BLOW UP SEQUENCES AND THE MODULE OF nth ORDER DIFFERENTIALS

WILLIAM C. BROWN

Introduction. Let C denote an irreducible, algebraic curve defined over an algebraically closed field k. Let P be a singular point of C. We shall employ the following notation throughout the rest of this paper: R will denote the local ring at P, K the quotient field of R, \bar{R} the integral closure of R in K, A the completion of R with respect to its radical topology, and \bar{A} the integral closure of A in its total quotient ring.

We wish to study the relationships between the \bar{A}-module $D^{n}(\bar{A} / A)$ of nth order differentials over A and the multiplicities of the blow up sequence $B: R=R_{0}<R_{1}<\ldots<\bar{R}$ of R.

The module $D^{n}(\bar{A} / A)$ of nth order differentials is defined as follows: Let $\sigma: \bar{A} \otimes_{A} \bar{A} \rightarrow \bar{A}$ be the multiplication mapping given by $\sigma\left(\sum a_{i} \otimes b_{i}\right)=$ $\sum a_{i} b_{i}$. Let $I(\bar{A} / A)$ denote the kernel of σ. Then

$$
D^{n}(\bar{A} / A)=I(\bar{A} / A) / I^{n+1}(\bar{A} / A)
$$

The module $D^{n}(\bar{A} / A)$ is the universal object for nth order A-derivations and satisfies many functorial properties. We refer the reader to [5] or [7] for all pertinent properties of $D^{n}(\bar{A} / A)$ used in this paper.

The blow up sequence $B: R=R_{0}<R_{1}<\ldots<\bar{R}$ is defined as in [4, p. 669]. Each R_{i+1} is obtained from R_{i} by blowing up the Jacobson radical of R_{i}. By the multiplicity $\mu\left(R_{i}\right)$ of R_{i}, we shall mean the multiplicity of the Jacobson radical of R_{i}. By the multiplicities of B, we shall mean the sequence $\left\{\mu\left(R_{i}\right)\right\}$. We similarly define the blow up sequence $B: A=A_{0}<A_{1}<\ldots<\bar{A}$ and multiplicities $\mu\left(A_{i}\right)$. It is easy to show (see Proposition 1) that for each i, $A_{i}=R_{i} \otimes_{R} A$, and $\mu\left(R_{i}\right)=\mu\left(A_{i}\right)$. Thus, the multiplicities of B are given by \hat{B}.

We note that since \bar{R} is a finitely generated R-module, the sequence of R-modules in B stabilizes at some point, i.e. $R_{n}=R_{n+1}=\ldots$ for some $n \gg 1$. Thus, there are only a finite number of different $\mu\left(R_{i}\right)$ for B. The problem is to characterize the $\mu\left(R_{i}\right)$ in terms of some suitably defined invariants of $D^{n}(\bar{A} / A)$ for $n \gg 1$.

Since $\bar{A}=\bar{R} \otimes_{R} A$, we see that \bar{A} is a finitely generated A-module. It then follows from [3, Lemma 1.1] that $I(\bar{A} / A)$ is a finitely generated left \bar{A}-module. Since \bar{R} is a finitely generated R-module, \bar{R} is a semilocal ring. Let $\left\{m_{1}, \ldots, m_{t}\right\}$ be the maximal ideals of \bar{R}. Set $V_{i}=\bar{R}_{m_{i}}\left(\bar{R}\right.$ localized at $\left.m_{i}\right)$ for $i=1, \ldots, t$.

[^0]Then each V_{i} is a discrete rank one valuation ring dominating R, and $\bar{A}=\hat{V}_{1} \oplus \ldots \oplus \hat{V}_{t}$. Here \hat{V}_{i} of course denotes the completion of V_{i}. Thus, \bar{A} is always a finite direct sum of principal ideal domains.

Now suppose C is unibranched at P, i.e. \bar{R} is a local ring. Then $t=1$ in the above discussion, and $\bar{A}=\hat{V}_{1}$ is a principal ideal domain. In this case, $I(\bar{A} / A)$ (being a finitely generated module over \bar{A}) has a set of invariant factors $\delta_{1}, \delta_{2}, \ldots, \delta_{r}$ associated with it. These δ_{i} are elements of \bar{A} given by $\delta_{1}=\Delta_{1}$, $\delta_{2}=\Delta_{2} \Delta_{1}^{-1}$, etc. Here Δ_{i} is the greatest common divisor of all $i \times i$ subdeterminates of the relations matrix of $I(\bar{A} / A)$. These δ_{i} are unique up to units in \bar{A}. We next note that since k is algebraically closed, $\bar{A}=k[\lfloor\beta]]$ for some element β analytically independent over k. Thus, each δ_{i} can be written in the following form $\delta_{i}=\beta^{e_{i}}$, for some integer e_{i}.

Now consider the blow up sequence \hat{B}. We can write \hat{B} as $\hat{B}: A=A_{0}<$ $A_{1}<\cdots<A_{N}<A_{N+1}=A_{N+2}=\ldots=\bar{A}$. Since \bar{A} is a local ring, each A_{i} is local. It was shown in [3, Lemmas 3.4 and 4.2$] \dagger$ that the decomposition of the module $I(\bar{A} / A)$ over the P.I.D. \bar{A} uniquely determines the multiplicities $\mu\left(A_{i}\right)$ of \hat{B}. For, if the decomposition of $I(\bar{A} / A)$ is known, then we can compute the nontrivial invariant factors $\beta^{e_{1}}, \ldots, \beta^{e_{r}}$ of $I(\bar{A} / A)$. Then $r=\mu(A)-1$, and it follows from [3, Lemma 3.4] that $\beta^{e_{1-\mu(A)}}, \ldots, \beta^{e_{r-\mu(A)}}$ is a set of invariant factors of $I\left(\bar{A} / A_{1}\right)$. Thus, the decomposition of $I(\bar{A} / A)$ determines the decomposition of $I\left(\bar{A} / A_{1}\right)$. From [3, Lemma 4.2], $\mu\left(A_{1}\right)=\operatorname{dim}_{k}\left\{I\left(\bar{A} / A_{1}\right) / \beta I\left(\bar{A} / A_{1}\right)\right\}$. So, $I(\tilde{A} / A)$ determines $\mu\left(A_{1}\right)$. If we now eliminate the 1 's appearing in $\beta^{e_{1-\mu}(A)}, \ldots, \beta^{e_{r-\mu}(A)}$, we obtain the nontrivial invariant factors of $I\left(\bar{A} / A_{1}\right)$. There are exactly $\mu\left(A_{1}\right)-1$ of them, and we may repeat the above process to compute $\mu\left(A_{2}\right)$. Continuing in this fashion, we see that the decomposition of $I(\bar{A} / A)$ determines the multiplicities $\mu\left(A_{i}\right)$ of \hat{B}. Conversely, if the multiplicities $\mu\left(A_{i}\right)$ of \hat{B} are known, then it follows from [3, Theorem 3.5] that

is a set of invariant factors of $I(\bar{A} / A)$. Thus, the decomposition of the module $I(\bar{A} / A)$ uniquely determines the multiplicities of the blow up sequence \hat{B}, and, therefore, the multiplicities of B as well. It was also shown in [3, Theorem 1.1] that for n sufficiently large, $D^{n}(\bar{A} / A)=I(\bar{A} / A)$. Thus, if C is unibranched at P, the decomposition of the module $D^{n}(\bar{A} / A)(n \gg 1)$ uniquely determines the multiplicities $\mu\left(R_{i}\right)$ of the blow up sequence B at P.

[^1]The purpose of this paper is to study how much of this theory remains intact if we remove the assumption that C is unibranched at P. Surprisingly, most of the theory survives. We shall show that for n sufficiently large, $D^{n}(\bar{A} / A)=$ $\oplus_{i=1}^{t} I\left(\hat{V}_{i} / A\right)$, and each $I\left(\hat{V}_{i} / A\right)$ is nilpotent. We shall examine two cases at this point. Either \bar{R} is unramified over R or \bar{R} is ramified over R.

We shall show that \bar{R} is unramified over R if and only if $D^{n}(\bar{A} / A)=0$ for n sufficiently large. In this case, the multiplicity sequence for B is particularly simple. We have $\mu\left(R_{i}\right)=\mu(\bar{R})=t$ for all i. In other words, the number of branches of C centered at P gives the multiplicities of the blow up sequence B when C is unramified at P.

If \bar{R} is ramified over R, then $D^{n}(\bar{A} / A) \neq 0$ for any n. In this case, B is considerably more complicated. For example, the unibranched case considered in [3] is a subcase of this case.

In general, we shall be able to attach a set of invariant factors to $D^{n}(\bar{A} / A)$ which in either case (ramified or unramified) uniquely determine the multiplicities in the blow up sequence B. The general theory developed in this paper will include and actually come from the unibranch theory discussed in [3].

1. Some preliminary results. We use the same notation as in the introduction. Thus, R denotes the local ring at a singular point P of some irreducible algebraic curve C defined over an algebraically closed field k. For the time being, we make no assumptions about the nature of the singularity at P. We shall let m denote the maximal ideal of R. All topological statements about R and related rings will be made relative to the m-adic topology on R.

Now let \bar{R} denote the integral closure of R in its quotient field K, and let $B: R<R_{1}<R_{2}<\ldots<\bar{R}$ be the blow up sequence of R. Each R_{i+1} is obtained from R_{i} by blowing up the Jacobson radical J_{i} of R_{i}. Since k is infinite, any open ideal in R_{i} has a transversal element. In particular, J_{i} has a transversal element say $x(i)$. Then $R_{i+1}=R_{i}\left[x_{1} / x(i), \ldots, x_{r} / x(i)\right]$ where $\left\{x_{1}, \ldots, x_{r}\right\}$ are elements in R_{i} which generate J_{i}. Thus, each R_{i} in B is a semilocal ring which is finitely generated as an R-module. We note that since \bar{R} is a Noetherian R-module, there exists an integer n such that $R_{n}=R_{n+1}=\ldots$ Now $R_{n}=\bar{R}$. For, R_{n+1} is the blow up of R_{n} along its Jacobson radical J_{n}. Thus, $R_{n+1}=R_{n}$ implies that J_{n} is principal. But this immediately implies that every localization of R_{n} (at maximal ideals) is a regular local ring. Thus, R_{n} is normal and hence $R_{n}=\bar{R}$. Therefore, B always has the form
(2) $B: R=R_{0}<R_{1}<\ldots<R_{n}=\bar{R}=\bar{R}=\bar{R} \ldots$
for some $n \gg 1$.
If A is the completion of R and \bar{A} the integral closure of A in its total quotient ring, then similar remarks can be made about the blow up sequence $\hat{B}: A<A_{1}<\ldots<\bar{A}$. For a detailed discussion of blow up sequences, we refer the reader to [4].

In the introduction, we mentioned that the multiplicities of B and \hat{B} are the same. This is part of the following proposition:

Proposition 1. Let B and \hat{B} denote the blow up sequences of R and A respectively. Let J_{i} denote the Jacobson radical of R_{i}. Then
(a) $J_{i} A_{i}$ is the Jacobson radical of A_{i}.
(b) $A_{i}=R_{i} \otimes_{R} A \quad i=0,1, \ldots$
(c) $\mu\left(A_{i}\right)=\mu\left(R_{i}\right) \quad i=0,1, \ldots$

Proof. This proposition follows from the proof of Proposition 2.8 in [4]. We proceed via induction on i. If $i=0$, then clearly (a), (b) and (c) hold for $R_{0}=R$ and $A_{0}=A$, the completion of R. Thus, assume the proposition is proven for i and consider A_{i+1}. Since $A_{i}=R_{i} \otimes_{R} A$, and A is flat over R, we have A_{i} is flat over R_{i}. Denoting blow-ups with superscripts and using [4, Corollary 1.2], we have
(3) $A_{i+1}=A_{i}{ }^{J_{i} A_{i}}=R_{i+1} \otimes_{R_{i}} A_{i}$.

But, $\quad R_{i+1} \otimes_{R_{i}} A_{i}=R_{i+1} \otimes_{R i}\left(R_{i} \otimes_{R} A\right)=R_{i+1} \otimes_{R} A$. Thus, we have established (b) in the $i+1$ case. As for (a), we first note that A_{i+1} is integral over A since $A_{i+1} \subset \bar{A}$. Thus, every maximal ideal of A_{i+1} contracts to $m A$ in A and consequently to m in R. Since R_{i+1} is integral over R, we see every maximal ideal in A_{i+1} contracts to a maximal idea in R_{i+1}. Therefore, if $J\left(A_{i+1}\right)$ denotes the Jacobson radical of A_{i+1}, we have $J_{i+1} A_{i+1} \subset J\left(A_{i+1}\right)$. But
(4) $A_{i+1} / J_{i+1} A_{i+1} \cong(A / m A) \otimes_{R / m}\left(R_{i+1} / J_{i+1}\right) \cong k \otimes \ldots \otimes k$.

Thus, $J_{i+1} A_{i+1}=J\left(A_{i+1}\right)$ and the proof of (a) is complete. Since each A_{i} is just the completion of R_{i} with respect to its radical topology, (c) follows directly from [9, Lemma 1, p. 285].

Thus, to compute the multiplicities in the blow-up sequence B, we may use the sequence \hat{B}.

We now set up the notation for the main theorem of this section. As in the introduction, let $\left\{m_{1}, \ldots, m_{t}\right\}$ be the maximal ideals of \bar{R}. Set $V_{i}=\bar{R}_{m_{i}}$, $i=1, \ldots, t$. Then each V_{i} is a discrete rank one valuation ring which dominates R. We shall let \hat{V}_{i} denote the completion of V_{i} with respect to its maximal ideal $m_{i} V_{i}$. Since k is algebraically closed, we have the integral closure \bar{A} of A in its total quotient ring is just the completion of $\bar{R}[\mathbf{9}$, Theorem 33, p. 320]. Thus, $\bar{A}=\hat{V}_{1} \oplus \cdots \oplus \hat{V}_{t}$. Let π_{i} denote the natural projection of \bar{A} onto \hat{V}_{i}. Set $p_{i}=\operatorname{ker} \pi_{i} \cap A$ for $i=1, \ldots, t$. Then p_{1}, \ldots, p_{t} are exactly the minimal primes of A, and we have $(0)=p_{1} \cap \cdots \cap p_{t}$. Thus, the image of A in \hat{V}_{i} is just A / p_{i}. When we write $\hat{V}_{i} \otimes_{A} \hat{V}_{i}, I\left(\hat{V}_{i} / A\right)$ etc., we shall mean $\hat{V}_{i} \otimes_{A / p_{i}} \hat{V}_{i}, I\left(\hat{V}_{i} / A / p_{i}\right)$, etc.
As in the introduction, $I\left(\hat{V}_{i} / A\right)$ will denote the kernel of the multiplication mapping $\sigma_{i}: \hat{V}_{i} \otimes_{A} \hat{V}_{i} \rightarrow \hat{V}_{i}$. Since \bar{A} is a finitely generated A-module, each \hat{V}_{i} is a finitely generated A / p_{i}-module. Consequently, $I\left(\hat{V}_{i} / A\right)$ is a finitely generated left \hat{V}_{i}-module as well as a finitely generated left \hat{V}_{i}-algebra.

We can now prove the main result of this section.
Theorem 1. Let A be the complete local ring at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let $\bar{A}=$ $\hat{V}_{1} \oplus \ldots \oplus \hat{V}_{t}$ be the integral closure of A where $\left\{V_{1}, \ldots, V_{t}\right\}$ are the discrete rank one valuation rings in K which dominate the local ring R at P. Then for all n sufficiently large, $D^{n}(\bar{A} / A)=I\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus I\left(\hat{V}_{t} / A\right)$ and each $I\left(\hat{V}_{i} / A\right)$ is nilpotent.

Proof. We first note that for any natural number $n, D^{n}(\bar{A} / A)=$ $D^{n}\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus D^{n}\left(\hat{V}_{t} / A\right)$. For, let $\sigma: \bar{A} \otimes_{A} \bar{A} \rightarrow \bar{A}$ be the multiplication map. Since the \hat{V}_{i} are pairwise orthogonal in \bar{A}, we have $\bar{A} \otimes_{A} \bar{A}=$ $\oplus_{i, j=1}^{t}\left(\hat{V}_{i} \otimes_{A} \hat{V}_{j}\right)$. Thus, $I(\bar{A} / A)$, which is the kernel of σ, is given by

$$
\begin{equation*}
I(\bar{A} / A)=I\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus I\left(\hat{V}_{t} / A\right) \oplus\left\{\oplus_{i \neq j}\left(\hat{V}_{i} \otimes_{A} \hat{V}_{j}\right)\right\} \tag{5}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
D^{n}(\bar{A} / A) & =I(\bar{A} / A) / I^{n+1}(\bar{A} / A)=I\left(\hat{V}_{1} / A\right) / I^{n+1}\left(\hat{V}_{1} / A\right) \\
\oplus & \ldots \oplus I\left(\hat{V}_{t} / A\right) / I^{n+1}\left(\hat{V}_{t} / A\right)=D^{n}\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus D^{n}\left(\hat{V}_{t} / A\right) .
\end{aligned}
$$

Thus, to prove the theorem, it suffices to show that each $I\left(\hat{V}_{i} / A\right)$ is nilpotent.

Let \bar{R} denote the integral closure of R in K. Since \bar{R} is a Dedekind domain with finitely many maximal ideals, \bar{R} is a principal ideal domain. Thus, the Jacobson radical $J=m_{1} \ldots m_{t}$ of \bar{R} is principal. Let $\beta \in \bar{R}$ such that $\beta \bar{R}=J$. Then β generates the maximal ideal ideal $m_{i} V_{i}$ in each valuation ring V_{i}. Hence, β is a common uniformizing parameter for the $V_{i} i=1, \ldots, t$. Since k is algebraically closed, we conclude that $\hat{V}_{i} \cong k[[\beta]]$ for each $i=1, \ldots, t$.

Now let c denote the conductor of R in \bar{R}. Since P is a singular point of C, $R \neq \bar{R}$. Thus, c is a proper ideal in R. Since R is Noetherian with m as its only proper prime, we see that $\sqrt{c}=m$. Thus, some power, say n_{0}, of m falls in c, i.e., $m^{n_{0}} \subset c$. Now consider $m \bar{R}$. Since every m_{i} is an associated prime of $m \bar{R}$, we have $J=\sqrt{m \bar{R}}$. Thus, some power of β falls inside of $m \bar{R}$, and, consesequently, some possibly larger power falls in c. Suppose $\beta^{n} \in c$.

We note that $\beta^{n+l} \in c \subset R \subset A$ for $l=0,1, \ldots$ Let p_{1}, \ldots, p_{t} be the minimal primes of (0) in A. Since β^{n} is not a zero-divisor in R, β^{n} is not a zerodivisor in A. Thus, $\beta^{n} \notin \bigcup_{i=1}^{i} p_{i}$. Therefore, $\pi_{i}\left(\beta^{n}\right)=\left(\pi_{i}(\beta)\right)^{n}$ is a nonzero element of A / p_{i}. For simplicity of notation, we shall identify β with $\pi_{i}(\beta)$. Then since $\hat{V}_{i}=k[[\beta]]$, we see \hat{V}_{i} is a finitely generated module over A / p_{i} with generators $1, \beta, \cdots, \beta^{n-1}$.

Let $\delta_{i}: \hat{V}_{i} \rightarrow I\left(\hat{V}_{i} / A\right)$ be the canonical Taylor series given by $\delta_{i}(x)=$ $1 \otimes_{A} x-x \otimes_{A}$. It now follows from [5, Lemma 1.1] that $I\left(\hat{V}_{i} / A\right)$ is a left \hat{V}_{i}-algebra generated by $\left\{\delta_{i}(\beta), \delta_{i}\left(\beta^{2}\right), \ldots, \delta_{i}\left(\beta^{n-1}\right)\right\}$. Since $\beta^{n} \in c \subset A$, we
have $\delta_{i}\left(\beta^{n}\right)=0$. But, then
(6) $0=\delta_{i}\left(\beta^{n}\right)=\binom{n}{1} \beta^{n-1} \delta_{i}(\beta)+\ldots+\left[\delta_{i}(\beta)\right]^{n}$.

Solving (6) for $\left[\delta_{i}(\beta)\right]^{n}$, we get

$$
\begin{equation*}
\left[\delta_{i}(\beta)\right]^{n}=-\beta\left\{\binom{n}{1} \beta^{n-2} \delta_{i}(\beta)+\ldots+\binom{n}{n-1}\left[\delta_{i}(\beta)\right]^{n-1}\right\} . \tag{7}
\end{equation*}
$$

Now any element of c annihilates $I\left(\hat{V}_{i} / A\right)$. Consequently, raising Equation (7) to the nth power gives $\left[\delta_{i}(\beta)\right]^{n^{2}}=0$. Thus, $\delta_{i}(\beta)$ is nilpotent. If we apply the same argument to $\beta^{2}, \beta^{3} \cdots \beta^{n-1}$, we see that each generator $\delta_{i}\left(\beta^{j}\right) j=$ $1, \ldots, n-1$ of $I\left(\hat{V}_{i} / A\right)$ is nilpotent. Thus, $I\left(V_{i} / A\right)$ is nilpotent and the proof of Theorem 1 is complete.

We conclude this section with a proposition which will be useful in both the ramified and unramified case.

For each $j=1, \ldots$, t, we can consider the blow up sequence \hat{B}_{j} of A / p_{j} in \hat{V}_{j}. Thus,

$$
\begin{equation*}
\hat{B}_{j}: A / p_{j}=\left(A / p_{j}\right)_{0}<\left(A / p_{j}\right)_{1}<\ldots<\hat{V}_{j} . \tag{8}
\end{equation*}
$$

One can easily check that \hat{V}_{j} is the integral closure of A / p_{j} in its quotient field. Since \hat{V}_{j} is a local ring, each term in the chain \hat{B}_{j} is a local ring. We note that if $A / p_{j}=\hat{V}_{j}$, then \hat{B}_{j} is just the trivial sequence $\hat{B}_{j}: V_{j}=\hat{V}_{j}=\ldots$

Now let $B: R<R_{1}<R_{2}<\ldots<\bar{R}$ denote the blow up sequence of R. We wish to relate the multiplicities occurring in B with the multiplicities of the \hat{B}_{j}. Since the multiplicities of B are the same as the multiplicities of \hat{B} : $A<A_{1}<A_{2}<\ldots<\bar{A}$, the following proposition gives us the relationship.

Proposition 2. Let A be the completion of the local ring of a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let $\bar{A}=\hat{V}_{1} \oplus \ldots \oplus \hat{V}_{t}$ be the integral closure of A in its total quotient riny, and let $\left\{p_{1}, \ldots, p_{t}\right\}$ be the minimal primes of A. Let $\hat{B}: A<A_{1}<\ldots<\bar{A}$ and $B_{j}: A / p_{j}<\left(A / p_{j}\right)_{1}<\ldots<\hat{V}_{j}, j=1, \ldots, t$ be the blow up sequences for A and A / p_{j} respectively. Then $\mu\left(A_{i}\right)=\sum_{j=1}^{t} \mu\left(\left(A / p_{j}\right)_{i}\right)$ for each $i=0,1, \ldots$

Proof. Consider a fixed ring A_{i} in the blow up sequence \hat{B}. Then $A_{i} \subset \bar{A}$, and we can consider the kernel of the projection map π_{j} of \bar{A} onto \hat{V}_{j} when restricted to A_{i}. Set $p_{j}{ }^{(i)}=\operatorname{ker} \pi_{j} \cap A_{i}$. Then a simple argument shows that $p_{1}^{(i)}, \ldots, p_{t}^{(i)}$ are exactly the minimal primes of A_{i}. Since A_{i} is reduced, $\left(A_{i}\right)_{p_{j}(i)}$ (the localization of A_{i} at $p_{j}{ }^{(i)}$) is a reduced, Noetherian local ring of dimension zero. Thus, $\left(A_{i}\right)_{p_{j}(i)}$ is a field. Consequently, the length of the Artinian local ring $\left(A_{i}\right)_{p_{j}(i)}$ is one. We also note that if \hat{J}_{i} is the Jacobson radical of A_{i}, then for each $j=1, \ldots, t, \hat{J}_{i}\left(A_{i} / p_{j}{ }^{(i)}\right)$ is the Jacobson radical of $A_{i} / p_{j}{ }^{(i)}$. It now follows from the projection formula $[\mathbf{6},(23.5)]$ that $\mu\left(A_{i}\right)=$ $\sum_{j=1}^{t} \mu\left(A_{i} / p_{j}{ }^{(i)}\right)$. Thus, the proposition will be proven if we can show that

$$
\begin{equation*}
A_{i} / p_{j}^{(i)} \cong\left(A / p_{j}\right)_{i} \quad j=1, \ldots, t \tag{9}
\end{equation*}
$$

If $i=0$, then (9) certainly holds. Now consider A_{1} and $\left(A / p_{j}\right)_{1}$. If x is a regular element of A, then $x \notin \bigcup_{l=1}^{t} p_{l}$. In particular $x \notin p_{j}$. Therefore, $\pi_{j}(x)$ is a regular element of A / p_{j}. Thus, π_{j} has a natural extension to a map θ_{j} : $A^{m} \rightarrow\left(A / p_{j}\right)^{\pi_{j}(m)}$. Now $A^{m}=A_{1},\left(A / p_{j}\right)^{\pi_{j}(m)}=\left(\mathrm{A} / p_{j}\right)_{1}$ and θ_{j} is just π_{j} restricted to A_{1}. Since $\pi_{j}: A \rightarrow A / p_{j}$ is surjective, we have $\theta_{j}: \mathrm{A}_{1} \rightarrow\left(A / p_{j}\right)_{1}$ is also surjective. Finally, since θ_{j} is just π_{j} restricted to A_{1}, the kernel of θ_{j} is exactly $p_{j}{ }^{(1)}$. Thus, $A_{1} / p_{j}{ }^{(1)} \cong\left(A / p_{j}\right)_{1}$.

We now proceed by induction on i. Thus, we may assume that π_{j} when restricted to A_{i-1} maps A_{i-1} onto $\left(A / p_{j}\right)_{i-1}$ and has kernel $p_{j}{ }^{(i-1)}$. If x is a regular element in A_{i-1}, then, $x \notin \cup_{l=1}^{t} p_{l}{ }^{(i-1)}$. In particular, $\pi_{j}(x)$ is a regular element in $\left(A / p_{j}\right)_{i-1}$. Thus, as in the case $i=1, \pi_{j}$ has a unique extension

$$
\theta_{j}: A_{i-1}^{\hat{H}_{i-1}} \rightarrow\left(A / p_{j}\right)_{i-1}^{\pi,\left(\hat{J}_{i-1}\right)} .
$$

Again we have

$$
A_{i-1}^{\hat{J}_{i-1}}=A_{i}, \quad\left(A / p_{j}\right)_{i-1}^{\pi_{j}\left(\hat{\hat{H}_{i-1}}\right)}=\left(A / p_{j}\right)_{i}
$$

and θ_{j} is just π_{j} restricted to A_{i}. Thus, θ_{j} is surjective and has kernel $p_{j}{ }^{(i)}$. Hence, (9) is proven and the proof of Proposition 2 is complete.
2. The unramified case. In this section, we shall assume that C has no ramification at P. In other words, we shall assume that \bar{R} is unramified over R. Recall this means that m generates the maximal ideal in each $V_{i}, i=1, \ldots, t$, and that $V_{i} / m V_{i}$ is a seprable field extension of R / m for every $i=1, \ldots, t$. Since $k=R / m=V_{i} / m V_{i}$, the last part of the definition is always satisfied. The following theorem completely characterizes when \bar{R} is unramified over R.

Theorem 2. Let R be the local ring at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let \bar{R} be the integral closure of R, A the completion of R and \bar{A} the integral closure of A. Then the following statements are equivalent:
(a) \bar{R} is unramified over R.
(b) \bar{R} is a separable R-algebra, i.e. \bar{R} is projective as a left $\bar{R} \otimes_{R} \bar{R}$-module.
(c) The Jacobson radical of \bar{R} is generated by an element of R.
(d) For all n sufficiently large, $D^{n}(\bar{A} / A)=0$.

Proof: The fact that (a) and (b) are equivalent is well known. A proof can be found in [1, Theorem 2.5]. We show (c) and (b) are equivalent. First, assume \bar{R} is separable over R. Then by [2, Theorem 7.1], $\bar{R} / m \bar{R}$ must be separable over $R / m=k$. Thus, $m \bar{R}$ must be the Jacobson radical of \bar{R}. Since k is infinite, m has a transversal element, say x. Then letting R^{m} denote the blow up of R by m, we have $m \bar{R}=m R^{m} \bar{R}=x R^{m} \bar{R}=x \bar{R}$. Thus, the Jacobson radical of \bar{R} is generated by an element $x \in m$. Conversely, assume $m_{1} \ldots m_{t}$ (the Jacobson radical of \bar{R}) is generated by some element $x \in R$. Then necessarily $x \in m$, and we have $x V_{i}=x \bar{R}_{m_{i}}=\left(m_{1} \ldots m_{t}\right) \bar{R}_{m_{i}}=m_{i} \bar{R}_{m_{i}}=m_{i} V_{i}$. Thus, $m V_{i}=$ $m_{i} V_{i}$. So, \bar{R} is unramified over R and therefore separable over R.

Finally, we argue that (d) is equivalent to the rest. Suppose first that \bar{R} is unramified over R. Then by (c), the Jacobson radical of \bar{R} is generated by some element of R. Thus, in the proof of Theorem 1, we can take β to lie in R. But then $\pi_{i}(\beta)$ is a nonzero element in A / p_{i}. This implies that $A / p_{i}=$ $\hat{V}_{i}, i=1, \ldots, t$. Therefore, $I\left(\hat{V}_{i} / A\right)=0$ for all $i=1, \ldots, t$. So, by Theorem $1, D^{n}(\bar{A} / A)=0$ for all n sufficiently large.

Conversely, assume (d) holds. Then by Theorem $1 I\left(\hat{V}_{i} / A\right)=0, i=$ $1, \ldots, t$. Thus, $\sigma_{i}: \hat{V}_{i} \otimes_{A / p i} \hat{V}_{i} \rightarrow \hat{V}_{i}$ is an isomorphism. It now follows from [8; Theorem 1.1] that the inclusion map $A / p_{i} \rightarrow \hat{V}_{i}$ is an epimorphism in the category or rings. Since \hat{V}_{i} is a finitely generated A / p_{i}-module, [8, Proposition 1.6] implies that $A / p_{i}=\hat{V}_{i}$. Thus, Proposition 2 implies that $\mu(R)=$ $\mu(A)=t$.

Now let x be a transversal for m. By the remarks in [4, p. 657], we have $t=\mu(R)=\lambda_{R}(\bar{R} / x \bar{R})$. Here $\lambda_{R}(M)$ denotes the length of the R-module M. But, $\lambda_{R}\left(\bar{R} / m_{1} \ldots m_{t}\right)=\lambda_{R}\left(k^{t}\right)=t$. Since $x \bar{R} \subset m_{1} \ldots m_{t}$, we have $\lambda_{R}\left(m_{1} \ldots m_{t} / x \bar{R}\right)=0$. So $x \bar{R}=m_{1} \ldots m_{t}$. Thus, the Jacobson radical of \bar{R} is generated by x. Therefore, (d) implies (c), and the proof of Theorem 2 is complete.

In the introduction of this paper, we claimed that if \bar{R} is unramified over R then the multiplicities of the blow-up sequence B are particularly simple. It is clear from Theorem 2 and Proposition 2 that if \bar{R} is unramified over R, then the multiplicities of B are given by the constant sequence $\{t\}$.
3. The general case. As usual, we shall assume R is the local ring at a singular point P of C. We shall let A denote the completion of R, and \bar{A} the integral closure of A in its total quotient ring. Throughout this section, we shall make no assumptions about the nature of the singularity at P. Thus, \bar{R} could be ramified or unramified over R.

By Theorem 1, $D^{n}(\bar{A} / A)=I\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus I\left(\hat{V}_{t} / A\right)$ for $n \gg 1$. Recall that $I\left(\hat{V}_{i} / A\right)$ means $I\left(\hat{V}_{i} / A / p_{i}\right)$ where $\left\{p_{1}, \ldots, p_{t}\right\}$ are the minimal primes of A.

Now for any $i=1, \ldots, t, I\left(\hat{V}_{2} / A\right)$ is a finitely generated module over the principal ideal domain \hat{V}_{i}. Thus, the decomposition of the \hat{V}_{i}-module $I\left(\hat{V}_{i} / A\right)$ is uniquely determined by a set of invariant factors $\left\{\delta_{1}{ }^{i}, \ldots, \delta_{r(i)}{ }^{i}\right\}$ which are unique up to units in \hat{V}_{i}. By the invariant factors of $D^{n}(\bar{A} / A)$, we shall mean the set $\bigcup_{i=1}^{t}\left\{\delta_{1}{ }^{i}, \ldots, \delta_{r(i)}{ }^{i}\right\}$. Note, that if $I\left(\hat{V}_{i} / A\right)=0$ for some i, then we can and do take for $\left\{\delta_{1}{ }^{i} \ldots \delta_{r(i)}{ }^{i}\right\}$, the set $\left\{1_{\hat{V}_{i}}\right\}$. Here $1 \hat{V}_{i}$ denotes the identity of \hat{V}_{i}.

We can now state the general result.
Theorem 3. Let A be the completion of the local ring R at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let \bar{A} be the integral closure of A in its total quotient ring. Then the decomposition of
the module $D^{n}(\bar{A} / A)$ for $n \gg 1$ uniquely determines the multiplicities of the blow up sequence B of R.

Proof. Theorem 3 follows easily from Proposition 2 and [3, Theorem 3.5]. Let $B: R<R_{1}<\ldots<\bar{R}$ be the blow up sequence of R. By Proposition 1, $\mu\left(R_{i}\right)=\mu\left(A_{i}\right)$ where $\hat{B}: A<A_{1}<\ldots<\bar{A}$ is the blow up sequence of A. Thus, by Proposition 2 the multiplicities of B are uniquely determined by the multiplicities of $\hat{B}_{j}, j=1, \ldots, t$.

Now for n sufficiently large, Theorem 1 implies that $D^{n}(\bar{A} / A)=$ $I\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus I\left(\hat{V}_{t} / A\right)$. If $D^{n}(\bar{A} / A)=0$, then the invariant factors of $D^{n}(\bar{A} / A)$ are just $F=\left\{1_{V_{1}}, \ldots, 1_{V_{t}}\right\}$. Then as shown in Theorem 2 , for each $i=1, \ldots, t, A / p_{i}=\hat{V}_{i}$. Consequently, \hat{B}_{i} has the form $\hat{B}_{i}: V_{i}=\hat{V}_{i}=\ldots$. So, the multiplicities of \hat{B}_{i} are identically one, and Proposition 2 implies that the multiplicities of B are identically t. Thus, if the invariant factors F of $D^{n}(\bar{A} / A)$ for $n \gg 1$ are trivial, i.e., $F=\left\{1_{V_{1}}, \ldots, 1_{V_{t}}\right\}$, then the multiplicities of B are identically t.

Let us suppose $D^{n}(\bar{A} / A) \neq 0$. Then after suitably relabeling, we may suppose $I\left(\hat{V}_{i} / A\right) \neq 0$ for $i=1, \ldots, h$, and $I\left(\hat{V}_{i} / A\right)=0$ for $i>h$. Here, of course, $1 \leqq h \leqq t$. Thus, the invariant factors of $D^{n}(\bar{A} / A)$ can be written a

$$
F=\left\{\delta_{1}^{1}, \ldots, \delta_{r(1)}^{1}, \ldots, \delta_{1}^{h}, \ldots \delta_{r(h)}^{h}, 1_{\hat{V}_{h}+1}, \ldots, 1_{\hat{v}_{t}}\right\}
$$

Now the multiplicities of the local rings in $\hat{B}_{i}, i=1, \ldots, h$, are by [3, Lemmas 3.4 and 4.2] uniquely determined by the invariants $\left\{\delta_{1}{ }^{i}, \ldots, \delta_{r(i)}{ }^{i}\right\}$. The exact relationship was discussed in the introduction of this paper. The multiplicities of the local rings in $\hat{B}_{i}, i>h$, are identically one. Thus, the multiplicities of the $\hat{B}_{i}, i=1, \ldots, t$, are uniquely determined by the decomposition of $D^{n}(\bar{A} / A)$. Consequently, by Proposition 2, the module $D^{n}(\bar{A} / A)$ uniquely determines the multiplicities of the blow up sequence B.

We note that Theorem 3 gives the correct result if C is unibranched at P. In this case, $t=1, D^{n}(\bar{A} / A)=I\left(\hat{V}_{1} / A\right)$ for $n \gg 1$, and we return to the setting in [3].

The reader may be wondering why we don't consider $I(\bar{R} / R)$ and its invariants when studying the multiplicities of the blow up sequence B of R. Note that \bar{R} is a principal ideal domain, and thus, $I(\bar{R} / R)$ has a natural set of invariant factors associated with it.

One reason we don't study $I(\bar{R} / R)$ is that when we pass to the completion, the branches of C at P get separated, and the computations for $I\left(\hat{V}_{i} / A\right)$, $i=1, \ldots, t$ are a bit easier to make. For example, if \bar{R} is unramified over R, then $I\left(\hat{V}_{i} / A\right)=0$ for every $i=1, \ldots, t$. On the other hand, since $R \neq \bar{R},[\mathbf{8}$, Theorem 1.1 and Proposition 1.6] imples that $I(\bar{R} / R)$ is never zero for any singular point P. Thus, $I(\bar{R} / R)$ always has associated with it a set of nontrivial invariant factors. A second reason we avoid $I(\bar{R} / R)$ is that its invariants don't seem to give us the multiplicities of the blow up sequence B in any natural
way as in Theorem 3. We conclude this section with an example which illustrates this last point.

Example. Consider the curve $C: Y^{2}=X^{2}+X^{3}$ defined over the complex numbers \mathbf{C}. Let R denote the local ring at the origin $(0,0)$. If we let x and y denote the images of X and Y in the coordinate ring of C, then we can write $R=\mathbf{C}[x, y]_{(x, y)}$ where $y^{2}=x^{2}(x+1)$. If we set $z=y / x$, then we can easily check that $R[z]$ is the integral closure \bar{R} of R in $\mathbf{C}(x, y), \bar{R}=R[z]$ has exactly two maximal ideals $M_{1}=(z-1)$ and $M_{2}=(z+1)$ which lie over $m=(x, y)$ in R. Since $M_{1} M_{2}=\left(z^{2}-1\right)=(x)=m \bar{R}$, we see \bar{R} is unramified over R. Thus, the blow up sequence B for R is trivial, i.e., $B: R<\bar{R}=\bar{R}=\ldots$, and the multiplicities of B are identically 2 .

Let us now investigate $I(\bar{R} / R)$. Since \bar{R} is a separable R-algebra, $I(\bar{R} / R)$ is generated by an idempotent. By pulling back the separability idempotent from $(\bar{R} / m \bar{R}) \otimes_{\mathbf{C}}(\bar{R} / m \bar{R})$ to $\bar{R} \otimes_{R} \bar{R}$, the reader can easily verify that the idempotent e which generates $I(\bar{R} / R)$ is exactly $e=(-z / 2)\left(1 \otimes_{R} z-z \otimes_{R} 1\right)$. Since $I(\bar{R} / R)$ is a cyclic \bar{R}-module generated by $1 \otimes_{R} z-z \otimes_{R} 1$, we see $I(\bar{R} / R)=\bar{R} e$. One can easily check that $x \bar{R}$ is the annihilator of $I(\bar{R} / R)$. Thus, the set of invariant factors for $I(\bar{R} / R)$ is just $\{x\}$.

How we are to decide that the multiplicities of B are $\{2,2, \ldots\}$ by looking at the set $\{x\}$ is unclear. However, since the invariants of $D^{n}(\bar{A} / A)$ (for $n \gg 1$) are just $\left\{1_{\hat{v}_{1}}, 1_{\hat{V}_{2}}\right\}$, we would know immediately from the discussion in Theorem 3 that B is trivial with constant multiplicity 2.
4. $D^{n}(\bar{A} / A)$ and isomorphism classes of A. Let C as usual denote an irreducible algebraic curve defined over an algebraically closed ground field k. Let A denote the completion of the local ring at a singular point P of C. Then as we have seen, \bar{A} always has the form $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$. The number of summands present here is equal to the number of branches of C centered at P. Now suppose that \mathscr{D} is another irreducible algebraic curve defined over k, and let Q be a singular point of \mathscr{D}. Let E denote the completion of the local ring at Q. Then if the number of branches of C centred at P is the same as the number of branches of \mathscr{D} centered at Q, then $\bar{A} \cong \bar{E}$. In this case, it makes sense to inquire when $D^{n}(\bar{A} / A) \cong D^{n}(\bar{E} / E)$ for $n \gg 1$.

Let Γ_{t} denote the collection of complete local rings A such that A is the completion of the local ring at a singular point P of some irreducible algebraic curve C (defined over k) which has exactly t branches at P. Thus, if A and E are members of Γ_{t}, then their integral closures \bar{A} and \bar{E} are isomorphic to $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$ (t summands). We wish to briefly discuss when $D^{n}(\bar{A} / A) \cong D^{n}(\bar{E} / E)$ for $A, E \in \Gamma_{t}$.

It would be nice if $D^{n}(\bar{A} / A) \cong D^{n}(\bar{E} / E)$ as $\left.k[[\beta]] \oplus \ldots \oplus k[\mid \beta]\right]-\bmod -$ ules implies that A and E are isomorphic. Unfortunately, it is well known that this is false even in the unibranch case $t=1$. For example, if $A \in \Gamma_{1}$, and A^{\prime} denotes the Arf closure of A in \bar{A}, then $A^{\prime} \in \Gamma_{1}$, and $D^{n}(\bar{A} / A)=D^{n}\left(\bar{A} / A^{\prime}\right)$
for all n. Since every $A \in \Gamma_{1}$ is not necessarily an Arf ring, we cannot hope that $D^{n}(\bar{A} / A)$ determines A up to isomorphism. The reader is urged to consult [4] for the pertinent facts about Arf rings used in this section.

If A and $E \in \Gamma_{1}$ satisfy some order relationship such as $A \subset E$ or $E \subset A$, then we do have a positive result concerning A^{\prime} and E^{\prime}, the Arf closures of A and E. Namely:

Proposition 3. Suppose $A, E \in \Gamma_{1}$ such that $A \subset E$. Then $D^{n}(\bar{A} / A) \cong$ $D^{n}(\bar{E} / E)$ as $k[[\beta]]$ - modules if and only if the Arf closures A^{\prime} and E^{\prime} of A and E in $k[[\beta]]$ are equal.

Proof. This proposition is the main content of [3, Theorem 4.7]. In the unibranch case, $D^{n}(\bar{A} / A)=I(k[[\beta]] / A)$ for $n \gg 1$. Thus, by Theorem 3, if $D^{n}(\bar{A} / A)$ is isomorphic to $D^{n}(\bar{E} / E)$, then the multiplicities of the branch sequences for A and E are identical. Since the multiplicities of the branch sequences for A and A^{\prime} are the same, and $A^{\prime} \subset E^{\prime} \subset \bar{A}$, it follows from [4, Corollary 3.10] that $A^{\prime}=E^{\prime}$.

Conversely, suppose $A^{\prime}=E^{\prime}$. Since A contains the field k, the Arf closure A^{\prime} of A is the same as the strict closure of A in \bar{A}. Thus, for all $n, D^{n}(\bar{A} / A)=$ $D^{n}\left(\bar{A} / A^{\prime}\right)=D^{n}\left(\bar{A} / E^{\prime}\right)=D^{n}(\bar{A} / E)$.

We cannot hope for such a nice result in the general situation $t \geqq 1$. This is because the module $D^{n}(\bar{A} / A)$ cannot distinguish between unramified extensions. For suppose, $A \in \Gamma_{t}(t>1)$ is unramified. Then by Theorem $2, \bar{A}$ is a separable algebra over A. If E is any ring such that $A \subset E \subset \bar{A}$, then \bar{A} is also separable over E. Thus, $D^{n}(\bar{A} / A)=D^{n}(\bar{A} / E)=0$ for $n \gg 1$. Since A^{\prime} need not be equal to E^{\prime}, we see that Proposition 3 is false if $t>1$.

However, if $A, E \in \Gamma_{t}$ are special enough, we can state a generalization of Proposition 3. Let A_{i} as usual denote the i th blow up of A. Let us say that the local rings $A \subseteq E$ in Γ_{t} are compatible if
(a) $A_{i} \subseteq E_{i}$ for all $i=0,1, \ldots$, and
(b) For all maximal ideals $M \subset \bar{A}$ and for all i, the number of minimal primes in A_{i} which are contained in $M \cap A_{i}$ is exactly the same as the number of minimal primes of E_{i} contained in $M \cap E_{i}$.
From the remarks made above, it is clear that in order to state any analog of Proposition 3, we must avoid the unramified situation. Since $D^{n}(\bar{A} / A) \cong$ $I\left(\hat{V}_{1} / A\right) \oplus \ldots \oplus I\left(\hat{V}_{t} / A\right)(n \gg 1)$, due care must also be made to match up proper components of $D^{n}(\bar{A} / A)$ and $D^{n}(\bar{E} / E)$. Thus, a correct analog of Proposition 3 is as follows:

Proposition 4. Let $A \in \Gamma_{t}$ have minimal primes $\left\{p_{1}, \ldots, p_{t}\right\}$ and assume $A / p_{i} \subsetneq \hat{V}_{i}$ for all $i=1, \ldots, t$. Let $E \in \Gamma_{t}$ such that $A \subset E$, and A and E are compatible. Assume that we have labeled the minimal primes $\left\{q_{1}, \ldots, q_{t}\right\}$ of E so that $A / p_{i} \subset E / q_{i} \subset \hat{V}_{i} i=1, \ldots$, t. If there exists a $k[[\beta]] \oplus \ldots \oplus k[[\beta]]-$
isomorphism $T: D^{n}(\bar{A} / A) \rightarrow D^{n}(\bar{E} / E)($ for $n \gg 1)$ such that $\left.T\left(\hat{V}_{i} / A\right)\right)=$ $I\left(\hat{V}_{i} / E\right)$ for all $i=1, \ldots, t$, then the Arf closures of A and E in \bar{A} coincide.

Proof. Since $A / p_{i} \neq \hat{V}_{i}, I\left(\hat{V}_{i} / A\right) \neq 0$. Therefore, $I\left(\hat{V}_{i} / E\right) \neq 0$, and $E / q_{i} \neq \hat{V}_{i}$. Since $I\left(\hat{V}_{i} / A\right) \cong I\left(\hat{V}_{i} / E\right)$, the multiplicity sequences of A / p_{i} and E / q_{i} are identical. Thus, using the notation of Proposition 2, we have $\mu\left\{\left(A / p_{i}\right)_{j}\right\}=\mu\left\{\left(E / q_{i}\right)_{j}\right\}$ for all i and j.

Now let M be a maximal ideal of \bar{A}. We wish to compute the multiplicity of the local ring $\left(E_{1}\right)_{M \cap E_{1}}$. We proceed as in the proof of Proposition 2. Let $\left\{q_{1}{ }^{(1)}, \ldots, q_{t}{ }^{(1)}\right\}$ denote the minimal primes of E_{1}. We can assume that $q_{1}{ }^{(1)}, \ldots$, $q_{l}{ }^{(1)} \subset M \cap E_{1}$, and $q_{l+1}{ }^{(1)}, \ldots, q_{t}{ }^{(1)} \not \subset M \cap E_{1}$. Here $1 \leqq l \leqq t$. Then the minimal primes in $\left(E_{1}\right)_{M \cap E_{1}}$ are just $\left\{q_{1}^{(1)}\left(E_{1}\right)_{M \cap E_{1}}, \ldots, q_{l}{ }^{(1)}\left(E_{1}\right)_{M \cap E_{1}}\right\}$. A simple calculation shows that each localization $\left\{\left(E_{1}\right)_{\left.M \cap E_{1}\right\}}\right\} q_{i}{ }^{(1)}\left(E_{1}\right)_{M \cap E_{1}}$, $i=1, \ldots, l$, is a field, and that

$$
\left(E_{1}\right)_{M \cap E_{1} / q_{i}{ }^{(1)}\left(E_{1}\right)_{M \cap E_{1}} \cong E_{1} / q_{i}{ }^{(1)} \cong\left(E / q_{i}\right)_{1} ~}^{\text {. }}
$$

Thus by the projection formula, $\mu\left\{\left(E_{1}\right)_{M} \cap E_{1}\right\}=\sum_{i=1}^{l} \mu\left\{\left(E / q_{i}\right)_{1}\right.$.
Since A and E are compatible, $A_{1} \subset E_{1}$. Thus, $q_{i}{ }^{(1)}$ contracts to $p_{i}{ }^{(1)}$ in A_{1}. Since the number of minimal primes of E_{1} contained in $M \cap E_{1}$ is exactly the same as the number of minimal primes of A_{1} in $M \cap A_{1}$, we see that $\left\{p_{1}{ }^{(1)}, \ldots, p_{l}{ }^{(1)}\right\}$ are exactly the minimal primes of A_{1} contained in $M \cap A_{1}$. Thus, a similar computation as in the preceding paragraph gives $\mu\left\{\left(A_{1}\right)_{M \cap A_{1}}\right\}$ $=\sum_{i=1}^{l}\left\{\left(A / p_{i}\right)_{1}\right\}$. Therefore, $\mu\left\{\left(A_{1}\right)_{M \cap A_{1}}\right\}=\mu\left\{\left(E_{1}\right)_{M \cap E_{1}}\right\}$. Continuing in this fashion, we can show that for all $i=0,1, \ldots, \mu\left\{\left(A_{i}\right)_{M \cap A_{1}}\right\}$ $=\mu\left\{\left(E_{i}\right)_{M \cap E_{i}}\right\}$. Since M was arbitrary, we conclude that A and E have the same multiplicity sequence along each maximal ideal of \bar{A}. It now follows from [4, Corollary 3.10] that the Arf closures of A and E in \bar{A} coincide.

Finally, we note that Proposition 4 is a true generalization of Proposition 3. For suppose $A, E \in \Gamma_{1}$ with $A \subset E$, and $D^{n}(\bar{A} / A) \cong D^{n}(\bar{E} / E)$. Then $\mu\left(A_{i}\right)=$ $\mu\left(E_{i}\right)$ for every $i=0,1, \ldots$ Each ring A_{i} or E_{i} is local, and a transversal for either is just an element of minimum positive order (relative to the canonical valuation of $k[[\beta]])$. Since $\mu\left(A_{i}\right)=\mu\left(E_{i}\right)$, a common transversal for both A_{i} and E_{i} can be chosen out of A_{i}. But this immediately implies that $A_{i+1} \subset$ E_{i+1}. Thus, A and E satisfy condition (a) in the definition of compatibility. Since condition (b) is trivial, we see that A and E are compatible. Thus, Proposition 4 implies that the Arf closures of A and E in \bar{A} are the same.

References

1. M. Auslander and D. A. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math. 81 (1959), 749-765.
2. F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics 181 (Springer-Verlag, 1971).
3. K. Fischer, The module decomposition $I(\bar{A} / A)$, Trans. Amer. Math. Soc. 186 (1973), 113-128.
4. J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.
5. K. Mount and O. E. Villamayor, Taylor series and higher derivations, Departmento de Mathematicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Serie No. 18, Buenos Aires, 1969.
6. M. Nagata, Local rings (Interscience, 1969).
7. Y. Nakai, Higher order derivations I, Osaka J. Math. 7 (1970), 1-27.
8. D. Sanders, Epimorphisms and subalgebras of finitely generated algebras, Thesis, Michigan State University.
9. O. Zariski and P. Samuel, Commutative algebra, Vol. II. (D. Van Nostrand, Princeton, 1960).

Michigan State University, East Lansing, Michigan

[^0]: Received January 14, 1976 and in revised form, June 22, 1976.

[^1]: \dagger The proofs of the main results in $[\mathbf{3}]$ are not quite complete if k has characteristic $p \neq 0$. However, slight modifications of the techniques in [3] will give complete proofs in the characteristic p case.

