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1. Introduction and preliminaries
If X is a Tychonoff topological space, and if pxis the Stone-Cech compacti-

fication of X, then PX\X will denote the complement of X in pX. If A is a
subset of X, then cl [A: X~\ will denote the closure of A in X, and int [/4: X~\
will denote the interior of A in A'. In Isbell ((3), p. 119) a property of PX\X \s
called a property which X has at infinity, and it is the aim of this paper to give
necessary and sufficient conditions for X to be finite at infinity. Since PX is Tt

we can say that if X is finite at infinity, then PX\X is closed in pX. So we lose
nothing by restricting our attention to locally compact, Tychonoff spaces, and
for the remainder of the paper X will denote such a space.

The closed sets A and B are said to be completely separated if and only if
there exists a bounded, continuous, real-valued function / on X taking the
value 0 on A and the value 1 on B. From the description of pX in terms of
such functions we see that A and B are completely separated in X if and only
if c\[A: px]ncl[B: J?X] = 0.

Unless otherwise stated, uniformities on X are assumed to be compatible
with the topology of X.

The following result is due to Doss ((1), p. 20): there is just one uniform
structure on X if and only if, of any two completely separated closed sets in X,
one is compact.

Let C*(X) be the algebra of bounded, continuous real-valued functions
on X with the topology of uniform convergence on the space X. Let A{X) be
the subalgebra of C*(X) consisting of those functions each of which is con-
stant on the complement of some compact subset of X. Gal ((2), p. 1053)
has proved: there is just one uniform structure on X if and only if A(X) is dense
in C*(X).

Now there is just one uniform structure on X if and only if PX is the Alexan-
droff compactification of X, so we can write the preceding results in the form

The following statements are equivalent:
(a) \PX\X\ = 1.
(b) Of any two closed, completely separated sets in X, at least one is compact.
(c) A(X) is dense in C*(X).

In this form, we extend these results in the next three sections.
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2. Conditions on X for X to have power n at infinity
Lemma 2.1. If \ fiX\X \ = m {m any cardinal), then any collection C of

closed sets in X, completely separated in pairs and such that \ C \>m, contains
a compact member.

Proof. Suppose C = {Cx: k e A} where | A | >m. Then

is a collection of sets disjoint in pairs, and so no element of PX\X belongs to
more than one member of this collection. Since | A \>\fiX\X\ there exists
fie A such that cl [ C / y?X] = C .̂

Then C^ is compact as required.
We can now give the required condition on X.

Theorem 2.2. | /}X\ X \ £ n (n finite) if and only if, of any n + l closed sets
in X, completely separated in pairs, at least one is compact.

Proof. Suppose \fiX\X\>n and choose n + l distinct points ay, ...,an+l

in fiX\X. Let Ut, ..., Un+l be neighbourhoods of au ..., an+i respectively.
Since)?A'is T2 and compact, we can assume these neighbourhoods to be compact
and disjoint in pairs. Now let B, = Utc\X # 0 , so that cl [5,-: fix] c Ut

(i = 1, . . . , «+ l ) . Thus the 2?,'s are completely separated in pairs and each
Bj is closed in X. On the other hand, each Bt fails to be compact, since it
contains a net converging to at efiXXBj (i = 1, ..., n + l).

The reverse implication follows from Lemma 2.1.
Note that the inequality can be removed from the statement of Theorem 2.2

to give:

Theorem 2.2'. | fiX\X | = n infinite) if and only if there exist n closed, non-
compact sets in X which are completely separated in pairs, but no such collection
of n+l sets exists.

3. Conditions on C*(X) for X to have power n at infinity
Define Bn(X) to be the subset of C*(X) consisting of those functions which

take at most n values (n finite) on the complement of a compact subset of X.

Theorem 3.1. If \ PX\X | = n (n finite), then Bn(X) is uniformly dense in
C*(X).

Proof. Let f: X-*[0,1] be continuous and denote by / the continuous
extension of/to PX. Suppose PX\X = {au ...,an} and /(a,-) = bt(i = 1,...,«).
If necessary, relabel blt ..., bn as the distinct numbers clt ..., cm with m ^ n.

Let 8>0 be given, and let 5 be equal to the smallest member of
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Put U, = {xefiX: \J(x)-ci |<i<5} (i = 1, 2, .... m). For each i e { l , ..., m]
choose a closed neighbourhood (in BX) Vt of {a,-: / (a , ) = ct, j = 1, ..., n}
such that V, s U,.

Since BXis normal, given / e {1, ..., m) there exists gt: /?Ar->[0, 1] such that
g, is continuous and

(x) = l (xeBX\U,).

Denote by #, the restriction of gt to X (i = 1, ..., /w) and define

hi = Ci + (hi-i—Cj)gi (i = 2, . . . , in).

Then for each / e {1, ..., m} the following properties (a), (b), (c) hold:

(a) fiji A"->[0, 1] is continuous.
Clearly, Af is continuous. Also, A,(x) = c;[l—0,(x)]+A,-_ i(x).gi(x), which

is a number between ct and A;_ t(x). A simple finite induction argument shows
that A,(x) e [0, 1] (x e X, i e {1, ..., w}), establishing (a).

(b) hi(x) = cj (x e Anint \V}: BX]) for eachy e {1, . . . , / } .

To prove this let Ŵ- = AWnt [Vf. BX](je {1, ..., m}). Clearly, hx(x) = t!
(x e Wi). Suppose then that hk(x) = cs (x e Wj, 1 ̂  j ^ k) for each
ke{l, ..., /— 1}. Consider ht(x) = cl+(hi-l(x) — ci)gi(x).

Then gt(x) = I (xe Wj, 1 ^j<i), and so A;(x) = Aj.jtx) = Cj (x e WJt

1 ^j<i). Also g,-(x) = 0 (xe Wt), whence ht(x) = ct (xe Wt). This com-
pletes the proof of (b).

(c) hi(x)=f(x) [xeX\

The proof is straightforward.
In particular, (a), (b) and (c) hold for hm.
We now show that | hm(x)-f(x)\<e (xe X). In fact, from (b) and (c),the

inequality need only be proved for x in 71; = A"n(£/A^i) (»e{l, ..., w}).
Clearly,

Suppose then that | hi(x)-f(x)\<E (xeTj,je{\, ...,/}) for each/= 1, ..., k—\.
Consider hk on T,- (je{\, ...,k-1}). Since y<&, g4(x) = 1 (xeTj). Thus

1(x)-ct)^(x) = At_!(x). Next, on rft, h^^x) -f(x),so that

By the principle of finite induction, the required inequality follows.
Finally, for each ie{l, ...,m}, int[F,-: BX~] is an open neighbourhood of

at inPXhaving empty intersection with Y = A"\ M Q int [F,: BX~] \<~\X] and
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so Y is compact. But from (b) we see that hm takes m values on A"\ Y, and so

fe cl \Bm{X): C*pQ] £ cl [Bn(X): C*(X)].

It follows that 5B(X) is uniformly dense in C*{X).

Lemma 3.2. If Bn(X) is uniformly dense in C*(X) then | ̂ J T | g n.

Proof. Suppose \ pX\X\>n and let al,...,an+l be distinct elements of
PX\X. Choose, for i — 1, ...,n+l, mutually disjoint open neighbourhoods
Uh in)? A', of ah together with closed neighbourhoods Vt of a,- such that Vt c t/..
Since PX is normal, given ze{l, ..., n + 1}, there exists a continuous function
/ , : /?X->[0,/] such that/,(K,) = iandftfXWd =0.

n+l
Now define / : /^-•[O, n+1] by / = £ /f. Then / is continuous and

i = 1

/(fl.) = i (/ = 1, ..., «+l). Let h denote the restriction of (n+2)"1/ to X.
Then

/i(x) = (n+2)"1/ (xeXnintlVr- PX], i = 1, ..., n+l).
Let # e Bn(X) be such that sup {| h(x)—g(x)\: xe X}<i(n+2)~1 and let K be
a compact set such that outside K, g assumes at most n distinct values. Since
K is compact, for each / e{ l , ..., n + l} there is a neighbourhood Wt of at in
PX such that Kr\Wt = 0 . Let ^ ; = rnint[Kf: fflnfff. Then /I,- ̂  0 ,
and A(x) = (n+2)"1/ (xe A{; i = 1, .. .,n + l). Clearly, we cannot have

, / n + 1 \
h(x)-g(x)\<i(n + 2 ) - 1 [xe \J A , )

\ i = i /
unless g takes at least «+1 distinct values on the complement of K. This
implies that Bn(X) is not uniformly dense in C*(X).

From Theorem 3.1 and Lemma 3.2 we then get

Theorem 3.3. | PX\X\ ^ n (n finite} if and only if Bn(X) is uniformly dense
in C*(X).

Once again we note that the inequality in Theorem 3.3 can be removed to
give

Theorem 3.3'. | PX\X \ = n (n finite) if and only ifBn(X) is uniformly dense
in C*(X) and B^^X) is not.

We note that if aXis a compactification of X(v/c consider X to be a subspace
of any compactification of X) and if Ca(X) denotes the subset of C*(Ar) consisting
of those functions having a continuous extension to aX, then the proofs of this
section carry through, with slight modifications, to give

Theorem 3.4. | aX\X \ = n and aX is the unique {up to equivalence ofcom-
pactifications) n-point compactification of X if and only if Bn(X) is uniformly
dense in Ca(X) and J5n_1(A

r) is not.
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4. Conditions on X for X to be finite at infinity
Theorem 4.1. X is finite at infinity if and only if every infinite collection of

closed sets in X, completely separated in pairs, contains a compact member.

Proof. Suppose X is infinite at infinity and let (xn) be an infinite sequence
of distinct points of PX\X. Let x be a cluster point of (*„) in

pX\{xn: n = 1,2,...}.

We define a sequence (yn) recursively as follows. Put yx = xt. Then there
exist disjoint closed neighbourhoods Uu Vl of x and yx respectively in fiX.
Since x is a cluster point of (xn) there is xnx in U^. Set y2 = xny Then choose
a closed neighbourhood V2 oiy2 and a closed neighbourhood U2 of x such that
V2nVl = V2nU2 = 0 . Now suppose yu ...,yk have been chosen with

y, e Vt.u VtnUt = 0, Vtn '(j F, = 0 0 = 1, .... fc).
7 = 1

(This is possible since the Vt are compact.) Since x is a cluster point of (*„),
there is xBJc+1 in Uk. Set y t + 1 = xnfc+l. Choose neighbourhoods F t + 1 of yk+1

k

and f/fc+1 of x such that Kfc+1n 1) K, = 0 and Kk+1nl/fc+1 = 0 .
i = 1

This process defines a sequence (Vk) of closed (compact) subsets of PX
which are mutually disjoint. Hence {Xn Vk) is a sequence of closed subsets of
X, completely separated in pairs. Since yk in Vk is adherent to {XnVk) in PX,
no set in this collection is compact. The desired implication follows.

On the other hand, if X is finite at infinity, Lemma 2.1 applies, and every
infinite collection of closed subsets of X, completely separated in pairs, contains
a compact member.

From Theorems 4.1 and 2.2 we then get the following result within X.

Corollary 4.2. If every infinite collection of closed sets in X, completely
separated in pairs, contains a compact member, then there exists an integer n
such that every collection of n closed sets in X, completely separated in pairs,
contains a compact member.

Now, using Theorem 4.1 we obtain the following necessary condition for a
normal space X to be finite at infinity.

Corollary 4.3. If X is normal, then X finite at infinity implies that X is
countably compact.

Proof. Suppose X fails to be countably compact. Then there is a sequence
{Un) of open sets in X such that f / n c i / , t l (n = 1,2,...), \J Un = X, and no

n

finite collection of Un's covers X. Then choose xn+l e Un+l\Un{n = 1, 2, 3, ...).
This defines an infinite sequence {xn) of distinct points in X. For / = 1,2,...,
let Si = 2 ' " 1 a n d p u t A t = {xSl(2n+l): n = 0,l, 2, . . . } .
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Now, if x e X\Ah then for some integer N,xe UN. Then UN is a neighbour-
hood of x containing only a finite number of members of Ah and so, since X
is T2, x 4 cl [^f: A']. It follows that, for each /, At is closed in X.

We see next that the members of {At: i = 1, 2, ...} are disjoint in pairs,
for if i<j and xS|(2n+1) = xs (2m+i> f°r some m, n, then since the members of
(jcn) are distinct, s&n + l) = jj-(2w+l) and so 2« + l = 2J~'(2m+l).

So we have an infinite collection of closed sets in X, disjoint in pairs. Since
X is normal we see from Urysohn's Lemma that the members of this collection
are completely separated in pairs, and so from Theorem 4.1 we see that X is
infinite at infinity.

Note that if Qo denotes the set of all ordinal numbers less than the first
uncountable ordinal, with the order topology, then f$($l0) is

 t n e s e t of ordinals
less than or equal to the first uncountable ordinal i.e. | P(Q0)\Q0 | = 1. So by
taking suitable disjoint unions of the space fi0 with itself we obtain examples
of spaces having any given finite power at infinity.

Note also that Qo x Qo is normal, T2, countably compact and locally
compact, and so, since /?(fi0

 x ^o) = P(Qo)xP(Qo)> w e have a counterexample
to the converse implication to Corollary 4.3.

Finally, we note that since PX\X is finite if and only if fiX\X is discrete, we
can replace " finite at infinity " throughout by " discrete at infinity ".

In conclusion I would like to express my gratitude to the referee for his
helpful comments, and in particular for his streamlining of my original proofs
of Theorems 3.1 and 4.1 and of Lemma 3.2.
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