Threshold-based segmentation
Threshold-based segmentation is the most commonly used
segmentation technique because it is simple and fast. The
method is based on two main steps: smoothing and
thresholding. These steps differ depending on whether the
image is composed of two or more phases.

Two materials
During the thresholding process, individual voxels in the
image are marked as object or background voxels according
to whether their value is greater or smaller than a global
threshold value. This threshold can be estimated from the
grayscale histogram of the image. For instance, its value can
be determined as the local minimum between the two

intensity peaks in the grayscale histogram (Fig. 1; e.g. Heggli
and others, 2009). However, for snow samples with a very
high SSA, these two peaks are not distinct (unimodal
histogram) because of the large number of mixed voxels
whose grayscale value lies between those of the two
materials. In this case, the threshold can be determined by
fitting a particular intensity model. For instance, Kerbrat and
others (2008) determined the optimum threshold by fitting a
sum of two Gaussian curves on the histogram and calcu-
lating their intersection. Nevertheless, using a strict gray
threshold generally truncates the tail distribution of the
intensity distribution of pure material voxels and results in a
number of incorrectly classified voxels (Kaestner and others,
2008; Fig. 3). The number of wrongly segmented voxels is
particularly large when the histogram is unimodal. The
resulting segmented object is thus disturbed, and structural
parameters such as SSA are significantly affected.

In order to smooth the ice/background interface and to
accentuate the intensity peaks in the histogram, a smoothing
filter that reduces noise is first applied on the initial image.
Common smoothing filters are convolution filters such as
mean and Gaussian filters. The spatial size �s of the
smoothing filter (box size of the mean filter or standard
deviation of the Gaussian filter) is usually set to the size of a
few voxels. These filters efficiently smooth intensity vari-
ations inside homogeneous regions but also affect sharp
features in the image. Consequently, the effective resolution
of the binary image is negatively affected. Moreover, setting
the size of the smoothing filter �s to a certain value does not
guarantee that the segmented object is free of artificial
details smaller than �s (Fig. 3) because the thresholding
applied afterward is a discontinuous operation.

Three or more materials
When the initial image is composed of three or more
materials, the smoothing step is not directly applicable. For
instance, a smoothing filter directly applied on our X-ray
images smooths the transition between air bubbles and
1-chloronaphthalene. The contour of air bubbles in chl then
appears as an ice contour (Fig. 3b). The image therefore has
to be reduced to a two-materials image before applying the
smoothing/thresholding steps.

A semi-automatic threshold-based segmentation proce-
dure was developed to process X-ray images of impregnated
snow obtained from synchrotron tomography (Flin and

Fig. 3. (a) Threshold-based segmentation without smoothing. The thresholds used are indicated by the black arrow on the histogram.
(b) Threshold-based segmentation with smoothing of the grayscale image through a Gaussian filter (�s ¼ 1:6 pixels). To visualize the size of the
smoothing kernel, a disk of radius �s voxels is plotted in red. The histogram of the non-filtered image is plotted with dots. (c) Expected
segmentation (best segmentation obtainedwith the energy-based technique). The grayscale distribution of the segmented ice pixels is plotted in
red on the histogram. Despite the clear visual differences, the threshold-based segmentation without smoothing (a) differs from this expected
segmentation (c) by only a small number of voxels (�5%).

Fig. 2. Analysis of the grayscale histogram of the image shown in
Figure 1. The normalized grayscale distribution F is well reproduced
by the intensity model eF described in Eqn (2) (

R
jF � eF jdl ¼ 0:02).
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others, 2003; Flin, 2004). This approach was recently
improved and now consists of the following steps:

Air bubble detection. First, a threshold is used to locate
dark voxels corresponding to air. These voxels are then
dilated (two iterations) where the grayscale gradient is
high. This procedure enables labeling of the contour of
air bubbles that have the same gray value as ice. Dilating
only in high-gradient zones prevents labeling of real ice
next to a bubble that is touching ice. Finally, the labeled
voxels are replaced by the mean gray value of
1-chloronaphthalene. This step reduces the initial image
to two materials.

Smoothing and thresholding. The modified image is
smoothed with a mean filter of size 3� 3� 3 and
binarized with a threshold obtained from a visual
analysis of the grayscale histogram.

Final processing. To remove residual noise, the seg-
mented image is post-processed via binary morpho-
logical operations (closing, erosion/reconstruction,
opening, etc. with structural elements of size 3 � 3� 3)
and via a last smoothing/thresholding step (mean filter of
size 5� 5� 5). Finally, ice zones not connected to the
main structure or to the borders of the image are
identified using a connected component-labeling algo-
rithm and deleted. This step prevents having small
artificial ice zones floating in the snow structure.

This procedure is straightforward and fast (�1–2 hours on a
PC (2GHz, 16Gb RAM) for a 10003 voxels image). Never-
theless, its outcome critically depends on the skills of the
operator, who has to manually fix the different segmentation
parameters (thresholds, smoothing filters size, etc.) as a
function of the snow type and the tomograph settings.
Moreover, due to the sequential nature of the segmentation
procedure, information might be lost between each smooth-
ing and thresholding step. For instance, the initial smoothing
step affects the whole image and does not preserve sharp
edges. On the contrary, it tends to increase the partial volume
effect. Lastly, the parameters used cannot be directly related
to the effective resolution of the resulting binary image, i.e.
the size of the smallest details that can be imaged.

Energy-based segmentation
Energy-based segmentation methods consist of finding the
optimal segmentation according to an energy function. These
methods are more robust because the segmentation criteria
are objectively defined in the energy functional and the
optimization process is automatic. Energy-based segmenta-
tion methods can be distinguished by the type of function
used and by the minimization algorithm. They can be divided
into two main groups (Boykov and Funka-Lea, 2006):

1. Optimization of a functional defined on a continuous
contour or surface (e.g. snakes, geodesic active contours,
methods based on level-sets). The optimization generally
uses a variational approach that finds a local optimum,
but cannot guarantee to find a global optimum.

2. Optimization of a cost function directly defined on a
discrete set of variables (e.g. intelligent scissors, live-
wire, graph cut). The graph-cut approach introduced by
Boykov and others (2001) belongs to this group and
enables the global optimization of the energy function in
any dimension. In this paper, the graph-cut approach was

adapted to the binary segmentation of snow X-ray
microtomographic images.

Let us consider that the grayscale image I is constituted of n
voxels of side length �. The spatial position and the intensity
of voxel i are denoted xi and Ii , respectively. The segmented
image is L 2 f0, 1gn, where 0 stands for the background and
1 for ice. Li is the segmentation label (0 or 1) of voxel i. A
segmentation L costs the energy EðLÞ. The best segmented
image Lmin is the one that minimizes the energy E. In
general, the energy E is composed of two terms: a local data
fidelity term (Ev) and a non-local spatial regularization term
(Es), whose expressions in our case are described in the
following subsections.

Local intensity model
The local gray value is the most obvious criterion that needs
to be accounted for in the segmentation process. For
instance, a voxel whose intensity is very close to the
intensity of air is inclined to be air, i.e. to belong to the
background. This idea can be formalized with proximity
functions P that quantify the penalty of assigning a voxel to
ice or to the background. The proximity function ranges
from 0 (furthest) to 1 (closest). Using proximity functions, the
data fidelity term Ev of the segmentation energy can be
defined as

v �
X
i

ð1� LiÞ � P0ðIiÞ þ Li � P1ðIiÞð Þ, ð3Þ

where P0 is the proximity to the background (0), and P1 the
proximity to ice (1). This energy is scaled by the volume of
1 voxel v ¼ �3. To set these proximity functions, we rely on
the analysis of the grayscale distribution (see above and Fig.
2). Using the decomposition of the grayscale histogram
described in Eqn (2), the ratio �ice � N ð�ice,�Þ=eF quantifies
‘how close to ice a voxel of a given gray value level is’ and

Fig. 4. Proximity image. The gray value is here proportional to
P0 � P1, so that a voxel close to the background is white and a voxel
close to ice is dark. The voxelswith an intermediate gray value are the
undetermined voxels. The contours of air bubbles are visible. The
same plot can be done with a preprocessed image where the bubble
contours are replaced by chl, but then a peak appears in the
histogram for the chosen ‘replacement’ intensity.
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could be used as the proximity function to ice P1. Here a
simpler model that approximates this ratio based on
truncated Gaussian functions is used (Fig. 4):

P0ðIÞ ¼
1 if I < �air or �chl < I

min ð1, eNð�air,�ÞðIÞ þ eNð�chl,�ÞðIÞÞ elsewhere

�
P1ðIÞ ¼ min 1, eNð�ice,�Þð ÞðIÞ

ð4Þ
with e ¼ expð1Þ. The attenuation coefficient of air, �air,
cannot be directly derived from the histogram. This par-
ameter is estimated from the values of �ice and �chl by
assuming a constant relative contrast between materials.
Using these proximity functions actually amounts to trans-
forming the initial grayscale image into a new grayscale
image (Fig. 4), which is sharper because the noise has been
reduced. The main idea behind this definition of the
proximity functions is to distinguish the fuzzy transition from
noise and add this information to the segmentation process.

Even if no smoothing filter is applied to the grayscale
image, the contour of air bubbles generally shows gray
values close to those of ice, due to the partial volume effect
(Figs 3 and 4). To eliminate this artifact, ‘ice-like’ (�ice � 2�
< I < �ice þ 2�) voxels, simultaneously close (distance 4
voxels) to ‘chl-like’ (I > �ice � �) and ‘air-like’ (I < t�air þ �)
voxels, are replaced by ‘chl-like’ voxels (I ¼ �chl � �). All
mCT images used to test the energy-based segmentation
method were preprocessed this way.

The minimization of Ev alone gives the same result as a
threshold-based segmentation, with the advantage of also
providing the uncertainty of the segmentation EvðLminÞ.
However, the energy-based segmentation is really interesting
when Ev is combined with additional non-local energy terms.

Surface area
The complete energy function used in this paper is
composed of two components:

EðLÞ ¼ EvðLÞ þ r � SðLÞ, ð5Þ
where the spatial regularization term is EsðLÞ ¼ r � SðLÞ, with
SðLÞ the surface area of the segmented object and r (r � 0)
which has the dimension of a length. Accounting this term in
the energy leads to penalizing large interface areas: a voxel
with a mixed gray value will be segmented so that the
interface ice/background area is minimized. The parameter r
assigns a relative weight to the surface area term so that the
smoothness of the segmented ice can be controlled. In
principle, other non-local terms (e.g. gradient, curvature or
shape penalties) could also be considered in the segmenta-
tion. The flexible definition of the energy functional is one of
the powerful assets of energy-based segmentation.

The regularization term minimizing the ice/air interface is
of particular interest for materials such as snow where
sintering naturally tends to reduce the surface and grain
boundary energy. This process is particularly effective on

snow types resulting from isothermal metamorphism. For
other snow types, such as precipitation particles (PP), faceted
crystals (FC) or depth hoar (DH), the surface regularization
term is expected to perform well in recovering the facet
shapes but might induce some rounding at facet edges.

The parameter r is a geometrical parameter related to the
smallest detail size preserved by the segmentation. Let us
consider a protuberance P on a globally smooth interface,
with a volume Vp, a total surface Sp and a contact area with
the smooth object Sc (Fig. 5). If P is considered as ice, the
segmentation energy is E ¼ C þ r � ðSp � ScÞ where C is a
constant. If P is considered as background, then
E ¼ C þ Vp þ rSc. Hence, the protuberance P is segmented
as ice if

Vp � rðSp � 2ScÞ: ð6Þ

In addition, the contact area Sc can be generically
expressed as a function of the total surface area Sp:
2Sc ¼ ð1� �ÞSp where � is a numerical factor that depends
on the protuberance shape. This factor � ranges from 0 to 1
for flat to distinct protuberances, respectively. For instance
for an equilateral triangle protuberance, � ¼ 1=3. Let rp
be an apparent radius, defined by Vp=Sp. Finally, P is
segmented as ice if

rp
�
� r : ð7Þ

Accordingly, the segmentation parameter r thus enforces
the minimum radius of protuberances preserved on the
segmented object.

Minimization of the energy: graph-cut approach
The energy functional defined in Eqn (5) has to be
minimized to find the optimal segmentation. The optimiza-
tion of binary energy via graph cut is well suited to this
purpose (Boykov and others, 2001). This method consists in
transforming the binary energy optimization problem into
the problem of finding an optimal cut in a graph, which is
solvable in polynomial time (Ford and Fulkerson, 1956). The
cut metric induced in this graph can be chosen as close as
desired to the continuous Euclidean metric (Boykov and
Kolmogorov, 2003) and can also be used to compute surface
area very efficiently (Lehmann and Legland, 2012). Details
of the graph-cut approach are provided in the Appendix. The
graph-cut algorithm developed by Delong and Boykov
(2008) that enables the segmentation of massive grids up
to 4003 voxels on a PC was used. Since segmentation is a
local process at the scale of a snow grain, it was possible to
apply a ‘divide and conquer’ (D&C) algorithm (segmentation
on smaller overlapping sub-volumes) in order to segment
large images (�10003 voxels) in �10 hours on a PC (four
processors, 2.7GHz, 6Gb RAM).

RESULTS
The absence of ground truth, i.e. the absence of prior
knowledge of the optimal binarization result, makes the
comparison of different segmentation techniques difficult.
Thus, the accuracy and the behavior of the energy-based
segmentation is first tested on a reference artificial image:
the 2-D Koch flake. The technique is then applied on mCT
snow images, and 3-D results are shown. Results of the
energy-based and threshold-based segmentations are com-
pared, and the accuracy of the energy-based segmentation

Fig. 5. Protuberances on a surface of a smooth object. For the
equilateral triangular protuberance, � ¼ 1=3. For the ‘sharper’
protuberance, � ¼ 0:8.
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is indirectly checked on global structural parameters
(density and SSA).

Segmentation of a reference 2-D image
The Koch flake (Fig. 6) is chosen as a reference for its
multiscale properties (Mandelbrot, 1982) that can grossly
mimic the structure of certain types of snow. By varying the
number of iterations in the fractal construction, the scale of
the smallest detail on the flake can be freely set, and the exact
perimeter length and surface area can be theoretically
computed. First, the discretization of the Koch flake into a
pixel binary image is discussed. This binary image is then
artificially degraded to reproduce the imperfect mCT output
image. Finally, the energy-based segmentation method is
applied on the degraded image and its accuracy is examined.

Discretization artifact
The flake is discretized into a binary image of size
5002 pixels: the value of each pixel was set to 1 or 0
according to whether the pixel center is inside or outside the
closed Koch curve, respectively. Figure 7 shows measure-
ments of the area and the perimeter (computed with the
graph-cut approach: see Appendix) of the discretized Koch
flake as a function of the iteration number in the construc-
tion of the fractal object. The measured area corresponds
well to the theoretical value. The measured perimeter,
however, differs more and more from the theoretical value
when the number of iterations increases, i.e. when the
length of the elementary segment of the Koch curve
becomes small compared to the pixel size. Typically, the
perimeter measurement remains consistent with the theoret-
ical value, with an uncertainty of 10%, for objects whose
details are larger than �4 pixels. For smaller details,
discretization artifacts become significant; in this case, the
pixel discretization and the graph-cut length calculation are
not precise enough to correctly reproduce the flake contour
length. In the following, the Koch flake with four iterations,
which presents the smallest details of side-length equal to
4 pixels and whose contour length can be regarded as
correctly reproduced, is considered as the reference object.

Input images for the segmentation algorithm
The discretized Koch flake with four iterations was then
blurred with a Gaussian filter of standard deviation equal to

1.5 pixels in order to reproduce the fuzzy transition between
two materials (blurred image). Two synthetic images were
then created by adding different types of noise to the blurred
image. On the first one (CT noise image), noise derived from
a CT scan of an empty sample was added to the blurred
image, in order to mimic mCT noise as closely as possible
(Fig. 8). On the other one (Gaussian noise image),
uncorrelated Gaussian noise was added. Both additive
noises were scaled so that their standard deviations are
equal to 20% of the contrast between the two materials, as
in our snow mCT images. Note that the specific surface area
(SSA) of the Koch flake expressed in pixels is relatively small
compared to that of the scanned snow grains since the
center of the Koch flake is massive. Thus, only a small
number of transition pixels are present, as revealed by the
grayscale histogram (Fig. 8).

Segmentation artifact
The energy-based segmentation algorithm was applied to
the initial image and the degraded images (blurred, CT noise
and Gaussian images) for various values of the parameter r.
Note that the blurring of the initial image irreversibly affects
details of the Koch flake which therefore cannot be
recovered by any segmentation technique. Hence, the
segmentation of the CT and Gaussian noisy images is
expected to be, at best, as good as the segmentation of the
blurred image.

Figure 9 shows the number of pixels that are wrongly
segmented compared to the reference Koch flake image, as a
function of the segmentation parameter r. For both noisy
images, the lowest number of wrongly labeled pixels (equal
to 0.84% of the total number of pixels with the CT noise and
0.66% with Gaussian noise) is obtained with r ¼ 0:4 pixel.
As explained above (Eqn (7)), r controls the apparent radius
of surface protuberances deleted by the segmentation. The
optimal value of r is obtained when protuberances induced
by noise are deleted but as few object details as possible are
smoothed. Therefore, the optimal value of r can be regarded
as corresponding to the typical length of noise-induced
protuberances. Globally, the segmentation result is more
accurate on the image with Gaussian noise, which can be
attributed to the effect of spatial correlations of the mCT
noise that tends to hinder the efficiency of the non-local
segmentation energy term (Es).

Fig. 6. Koch flake with four iterations (5002 pixels). At each iteration,
a smaller triangle is added in the middle of all perimeter segments.

Fig. 7. Measurement of area and perimeter of the discretized Koch
flake as a function of the number of iterations in the fractal
construction (see Fig. 6).
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Figure 9 also shows how the perimeter length of the
segmented object varies with r. As expected, when r
increases, the perimeter becomes smoother and its length
decreases. Two regimes can be distinguished: (1) For small
values of r, the perimeter length strongly decreases with r.
Due to noise, the length computed with r ¼ 0 is highly
overestimated. In this regime, smoothing induced by Es
affects small details that are due to noise, but not real details
of the image. (2) For larger values of r , the computed
perimeter length decreases more slowly with r, and with a
quasi-constant slope. In this regime, the smoothing induced
by Es affects real details of the object. This is indicated by the
fact that the computed perimeter length on the images
without noise (initial and blurred images) also clearly
decreases in this regime. Interestingly, the perimeter de-
crease rates with r for the noisy images and the blurred
image are almost equal, and presumably linked to the
multiscale property of the segmented object. Note that for
very large values of r , the smoothing is so strong that there
are almost no more differences between the results obtained
from the four images (Fig. 9).

Interestingly, we observe that the segmentation with the
smallest number of wrong segmented pixels is obtained at
the transition between the two previously described regimes,
i.e. when most noise induced by artificial details is
smoothed out. We also note that the best segmentation is
not able to recover the exact Koch flake: �1% of the total
number of pixels are wrongly segmented and the perimeter
length is underestimated by 20% compared to the perimeter
length computed directly on the initial image. As already
explained, this discrepancy is mainly due to the application
of blur, which leads to an irrecoverable loss of the smallest
details in the image. It is thus satisfactory to observe that the
perimeter length recovered by the best segmentation on the
noisy images is almost equal to that obtained with the best
segmentation (r ¼ 0Þ on the blurred image.

Segmentation of snow 3-D images
The energy-based segmentation algorithm is now applied on
the snow samples described previously (Table 1) for various
values of segmentation parameter r. Examples of segmented
slices (Fig. 10) and segmented volumes (Fig. 11) qualitatively

illustrate the effect of parameter r on the segmented object.
It is clearly observed that when r increases, the segmented
snow becomes smoother and smoother. The effect of r is all
the more evident for snow presenting a high SSA value
(sample D).

In the following, we first investigate how the segmenta-
tion parameter affects structural variables such as density
and SSA (Fig. 12). The results obtained for similar snow
samples scanned with different resolutions are then com-
pared. Finally, the energy-based segmentation results are
compared to the threshold-based segmentation results.

Evolution with parameter r
As shown in Figure 12a, the density of the segmented object
is almost constant with r. The slight decrease observed is
due to the fact that the snow structure is generally convex
and accounting for Es in the segmentation energy tends to
erode convex zones. The density variations are also
slightly larger for small snow grains (samples D and D7m)
since their details are more affected by smoothing induced
by Es (Fig. 10).

SSA, by contrast, is more sensitive to the segmentation
parameter r (Fig. 12b). As for the Koch flake, two regimes
can be distinguished. For very low values of r (0–10 mm),
the SSA decreases rapidly when r increases. Similarly to the
synthetic images, this regime probably corresponds to the
progressive smoothing of the noise on the interface. For
larger values of r (10–40 mm), the SSA decreases much more
slowly with r . For sample A, composed of a melt-refrozen
crust, there is actually almost no variation of the SSA with r
in this regime, which can be related to the fact that the
interface is already naturally smooth at these scales. For
samples B and D, the SSA continuously decreases with r
with an almost constant slope, because the real details of the
snow structure contributing to the overall SSA are progres-
sively smoothed out. This behavior is a clear indication of
the multiscale characteristics of these types of snow: the
wide size distribution of the details impacts the SSA when
computed at different scales.

Hence, when the scale of noise is clearly separated from
the detail scale as on sample A, the segmentation parameter
can be almost indifferently taken in the range 10–40 mm.

Fig. 8.Koch flake blurredwith a smoothing filter (�s ¼ 1:5 pixels) and
degraded with noise extracted from an empty CT scan. The CT-scan
noise presents circular spatial correlations due to the data acquisition
procedure.

Fig. 9. Accuracy of the segmentation on the Koch flake image as a
function of parameter r. The reference perimeter is the perimeter
measured on the discretized flake with four iterations (Fig. 7).
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When these two scales are not clearly separated, the optimal
choice for r is more difficult. The best segmentation is
obtained when most of the noise is smoothed out but the
snow details are optimally preserved. According to the
analysis of the Koch flake, we can assume that the best
segmentation parameter is obtained at the transition between
the two described regimes, i.e. when the SSA starts to vary
slowly with r . In the presented images, this optimal value
corresponds to r ’ 10–15 mm, i.e. r ’ 1–1.5 voxels. As
expected, choosing a value of r less than this optimal value
amounts to trying to extract artificial information from the
image and to amplifying the influence of the noise. In our
case, finding an optimal value on the order of the voxel size
indicates that the tomograph settings are optimal.

Influence of image resolution
Segmentation results can be compared for the pairs of
images B and B7m, and D and D7m, which were obtained
using different resolutions (9.2 and 7.6 mm, respectively). For
both density and SSA, the segmentation results are globally
consistent with each other for all values of r larger than the
highest resolution (Fig. 12). We recall that, even if they are
extracted from the same sample, the volumes scanned at
different resolutions are not exactly the same. This might
explain the small density and SSA differences observed. The
agreement observed for both pairs of images constitutes a
clear validation of the robustness of the presented method.
The parameter r can be regarded as the effective resolution
of the segmented image.

Fig. 10. Segmentation for different snow samples (A,D andD7m from left to right) and parameter r (0.75, 2.0 and 4.0 voxels from top to bottom).
The segmentation is computed on a 3-D volume. As a consequence, the segmentation presented on these 2-D sub-slices (5002 pixels) may be
affected by neighboring slices.
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For images B and B7m, both SSA and density values
remain similar for values of r less than 9.2 mm. This indicates
that, in this case, both resolution values are sufficient to

capture the details of the tested snow type. By contrast, for
images D and D7m, the SSA values tend to show a difference
that increases when r decreases below 9.2 mm. This can be

Fig. 11. Segmentation for different snow samples (A on the left and D7m on the right) and parameter r (from top to bottom 0.75, 2.0 and
4.0 voxels). The segmentation is presented on subvolumes (5003 voxels) of the whole images (10003 voxels) and may be affected by
neighboring slices. The surface was colored according to its curvature to emphasize the smallest structure details.
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attributed to the influence of snow details smaller than the
image resolution whose existence is expected for this type of
snowwith a high SSAvalue. The observed difference can also
be enhanced by the slightly poorer quality of the D7m scan
where the noise-to-signal ratio is larger.

Comparison with threshold-based segmentation
Globally, as shown in Figure 12c, the number of voxels
differing between the two segmentation techniques always
remains relatively small (1–5%). In detail, this number
slightly depends on the considered image.

Concerning the density, it can be argued that good
agreement between the two segmentation techniques is
found for all tested images (Fig. 12a). The differences
observed in Figure 12a can be attributed to the uncertainty
inherent to the segmentation technique. For instance, a
detailed investigation conducted on image A revealed that

the differences between the two techniques are essentially
due to systematic variations of �1 voxel in the position of
the ice/background interface (Fig. 13). Given the typical size
of the fuzzy transition between materials in our image, such
variations of 1 voxel may be due to slight differences in the
chosen thresholds and can be regarded as measurement
uncertainties. Due to the connectivity test, some snow grains
also tend to be deleted in the threshold-based segmentation
(Fig. 13), but their effect on the overall density remains
negligible. Finally, it can also be noted that the density
values measured in the field (Table 1) are in reasonable
agreement with the values derived from the binary images,
considering once again the measurement uncertainties, and
the representativity issues linked to the small size of the
scanned samples.

Concerning SSA, we also observe good agreement
between the values derived from the threshold-based
segmentation and those obtained from the energy-based
segmentation, in particular when parameter r is on the order
of the image resolution (Fig. 12b). This comparison reveals
that the effective resolution associated with the threshold-
based segmentation is actually close to the image resolution.
Note that the apparently large difference in SSA values
yielded by the threshold-based segmentation for images D
and D7m is actually essentially due to the difference in the
obtained densities and not in the obtained surface areas
(Fig. 12a).

Energy-based and threshold-based segmentation have
been shown to produce essentially identical results, which
can be considered as a cross-validation of the two tech-
niques. However, the threshold-based technique appears
less robust since, in particular, different density values are
obtained for the same samples scanned at different resolu-
tions. The greater robustness of the energy-based technique
is supported by the fact that the segmentation parameters are
automatically derived from the histogram analysis, and not
subjectively chosen as in the threshold-based segmentation.
This robustness is also enhanced by the greater flexibility

Fig. 13. Differences between the threshold-based segmentation and
the energy-based segmentation computed for r ¼ 2:0 voxels on a
slice of sample A (5002 pixels). The grain indicated with the arrow
was disconnected from the overall snow structure by the threshold-
based technique and deleted by the connectivity test. Almost no
blue pixel, which is segmented as ice only with the threshold-based
method, is visible in the figure. On the threshold-based segmented
image of sample A, a one-voxel dilation increases the computed
density from 278 kgm�3 to 294 kgm�3, a value close to that
obtained with the energy-based segmentation (Fig. 12a).

Fig. 12. Evolution of segmentation results as a function of the
segmentation parameter r. (a, b) The evolution of density (a) and
specific surface area (b) as a function of r. Density and SSA values
obtained from the threshold-based segmentation are indicated on
the right axis. (c) The proportion of voxels that differ between the
energy-based and threshold-based segmentations.
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offered by the use of smooth proximity functions instead of
fixed threshold values that separate voxels regardless of the
grayscale difference between them.

CONCLUSION AND DISCUSSION
We successfully applied an energy-based segmentation with
a graph-cut minimization technique, to snow microtomo-
graphic images. The segmentation criteria are chosen
according to our prior knowledge of the snow microstruc-
ture. In particular, a spatial regularization term, that
penalizes large interface area, has been introduced to
account for the sintering effect that naturally tends to reduce
snow surface energy.

Our approach has first been shown to produce accurate
results on a synthetic image, the Koch flake. The energy-
based segmentation was then successfully applied on
microtomographic images of snow and compared to the
threshold-based segmentation. In the absence of ground
truth on snow images, it is difficult to conclude about the
absolute quality of the obtained segmentations. However,
both methods produced similar results. The main advantages
of our approach compared to the threshold-based segmenta-
tion can be summarized as follows:

1. All segmentation parameters (intensity peaks, noise
amplitude, etc.), except the relative weight of the surface
area term r, are automatically determined from the
histogram analysis in which both noise and fuzzy
transition are considered. Thus, the approach is repro-
ducible and does not involve subjective choices.

2. The method benefits from local spatial information:
voxels are segmented according to their local gray value
but also such as to minimize the ice/background
interface, which is physically meaningful. The segmenta-
tion parameter r is formally linked to the local
smoothness of the segmented object. It clearly defines
the effective resolution of the final binary image.

3. With the energy formalism and the global optimization
via graph cut, all criteria and available information are
treated simultaneously in the segmentation process,
which leads to enhanced robustness. In the threshold-
based segmentation, the image processing is sequential.
At each step, the ‘working’ image is modified and some
information might be lost.

The density of the segmented image has been shown to be
almost independent of parameter r. Thus, density values are
essentially governed by the volumetric term in the
segmentation energy. As a consequence, an a priori
knowledge of the density might be added in the segmenta-
tion process. This can be done by adding this constraint to
the histogram analysis phase and adjusting the values of
�air, �ice and �chl. In our case, such an addition of prior
information was not considered since the density field
measurements cannot be regarded as representative for the
small scanned snow samples.

The choice of the segmentation parameter value r is not
automatic and should be made according to the image
quality. As shown previously, the best segmentation, i.e.
that which preserves the smallest snow details while
deleting most of the noise-induced protuberances, is
obtained when the computed SSA starts to vary slowly
with r (r ’ 1–1:5 voxels here). The dependence of the

computed SSA value on the effective resolution r also
points to two important considerations: (1) if they are not
carefully smoothed out, noise-induced protuberances
can significantly contribute to the overall SSA, which will
then be overestimated; and (2) for snow with structure
details on the order of the voxel size (e.g. fresh snow),
the SSA value cannot be measured independently of the
resolution used.

In addition, the choice of r should also depend on the
subsequent use of the binary image. For analyses not
affected by small structural details, the effective resolution
r of the binary image can be chosen larger than the optimal
value defined above. For instance, for mechanical analysis
with finite or discrete elements, the segmentation should
correctly reproduce the grain connectivity while modeling
the grain shapes with the fewest elements possible. Usually
the downscaling of the 3-D image of snow is performed by
merging voxels in the binary image. This downscaling leads
to a threshold uncertainty when exactly half the subvoxels
belong to ice or to the background. The downscaled image
is therefore grid-dependent. The energy-based segmentation
presented here has the advantage of enabling the effective
downscaling of the 3-D representation of snow to a chosen
resolution represented by the segmentation parameter r,
without any grid artifact.
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Coléou C, Lesaffre B, Brzoska JB, Ludwig W and Boller E (2001)
Three-dimensional snow images by X-ray microtomography.
Ann. Glaciol., 32, 75–81 (doi: 10.3189/172756401781819418)
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APPENDIX
In this appendix, the implementation of the segmentation
energy and its optimization via graph cut is detailed.

Link between graphs and binary energy
Graph cut can be used to minimize binary energies. A
binary energy is a function of a finite set of binary variables.
For instance, the segmentation energy defined in Eqn (5) is a
binary energy whose binary variables are the ice/back-
ground label of each voxel. Let G ¼ V, Eh i be a graph
defined with a set of nodes V and a set of undirected edges E
that connect the nodes. The set of nodes contains two
special nodes: the source s and the sink t. They are called
terminal nodes (t-nodes). The rest of the nodes P are non-
terminal nodes (n-nodes), so that V ¼ fs, tg [ P. Each edge
ðp, qÞ between node p and q has a non-negative weight !pq.
A cut C between the source and the sink is a partitioning of
the nodes into two disjoint subsets S and T such that s is in
S and t is in T (Fig. 14). The cost of a cut C , denoted LGðCÞ,
is the sum of the weights of edges ðp, qÞ such that p 2 S and
q 2 T :

LGðCÞ ¼
X
p2S

!pt þ
X
q2T

!sq þ
X

ðp, qÞ2S�T
!pq: ðA1Þ

Let us define the binary variable LpðCÞ associated to each
non-terminal node p as LpðCÞ ¼ 1 if p 2 S, 0 else. Denoting
!sp ¼ P1ðpÞ, !pt ¼ P0ðpÞ and !pq ¼ Vpq, we have

LGðCÞ ¼
X
p

LpP0ðpÞ þ ð1� LpÞP1ðpÞ
� �

þ
X
ðp,qÞ

I Lp 6¼LqVpq,

ðA2Þ
where I is the indicator function. Thus, a cut in a graph can
be directly associated to a binary energy function composed
of a local term (P0, P1) and a pair interaction potential V .
Finding the minimum cut, i.e. the cut with the minimum
cost among all cuts, is therefore equivalent to finding the
associated energy minimum.

Measurement of binary object surface area with
graphs
According to Eqn (A2), the segmentation energy associated
to the local intensity model can be directly translated into
the graph by correctly setting the edge weights with the
terminal nodes. Translating the surface area in terms of edge
weight is more complex and requires the capability to relate
lengths to the pair interaction potential Vpq. Boykov and
Kolmogorov (2003) first formalized the link between graph
cut and length calculation using the Cauchy–Crofton
formula. In 2-D, the Cauchy–Crofton formula relates the
Euclidean length of a curve jC jE to the number nc of
intersects with all straight lines in R2:

2jC jE ¼
Z

nc dL ðA3Þ

with dL a proper ‘measure’ of the lines subset. This formula

can be discretized to provide an approximate length
measurement. For example, in Figure 15, only four types
of lines directed by a certain neighborhood system are
considered: vertical, horizontal and �458 diagonal lines.
The contour of the segmented object intersects one of these
lines when it disconnects two nodes linked by these lines.
The edge weight associated to each of these lines can thus
be set according to the discretized version of the Cauchy–
Crofton formula that uses the Voronoi segmentation of the
unit sphere (Dañek and Matula, 2011a,b). In Figure 15, the
edge weights associated to a 2-D example neighborhood
system are shown. The neighborhood system used in this
work on 3-D images is composed of the 26 first neighbors.
Note that computing lengths via the graph-cut approach is
consistent with the voxel projection approach (Flin and
others, 2011) and that it provides a very fast (�2min for a
10003 voxels image on a PC (4�2.7GHz and 6Gb RAM))
and accurate way to compute the surface area of a binary
object (Liu and others, 2010; Lehmann and Legland, 2012).

Minimization algorithm
Finding the minimal cut can be solved by finding a
maximum flow from the source to the sink, which is a
problem solvable in polynomial time (Ford and Fulkerson,
1956). This proposition is called the ‘min-cut/max-flow’
theorem (Ford and Fulkerson, 1956). The maximum flow
between s and t can be imagined as the maximum flood of
water that goes through the graph using the edges as pipes
with a limited capacity (the weights). Finding the maximum
flow of water is equivalent to finding the ‘limiting pipes’.

Fig. 15. Graph-cut method to compute a length (2-D case).

Fig. 14. A cut in a graph. The non-terminal nodes corresponding to
each pixel are represented by gray circles. After Boykov and
Kolmogorov (2004).
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There exist several polynomial algorithms to solve the
min-cut/max-flow problem. The main limitation of these
algorithms is the memory usage. Currently, the initial image
resulting from a microtomographic scan is very large
(>10003 voxels). The corresponding graph is composed of
n ¼ 10003 þ 2 nodes and about 13n edges, and requires
>200Gb of memory with usual min-cut/max-flow algo-
rithms (BK2.2; Boykov and Kolmogorov, 2004). This amount
of RAM is not available on a PC. The exact optimal
segmentation on such a huge image is therefore not easily
computable. The scalable graph-cut algorithm developed by

Delong and Boykov (2008) uses the grid structure of the
graph to optimize the memory usage. We use an adapted
version of their algorithm (freely available for research
purposes at http://vision.csd.uwo.ca/code/) that enables the
segmentation of massive grids up to 4003 voxels on a PC
(6Gb RAM). This is still not large enough to compute a
global optimum on the whole image. However, segmenta-
tion is a regional process with relatively small boundary
effects. The initial image was thus divided into small
overlapping sub-volumes on which the segmentation algo-
rithm is applied.
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