BLOW UP SEQUENCES AND THE MODULE OF nth ORDER DIFFERENTIALS

WILLIAM C. BROWN

Introduction. Let *C* denote an irreducible, algebraic curve defined over an algebraically closed field *k*. Let *P* be a singular point of *C*. We shall employ the following notation throughout the rest of this paper: *R* will denote the local ring at *P*, *K* the quotient field of *R*, \overline{R} the integral closure of *R* in *K*, *A* the completion of *R* with respect to its radical topology, and \overline{A} the integral closure of *A* in its total quotient ring.

We wish to study the relationships between the \bar{A} -module $D^n(\bar{A}/A)$ of *n*th order differentials over A and the multiplicities of the blow up sequence $B: R = R_0 < R_1 < \ldots < \bar{R}$ of R.

The module $D^n(\overline{A}/A)$ of nth order differentials is defined as follows: Let $\sigma: \overline{A} \otimes_A \overline{A} \to \overline{A}$ be the multiplication mapping given by $\sigma(\sum a_i \otimes b_i) = \sum a_i b_i$. Let $I(\overline{A}/A)$ denote the kernel of σ . Then

$$D^n(\bar{A}/A) = I(\bar{A}/A)/I^{n+1}(\bar{A}/A).$$

The module $D^n(\overline{A}/A)$ is the universal object for *n*th order *A*-derivations and satisfies many functorial properties. We refer the reader to [5] or [7] for all pertinent properties of $D^n(\overline{A}/A)$ used in this paper.

The blow up sequence $B: R = R_0 < R_1 < \ldots < \overline{R}$ is defined as in [4, p. 669]. Each R_{i+1} is obtained from R_i by blowing up the Jacobson radical of R_i . By the multiplicity $\mu(R_i)$ of R_i , we shall mean the multiplicity of the Jacobson radical of R_i . By the multiplicities of B, we shall mean the sequence $\{\mu(R_i)\}$. We similarly define the blow up sequence $B: A = A_0 < A_1 < \ldots < \overline{A}$ and multiplicities $\mu(A_i)$. It is easy to show (see Proposition 1) that for each i, $A_i = R_i \otimes_R A$, and $\mu(R_i) = \mu(A_i)$. Thus, the multiplicities of B are given by \hat{B} .

We note that since \overline{R} is a finitely generated *R*-module, the sequence of *R*-modules in *B* stabilizes at some point, i.e. $R_n = R_{n+1} = \ldots$ for some $n \gg 1$. Thus, there are only a finite number of different $\mu(R_i)$ for *B*. The problem is to characterize the $\mu(R_i)$ in terms of some suitably defined invariants of $D^n(\overline{A}/A)$ for $n \gg 1$.

Since $\overline{A} = \overline{R} \otimes_R A$, we see that \overline{A} is a finitely generated A-module. It then follows from [3, Lemma 1.1] that $I(\overline{A}/A)$ is a finitely generated left \overline{A} -module. Since \overline{R} is a finitely generated R-module, \overline{R} is a semilocal ring. Let $\{m_1, \ldots, m_i\}$ be the maximal ideals of \overline{R} . Set $V_i = \overline{R}_{m_i}$ (\overline{R} localized at m_i) for $i = 1, \ldots, t$.

Received January 14, 1976 and in revised form, June 22, 1976.

Then each V_i is a discrete rank one valuation ring dominating R, and $\overline{A} = \hat{V}_1 \oplus \ldots \oplus \hat{V}_i$. Here \hat{V}_i of course denotes the completion of V_i . Thus, \overline{A} is always a finite direct sum of principal ideal domains.

Now suppose *C* is unibranched at *P*, i.e. \overline{R} is a local ring. Then t = 1 in the above discussion, and $\overline{A} = \hat{V}_1$ is a principal ideal domain. In this case, $I(\overline{A}/A)$ (being a finitely generated module over \overline{A}) has a set of invariant factors $\delta_1, \delta_2, \ldots, \delta_r$ associated with it. These δ_i are elements of \overline{A} given by $\delta_1 = \Delta_1$, $\delta_2 = \Delta_2 \Delta_1^{-1}$, etc. Here Δ_i is the greatest common divisor of all $i \times i$ subdeterminates of the relations matrix of $I(\overline{A}/A)$. These δ_i are unique up to units in \overline{A} . We next note that since *k* is algebraically closed, $\overline{A} = k[\lfloor\beta]]$ for some element β analytically independent over *k*. Thus, each δ_i can be written in the following form $\delta_i = \beta^{e_i}$, for some integer e_i .

Now consider the blow up sequence \hat{B} . We can write \hat{B} as \hat{B} : $A = A_0 < A_1 < \cdots < A_N < A_{N+1} = A_{N+2} = \ldots = \bar{A}$. Since \bar{A} is a local ring, each A_i is local. It was shown in [3, Lemmas 3.4 and 4.2][†] that the decomposition of the module $I(\bar{A}/A)$ over the P.I.D. \bar{A} uniquely determines the multiplicities $\mu(A_i)$ of \hat{B} . For, if the decomposition of $I(\bar{A}/A)$ is known, then we can compute the nontrivial invariant factors $\beta^{e_1}, \ldots, \beta^{e_r}$ of $I(\bar{A}/A)$. Then $r = \mu(A) - 1$, and it follows from [3, Lemma 3.4] that $\beta^{e_1-\mu(A)}, \ldots, \beta^{e_r-\mu(A)}$ is a set of invariant factors of $I(\bar{A}/A_1)$. Thus, the decomposition of $I(\bar{A}/A)$ determines the decomposition of $I(\bar{A}/A)$ determines the decomposition of $I(\bar{A}/A_1)$. Thus, the decomposition of $I(\bar{A}/A)$ determines the decomposition of $I(\bar{A}/A)$ determines the decomposition of $I(\bar{A}/A_1)$. From [3, Lemma 4.2], $\mu(A_1) = \dim_k\{I(\bar{A}/A_1)/\beta I(\bar{A}/A_1)\}$. So, $I(\bar{A}/A)$ determines $\mu(A_1)$. If we now eliminate the 1's appearing in $\beta^{e_1-\mu(A)}, \ldots, \beta^{e_r-\mu(A)}$, we obtain the nontrivial invariant factors of $I(\bar{A}/A_1)$. There are exactly $\mu(A_1) - 1$ of them, and we may repeat the above process to compute $\mu(A_2)$. Continuing in this fashion, we see that the decomposition of $I(\bar{A}/A)$ determines the multiplicities $\mu(A_i)$ of \hat{B} are known, then it follows from [3, Theorem 3.5] that

(1)
$$\underbrace{\beta^{\mu(A_0)}, \ldots, \beta^{\mu(A_0)}, \beta^{\mu(A_0)+\mu(A_1)}, \beta^{\mu(A_0)+\mu(A_1)}, \ldots,}_{\mu(A_0) - \mu(A_1)} \underbrace{\beta^{\mu(A_0)+\dots+\mu(A_N)}}_{\mu(A_N) - 1} \beta^{\mu(A_0)+\dots+\mu(A_N)} \underbrace{\beta^{\mu(A_0)+\dots+\mu(A_N)}}_{\mu(A_N) - 1}$$

is a set of invariant factors of $I(\overline{A}/A)$. Thus, the decomposition of the module $I(\overline{A}/A)$ uniquely determines the multiplicities of the blow up sequence \hat{B} , and, therefore, the multiplicities of B as well. It was also shown in [3, Theorem 1.1] that for n sufficiently large, $D^n(\overline{A}/A) = I(\overline{A}/A)$. Thus, if C is unibranched at P, the decomposition of the module $D^n(\overline{A}/A)$ $(n \gg 1)$ uniquely determines the multiplicities $\mu(R_i)$ of the blow up sequence B at P.

[†]The proofs of the main results in [3] are not quite complete if k has characteristic $p \neq 0$. However, slight modifications of the techniques in [3] will give complete proofs in the characteristic p case.

The purpose of this paper is to study how much of this theory remains intact if we remove the assumption that *C* is unibranched at *P*. Surprisingly, most of the theory survives. We shall show that for *n* sufficiently large, $D^n(\bar{A}/A) = \bigoplus_{i=1}^{t} I(\hat{V}_i/A)$, and each $I(\hat{V}_i/A)$ is nilpotent. We shall examine two cases at this point. Either \bar{R} is unramified over *R* or \bar{R} is ramified over *R*.

We shall show that \overline{R} is unramified over R if and only if $D^n(\overline{A}/A) = 0$ for n sufficiently large. In this case, the multiplicity sequence for B is particularly simple. We have $\mu(R_i) = \mu(\overline{R}) = t$ for all i. In other words, the number of branches of C centered at P gives the multiplicities of the blow up sequence B when C is unramified at P.

If \overline{R} is ramified over R, then $D^n(\overline{A}/A) \neq 0$ for any n. In this case, B is considerably more complicated. For example, the unibranched case considered in **[3]** is a subcase of this case.

In general, we shall be able to attach a set of invariant factors to $D^n(\bar{A}/A)$ which in either case (ramified or unramified) uniquely determine the multiplicities in the blow up sequence *B*. The general theory developed in this paper will include and actually come from the unibranch theory discussed in [3].

1. Some preliminary results. We use the same notation as in the introduction. Thus, R denotes the local ring at a singular point P of some irreducible algebraic curve C defined over an algebraically closed field k. For the time being, we make no assumptions about the nature of the singularity at P. We shall let m denote the maximal ideal of R. All topological statements about R and related rings will be made relative to the m-adic topology on R.

Now let \overline{R} denote the integral closure of R in its quotient field K, and let $B: R < R_1 < R_2 < \ldots < \overline{R}$ be the blow up sequence of R. Each R_{i+1} is obtained from R_i by blowing up the Jacobson radical J_i of R_i . Since k is infinite, any open ideal in R_i has a transversal element. In particular, J_i has a transversal element say x(i). Then $R_{i+1} = R_i[x_1/x(i), \ldots, x_r/x(i)]$ where $\{x_1, \ldots, x_r\}$ are elements in R_i which generate J_i . Thus, each R_i in B is a semilocal ring which is finitely generated as an R-module. We note that since \overline{R} is a Noetherian R-module, there exists an integer n such that $R_n = R_{n+1} = \ldots$ Now $R_n = \overline{R}$. For, R_{n+1} is the blow up of R_n along its Jacobson radical J_n . Thus, $R_{n+1} = R_n$ implies that J_n is principal. But this immediately implies that every localization of R_n (at maximal ideals) is a regular local ring. Thus, R_n is normal and hence $R_n = \overline{R}$. Therefore, B always has the form

(2)
$$B: R = R_0 < R_1 < \ldots < R_n = \bar{R} = \bar{R} = \bar{R} \ldots$$

If A is the completion of R and \overline{A} the integral closure of A in its total quotient ring, then similar remarks can be made about the blow up sequence $\hat{B}: A < A_1 < \ldots < \overline{A}$. For a detailed discussion of blow up sequences, we refer the reader to [4].

for some $n \gg 1$.

In the introduction, we mentioned that the multiplicities of B and B are the same. This is part of the following proposition:

PROPOSITION 1. Let B and \hat{B} denote the blow up sequences of R and A respectively. Let J_i denote the Jacobson radical of R_i . Then

- (a) J_iA_i is the Jacobson radical of A_i .
- (b) $A_i = R_i \otimes_R A$ i = 0, 1, ...
- (c) $\mu(A_i) = \mu(R_i)$ i = 0, 1, ...

Proof. This proposition follows from the proof of Proposition 2.8 in [4]. We proceed via induction on *i*. If i = 0, then clearly (a), (b) and (c) hold for $R_0 = R$ and $A_0 = A$, the completion of *R*. Thus, assume the proposition is proven for *i* and consider A_{i+1} . Since $A_i = R_i \otimes_R A$, and *A* is flat over *R*, we have A_i is flat over R_i . Denoting blow-ups with superscripts and using [4, Corollary 1.2], we have

(3) $A_{i+1} = A_i^{J_i A_i} = R_{i+1} \otimes_{R_i} A_i$.

But, $R_{i+1} \otimes_{R_i} A_i = R_{i+1} \otimes_{R_i} (R_i \otimes_R A) = R_{i+1} \otimes_R A$. Thus, we have established (b) in the i + 1 case. As for (a), we first note that A_{i+1} is integral over A since $A_{i+1} \subset \overline{A}$. Thus, every maximal ideal of A_{i+1} contracts to mAin A and consequently to m in R. Since R_{i+1} is integral over R, we see every maximal ideal in A_{i+1} contracts to a maximal idea in R_{i+1} . Therefore, if $J(A_{i+1})$ denotes the Jacobson radical of A_{i+1} , we have $J_{i+1}A_{i+1} \subset J(A_{i+1})$. But

(4)
$$A_{i+1}/J_{i+1}A_{i+1} \cong (A/mA) \otimes_{R/m} (R_{i+1}/J_{i+1}) \cong k \otimes \ldots \otimes k.$$

Thus, $J_{i+1}A_{i+1} = J(A_{i+1})$ and the proof of (a) is complete. Since each A_i is just the completion of R_i with respect to its radical topology, (c) follows directly from [9, Lemma 1, p. 285].

Thus, to compute the multiplicities in the blow-up sequence \hat{B} , we may use the sequence \hat{B} .

We now set up the notation for the main theorem of this section. As in the introduction, let $\{m_1, \ldots, m_i\}$ be the maximal ideals of \bar{R} . Set $V_i = \bar{R}_{m_i}$, $i = 1, \ldots, t$. Then each V_i is a discrete rank one valuation ring which dominates R. We shall let \hat{V}_i denote the completion of V_i with respect to its maximal ideal $m_i V_i$. Since k is algebraically closed, we have the integral closure \bar{A} of A in its total quotient ring is just the completion of \bar{R} [9, Theorem 33, p. 320]. Thus, $\bar{A} = \hat{V}_1 \oplus \cdots \oplus \hat{V}_i$. Let π_i denote the natural projection of \bar{A} onto \hat{V}_i . Set $p_i = \ker \pi_i \cap A$ for $i = 1, \ldots, t$. Then p_1, \ldots, p_i are exactly the minimal primes of A, and we have $(0) = p_1 \cap \cdots \cap p_i$. Thus, the image of A in \hat{V}_i is just A/p_i . When we write $\hat{V}_i \otimes_A \hat{V}_i$, $I(\hat{V}_i/A)$ etc., we shall mean $\hat{V}_i \otimes_{A/p_i} \hat{V}_i$, $I(\hat{V}_i/A/p_i)$, etc.

As in the introduction, $I(\hat{V}_i/A)$ will denote the kernel of the multiplication mapping σ_i : $\hat{V}_i \otimes_A \hat{V}_i \to \hat{V}_i$. Since \bar{A} is a finitely generated A-module, each \hat{V}_i is a finitely generated A/p_i -module. Consequently, $I(\hat{V}_i/A)$ is a finitely generated left \hat{V}_i -module as well as a finitely generated left \hat{V}_i -algebra.

1292

BLOW UP SEQUENCES

We can now prove the main result of this section.

THEOREM 1. Let A be the complete local ring at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let $\overline{A} = \hat{V}_1 \oplus \ldots \oplus \hat{V}_t$ be the integral closure of A where $\{V_1, \ldots, V_t\}$ are the discrete rank one valuation rings in K which dominate the local ring R at P. Then for all n sufficiently large, $D^n(\overline{A}/A) = I(\hat{V}_1/A) \oplus \ldots \oplus I(\hat{V}_t/A)$ and each $I(\hat{V}_t/A)$ is nilpotent.

Proof. We first note that for any natural number n, $D^n(\bar{A}/A) = D^n(\hat{V}_1/A) \oplus \ldots \oplus D^n(\hat{V}_1/A)$. For, let $\sigma: \bar{A} \otimes_A \bar{A} \to \bar{A}$ be the multiplication map. Since the \hat{V}_i are pairwise orthogonal in \bar{A} , we have $\bar{A} \otimes_A \bar{A} = \bigoplus_{i,j=1}^{t} (\hat{V}_i \otimes_A \hat{V}_j)$. Thus, $I(\bar{A}/A)$, which is the kernel of σ , is given by

(5)
$$I(\bar{A}/A) = I(\hat{V}_1/A) \oplus \ldots \oplus I(\hat{V}_t/A) \oplus \{ \bigoplus_{i \neq j} (\hat{V}_i \otimes_A \hat{V}_j) \}$$

Thus,

$$D^{n}(\bar{A}/A) = I(\bar{A}/A)/I^{n+1}(\bar{A}/A) = I(\hat{V}_{1}/A)/I^{n+1}(\hat{V}_{1}/A)$$

$$\oplus \dots \oplus I(\hat{V}_{t}/A)/I^{n+1}(\hat{V}_{t}/A) = D^{n}(\hat{V}_{1}/A) \oplus \dots \oplus D^{n}(\hat{V}_{t}/A).$$

Thus, to prove the theorem, it suffices to show that each $I(\hat{V}_i/A)$ is nilpotent.

Let \overline{R} denote the integral closure of R in K. Since \overline{R} is a Dedekind domain with finitely many maximal ideals, \overline{R} is a principal ideal domain. Thus, the Jacobson radical $J = m_1 \dots m_t$ of \overline{R} is principal. Let $\beta \in \overline{R}$ such that $\beta \overline{R} = J$. Then β generates the maximal ideal ideal $m_i V_i$ in each valuation ring V_i . Hence, β is a common uniformizing parameter for the V_i $i = 1, \dots, t$. Since k is algebraically closed, we conclude that $\widehat{V}_i \cong k[[\beta]]$ for each $i = 1, \dots, t$.

Now let *c* denote the conductor of *R* in \overline{R} . Since *P* is a singular point of *C*, $R \neq \overline{R}$. Thus, *c* is a proper ideal in *R*. Since *R* is Noetherian with *m* as its only proper prime, we see that $\sqrt{c} = m$. Thus, some power, say n_0 , of *m* falls in *c*, i.e., $m^{n_0} \subset c$. Now consider $m\overline{R}$. Since every m_i is an associated prime of $m\overline{R}$, we have $J = \sqrt{m\overline{R}}$. Thus, some power of β falls inside of $m\overline{R}$, and, consesequently, some possibly larger power falls in *c*. Suppose $\beta^n \in c$.

We note that $\beta^{n+i} \in c \subset R \subset A$ for $l = 0, 1, \ldots$. Let p_1, \ldots, p_t be the minimal primes of (0) in A. Since β^n is not a zero-divisor in R, β^n is not a zero-divisor in A. Thus, $\beta^n \notin \bigcup_{i=1}^t p_i$. Therefore, $\pi_i(\beta^n) = (\pi_i(\beta))^n$ is a nonzero element of A/p_i . For simplicity of notation, we shall identify β with $\pi_i(\beta)$. Then since $\hat{V}_i = k[[\beta]]$, we see \hat{V}_i is a finitely generated module over A/p_i with generators 1, $\beta, \ldots, \beta^{n-1}$.

Let $\delta_i: \hat{V}_i \to I(\hat{V}_i/A)$ be the canonical Taylor series given by $\delta_i(x) = 1 \otimes_A x - x \otimes_A 1$. It now follows from [5, Lemma 1.1] that $I(\hat{V}_i/A)$ is a left \hat{V}_i -algebra generated by $\{\delta_i(\beta), \delta_i(\beta^2), \ldots, \delta_i(\beta^{n-1})\}$. Since $\beta^n \in c \subset A$, we

have $\delta_i(\beta^n) = 0$. But, then

(6)
$$0 = \delta_i(\beta^n) = \binom{n}{1} \beta^{n-1} \delta_i(\beta) + \ldots + [\delta_i(\beta)]^n.$$

Solving (6) for $[\delta_t(\beta)]^n$, we get

(7)
$$[\delta_t(\beta)]^n = -\beta \left\{ \left(\begin{array}{c} n \\ 1 \end{array} \right) \beta^{n-2} \delta_i(\beta) + \ldots + \left(\begin{array}{c} n \\ n-1 \end{array} \right) [\delta_i(\beta)]^{n-1} \right\}$$

Now any element of c annihilates $I(\hat{V}_i/A)$. Consequently, raising Equation (7) to the *n*th power gives $[\delta_i(\beta)]^{n^2} = 0$. Thus, $\delta_i(\beta)$ is nilpotent. If we apply the same argument to β^2 , $\beta^3 \cdots \beta^{n-1}$, we see that each generator $\delta_i(\beta^j) j = 1, \ldots, n-1$ of $I(\hat{V}_i/A)$ is nilpotent. Thus, $I(V_i/A)$ is nilpotent and the proof of Theorem 1 is complete.

We conclude this section with a proposition which will be useful in both the ramified and unramified case.

For each j = 1, ..., t, we can consider the blow up sequence \hat{B}_j of A/p_j in \hat{V}_j . Thus,

(8)
$$\hat{B}_j: A/p_j = (A/p_j)_0 < (A/p_j)_1 < \ldots < \hat{V}_j.$$

One can easily check that \hat{V}_j is the integral closure of A/p_j in its quotient field. Since \hat{V}_j is a local ring, each term in the chain \hat{B}_j is a local ring. We note that if $A/p_j = \hat{V}_j$, then \hat{B}_j is just the trivial sequence \hat{B}_j : $V_j = \hat{V}_j = \ldots$

Now let $B: R < R_1 < R_2 < \ldots < \overline{R}$ denote the blow up sequence of R. We wish to relate the multiplicities occurring in B with the multiplicities of the \hat{B}_j . Since the multiplicities of B are the same as the multiplicities of $\hat{B}: A < A_1 < A_2 < \ldots < \overline{A}$, the following proposition gives us the relationship.

PROPOSITION 2. Let A be the completion of the local ring of a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let $\overline{A} = \hat{V}_1 \oplus \ldots \oplus \hat{V}_i$ be the integral closure of A in its total quotient ring, and let $\{p_1, \ldots, p_i\}$ be the minimal primes of A. Let $\hat{B}: A < A_1 < \ldots < \overline{A}$ and $B_j: A/p_j < (A/p_j)_1 < \ldots < \hat{V}_j, j = 1, \ldots, t$ be the blow up sequences for A and A/p_j respectively. Then $\mu(A_i) = \sum_{j=1}^t \mu((A/p_j)_i)$ for each $i = 0, 1, \ldots$

Proof. Consider a fixed ring A_i in the blow up sequence \hat{B} . Then $A_i \subset \bar{A}$, and we can consider the kernel of the projection map π_j of \bar{A} onto \hat{V}_j when restricted to A_i . Set $p_j^{(i)} = \ker \pi_j \cap A_i$. Then a simple argument shows that $p_1^{(i)}, \ldots, p_t^{(i)}$ are exactly the minimal primes of A_i . Since A_i is reduced, $(A_i)_{p_j(i)}$ (the localization of A_i at $p_j^{(i)}$) is a reduced, Noetherian local ring of dimension zero. Thus, $(A_i)_{p_j(i)}$ is a field. Consequently, the length of the Artinian local ring $(A_i)_{p_j(i)}$ is one. We also note that if \hat{J}_i is the Jacobson radical of A_i , then for each $j = 1, \ldots, t$, $\hat{J}_i(A_i/p_j^{(i)})$ is the Jacobson radical of $A_i/p_j^{(i)}$. It now follows from the projection formula [**6**, (23.5)] that $\mu(A_i) = \sum_{j=1}^t \mu(A_i/p_j^{(i)})$. Thus, the proposition will be proven if we can show that (9) $A_i/p_j^{(i)} \cong (A/p_i)_i$ $j = 1, \ldots, t$. If i = 0, then (9) certainly holds. Now consider A_1 and $(A/p_j)_1$. If x is a regular element of A, then $x \notin \bigcup_{l=1}^{t} p_l$. In particular $x \notin p_j$. Therefore, $\pi_j(x)$ is a regular element of A/p_j . Thus, π_j has a natural extension to a map θ_j : $A^m \to (A/p_j)^{\pi_j(m)}$. Now $A^m = A_1$, $(A/p_j)^{\pi_j(m)} = (A/p_j)_1$ and θ_j is just π_j restricted to A_1 . Since π_j : $A \to A/p_j$ is surjective, we have θ_j : $A_1 \to (A/p_j)_1$ is also surjective. Finally, since θ_j is just π_j restricted to A_1 , the kernel of θ_j is exactly $p_j^{(1)}$. Thus, $A_1/p_j^{(1)} \cong (A/p_j)_1$.

We now proceed by induction on *i*. Thus, we may assume that π_j when restricted to A_{i-1} maps A_{i-1} onto $(A/p_j)_{i-1}$ and has kernel $p_j^{(i-1)}$. If *x* is a regular element in A_{i-1} , then, $x \notin \bigcup_{l=1}^{t} p_l^{(i-1)}$. In particular, $\pi_j(x)$ is a regular element in $(A/p_j)_{i-1}$. Thus, as in the case i = 1, π_j has a unique extension

$$\theta_{j}: A_{i-1}^{\hat{j}_{i-1}} \to (A/p_{j})_{i-1}^{\pi_{j}(\hat{j}_{i-1})}.$$

Again we have

$$A_{i-1}^{\hat{J}_{i-1}} = A_i, \quad (A/p_j)_{i-1}^{\pi_j(\hat{J}_{i-1})} = (A/p_j)_i$$

and θ_j is just π_j restricted to A_i . Thus, θ_j is surjective and has kernel $p_j^{(i)}$. Hence, (9) is proven and the proof of Proposition 2 is complete.

2. The unramified case. In this section, we shall assume that C has no ramification at P. In other words, we shall assume that \overline{R} is unramified over R. Recall this means that m generates the maximal ideal in each V_i , $i = 1, \ldots, t$, and that V_i/mV_i is a seprable field extension of R/m for every $i = 1, \ldots, t$. Since $k = R/m = V_i/mV_i$, the last part of the definition is always satisfied. The following theorem completely characterizes when \overline{R} is unramified over R.

THEOREM 2. Let R be the local ring at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let \overline{R} be the integral closure of R, A the completion of R and \overline{A} the integral closure of A. Then the following statements are equivalent:

- (a) \overline{R} is unramified over R.
- (b) \overline{R} is a separable R-algebra, i.e. \overline{R} is projective as a left $\overline{R} \otimes_R \overline{R}$ -module.
- (c) The Jacobson radical of \overline{R} is generated by an element of R.
- (d) For all n sufficiently large, $D^n(\bar{A}/A) = 0$.

Proof: The fact that (a) and (b) are equivalent is well known. A proof can be found in [1, Theorem 2.5]. We show (c) and (b) are equivalent. First, assume \bar{R} is separable over R. Then by [2, Theorem 7.1], $\bar{R}/m\bar{R}$ must be separable over R/m = k. Thus, $m\bar{R}$ must be the Jacobson radical of \bar{R} . Since k is infinite, m has a transversal element, say x. Then letting R^m denote the blow up of R by m, we have $m\bar{R} = mR^m\bar{R} = xR^m\bar{R} = x\bar{R}$. Thus, the Jacobson radical of \bar{R} is generated by an element $x \in m$. Conversely, assume $m_1 \ldots m_t$ (the Jacobson radical of \bar{R}) is generated by some element $x \in R$. Then necessarily $x \in m$, and we have $xV_i = x\bar{R}_{mi} = (m_1 \ldots m_t)\bar{R}_{mi} = m_i\bar{R}_{mi} = m_iV_i$. Thus, $mV_i = m_iV_i$. So, \bar{R} is unramified over R and therefore separable over R.

Finally, we argue that (d) is equivalent to the rest. Suppose first that \bar{R} is unramified over R. Then by (c), the Jacobson radical of \bar{R} is generated by some element of R. Thus, in the proof of Theorem 1, we can take β to lie in R. But then $\pi_i(\beta)$ is a nonzero element in A/p_i . This implies that $A/p_i =$ $\hat{V}_i, i = 1, \ldots, t$. Therefore, $I(\hat{V}_i/A) = 0$ for all $i = 1, \ldots, t$. So, by Theorem 1, $D^n(\bar{A}/A) = 0$ for all n sufficiently large.

Conversely, assume (d) holds. Then by Theorem 1 $I(\hat{V}_i/A) = 0$, $i = 1, \ldots, t$. Thus, $\sigma_i : \hat{V}_i \otimes_{A/p_i} \hat{V}_i \to \hat{V}_i$ is an isomorphism. It now follows from [8; Theorem 1.1] that the inclusion map $A/p_i \to \hat{V}_i$ is an epimorphism in the category or rings. Since \hat{V}_i is a finitely generated A/p_i -module, [8, Proposition 1.6] implies that $A/p_i = \hat{V}_i$. Thus, Proposition 2 implies that $\mu(R) = \mu(A) = t$.

Now let x be a transversal for m. By the remarks in [4, p. 657], we have $t = \mu(R) = \lambda_R(\bar{R}/x\bar{R})$. Here $\lambda_R(M)$ denotes the length of the *R*-medule *M*. But, $\lambda_R(\bar{R}/m_1 \dots m_t) = \lambda_R(k^t) = t$. Since $x\bar{R} \subset m_1 \dots m_t$, we have $\lambda_R(m_1 \dots m_t/x\bar{R}) = 0$. So $x\bar{R} = m_1 \dots m_t$. Thus, the Jacobson radical of \bar{R} is generated by x. Therefore, (d) implies (c), and the proof of Theorem 2 is complete.

In the introduction of this paper, we claimed that if \overline{R} is unramified over R then the multiplicities of the blow-up sequence B are particularly simple. It is clear from Theorem 2 and Proposition 2 that if \overline{R} is unramified over R, then the multiplicities of B are given by the constant sequence $\{t\}$.

3. The general case. As usual, we shall assume R is the local ring at a singular point P of C. We shall let A denote the completion of R, and \overline{A} the integral closure of A in its total quotient ring. Throughout this section, we shall make no assumptions about the nature of the singularity at P. Thus, \overline{R} could be ramified or unramified over R.

By Theorem 1, $D^n(\overline{A}/A) = I(\hat{V}_1/A) \oplus \ldots \oplus I(\hat{V}_i/A)$ for $n \gg 1$. Recall that $I(\hat{V}_i/A)$ means $I(\hat{V}_i/A/p_i)$ where $\{p_1, \ldots, p_i\}$ are the minimal primes of A.

Now for any $i = 1, \ldots, t$, $I(\hat{V}_i/A)$ is a finitely generated module over the principal ideal domain \hat{V}_i . Thus, the decomposition of the \hat{V}_i -module $I(\hat{V}_i/A)$ is uniquely determined by a set of invariant factors $\{\delta_1^{i_1}, \ldots, \delta_{\tau(i)}^{i_i}\}$ which are unique up to units in \hat{V}_i . By the invariant factors of $D^n(\bar{A}/A)$, we shall mean the set $\bigcup_{i=1}^{t} \{\delta_1^{i_1}, \ldots, \delta_{\tau(i)}^{i_i}\}$. Note, that if $I(\hat{V}_i/A) = 0$ for some *i*, then we can and do take for $\{\delta_1^{i_1}, \ldots, \delta_{\tau(i)}^{i_i}\}$, the set $\{1_{\hat{V}_i}\}$. Here $1_{\hat{V}_i}$ denotes the identity of \hat{V}_i .

We can now state the general result.

THEOREM 3. Let A be the completion of the local ring R at a singular point P of an irreducible algebraic curve C defined over an algebraically closed field k. Let \overline{A} be the integral closure of A in its total quotient ring. Then the decomposition of the module $D^n(\overline{A}/A)$ for $n \gg 1$ uniquely determines the multiplicities of the blow up sequence B of R.

Proof. Theorem 3 follows easily from Proposition 2 and [3, Theorem 3.5]. Let $B: R < R_1 < \ldots < \overline{R}$ be the blow up sequence of R. By Proposition 1, $\mu(R_i) = \mu(A_i)$ where $\widehat{B}: A < A_1 < \ldots < \overline{A}$ is the blow up sequence of A. Thus, by Proposition 2 the multiplicities of B are uniquely determined by the multiplicities of $\widehat{B}_i, j = 1, \ldots, t$.

Now for *n* sufficiently large, Theorem 1 implies that $D^n(\bar{A}/A) = I(\hat{V}_1/A) \oplus \ldots \oplus I(\hat{V}_i/A)$. If $D^n(\bar{A}/A) = 0$, then the invariant factors of $D^n(\bar{A}/A)$ are just $F = \{1_{V_1}, \ldots, 1_{V_i}\}$. Then as shown in Theorem 2, for each $i = 1, \ldots, t, A/p_i = \hat{V}_i$. Consequently, \hat{B}_i has the form \hat{B}_i : $V_i = \hat{V}_i = \ldots$. So, the multiplicities of \hat{B}_i are identically one, and Proposition 2 implies that the multiplicities of B are identically t. Thus, if the invariant factors F of $D^n(\bar{A}/A)$ for $n \gg 1$ are trivial, i.e., $F = \{1_{V_1}, \ldots, 1_{V_i}\}$, then the multiplicities of B are identically t.

Let us suppose $D^n(\overline{A}/A) \neq 0$. Then after suitably relabeling, we may suppose $I(\hat{V}_i/A) \neq 0$ for i = 1, ..., h, and $I(\hat{V}_i/A) = 0$ for i > h. Here, of course, $1 \leq h \leq t$. Thus, the invariant factors of $D^n(\overline{A}/A)$ can be written a

 $F = \{\delta_1^1, \ldots, \delta_{r(1)}^1, \ldots, \delta_1^h, \ldots, \delta_{r(h)}^h, 1_{\widehat{V}_h+1}, \ldots, 1_{\widehat{V}_t}\}.$

Now the multiplicities of the local rings in \hat{B}_i , $i = 1, \ldots, h$, are by [3, Lemmas 3.4 and 4.2] uniquely determined by the invariants $\{\delta_1^{i_1}, \ldots, \delta_{\tau(i)}^{i_i}\}$. The exact relationship was discussed in the introduction of this paper. The multiplicities of the local rings in \hat{B}_i , i > h, are identically one. Thus, the multiplicities of the \hat{B}_i , $i = 1, \ldots, t$, are uniquely determined by the decomposition of $D^n(\bar{A}/A)$. Consequently, by Proposition 2, the module $D^n(\bar{A}/A)$ uniquely determines the multiplicities of the blow up sequence B.

We note that Theorem 3 gives the correct result if C is unibranched at P. In this case, t = 1, $D^n(\bar{A}/A) = I(\hat{V}_1/A)$ for $n \gg 1$, and we return to the setting in [3].

The reader may be wondering why we don't consider $I(\bar{R}/R)$ and its invariants when studying the multiplicities of the blow up sequence B of R. Note that \bar{R} is a principal ideal domain, and thus, $I(\bar{R}/R)$ has a natural set of invariant factors associated with it.

One reason we don't study $I(\bar{R}/R)$ is that when we pass to the completion, the branches of C at P get separated, and the computations for $I(\hat{V}_i/A)$, $i = 1, \ldots, t$ are a bit easier to make. For example, if \bar{R} is unramified over R, then $I(\hat{V}_i/A) = 0$ for every $i = 1, \ldots, t$. On the other hand, since $R \neq \bar{R}$, [8, Theorem 1.1 and Proposition 1.6] imples that $I(\bar{R}/R)$ is never zero for any singular point P. Thus, $I(\bar{R}/R)$ always has associated with it a set of nontrivial invariant factors. A second reason we avoid $I(\bar{R}/R)$ is that its invariants don't seem to give us the multiplicities of the blow up sequence B in any natural way as in Theorem 3. We conclude this section with an example which illustrates this last point.

Example. Consider the curve $C: Y^2 = X^2 + X^3$ defined over the complex numbers **C**. Let R denote the local ring at the origin (0, 0). If we let x and y denote the images of X and Y in the coordinate ring of C, then we can write $R = \mathbf{C}[x, y]_{(x,y)}$ where $y^2 = x^2(x + 1)$. If we set z = y/x, then we can easily check that R[z] is the integral closure \overline{R} of R in $\mathbf{C}(x, y)$. $\overline{R} = R[z]$ has exactly two maximal ideals $M_1 = (z - 1)$ and $M_2 = (z + 1)$ which lie over m = (x, y) in R. Since $M_1M_2 = (z^2 - 1) = (x) = m\overline{R}$, we see \overline{R} is unramified over R. Thus, the blow up sequence B for R is trivial, i.e., $B: R < \overline{R} = \overline{R} = \ldots$, and the multiplicities of B are identically 2.

Let us now investigate $I(\bar{R}/R)$. Since \bar{R} is a separable *R*-algebra, $I(\bar{R}/R)$ is generated by an idempotent. By pulling back the separability idempotent from $(\bar{R}/m\bar{R}) \otimes_{\mathbf{C}} (\bar{R}/m\bar{R})$ to $\bar{R} \otimes_{R} \bar{R}$, the reader can easily verify that the idempotent *e* which generates $I(\bar{R}/R)$ is exactly $e = (-z/2)(1 \otimes_{R} z - z \otimes_{R} 1)$. Since $I(\bar{R}/R)$ is a cyclic \bar{R} -module generated by $1 \otimes_{R} z - z \otimes_{R} 1$, we see $I(\bar{R}/R) = \bar{R}e$. One can easily check that $x\bar{R}$ is the annihilator of $I(\bar{R}/R)$. Thus, the set of invariant factors for $I(\bar{R}/R)$ is just $\{x\}$.

How we are to decide that the multiplicities of B are $\{2, 2, \ldots\}$ by looking at the set $\{x\}$ is unclear. However, since the invariants of $D^n(\overline{A}/A)$ (for $n \gg 1$) are just $\{1_{\hat{V}_1}, 1_{\hat{V}_2}\}$, we would know immediately from the discussion in Theorem 3 that B is trivial with constant multiplicity 2.

4. $D^n(\overline{A}/A)$ and isomorphism classes of A. Let C as usual denote an irreducible algebraic curve defined over an algebraically closed ground field k. Let A denote the completion of the local ring at a singular point P of C. Then as we have seen, \overline{A} always has the form $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$. The number of summands present here is equal to the number of branches of C centered at P. Now suppose that \mathcal{D} is another irreducible algebraic curve defined over k, and let Q be a singular point of \mathcal{D} . Let E denote the completion of the local ring at Q. Then if the number of branches of C centred at P is the same as the number of branches of \mathcal{D} centered at Q, then $\overline{A} \cong \overline{E}$. In this case, it makes sense to inquire when $D^n(\overline{A}/A) \cong D^n(\overline{E}/E)$ for $n \gg 1$.

Let Γ_t denote the collection of complete local rings A such that A is the completion of the local ring at a singular point P of some irreducible algebraic curve C (defined over k) which has exactly t branches at P. Thus, if A and E are members of Γ_t , then their integral closures \overline{A} and \overline{E} are isomorphic to $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$ (t summands). We wish to briefly discuss when $D^n(\overline{A}/A) \cong D^n(\overline{E}/E)$ for $A, E \in \Gamma_t$.

It would be nice if $D^n(\overline{A}/A) \cong D^n(\overline{E}/E)$ as $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$ - modules implies that A and E are isomorphic. Unfortunately, it is well known that this is false even in the unibranch case t = 1. For example, if $A \in \Gamma_1$, and A'denotes the Arf closure of A in \overline{A} , then $A' \in \Gamma_1$, and $D^n(\overline{A}/A) = D^n(\overline{A}/A')$ for all *n*. Since every $A \in \Gamma_1$ is not necessarily an Arf ring, we cannot hope that $D^n(\overline{A}/A)$ determines A up to isomorphism. The reader is urged to consult [4] for the pertinent facts about Arf rings used in this section.

If A and $E \in \Gamma_1$ satisfy some order relationship such as $A \subset E$ or $E \subset A$, then we do have a positive result concerning A' and E', the Arf closures of A and E. Namely:

PROPOSITION 3. Suppose $A, E \in \Gamma_1$ such that $A \subset E$. Then $D^n(\overline{A}/A) \cong D^n(\overline{E}/E)$ as $k[[\beta]]$ - modules if and only if the Arf closures A' and E' of A and E in $k[[\beta]]$ are equal.

Proof. This proposition is the main content of [3, Theorem 4.7]. In the unibranch case, $D^n(\bar{A}/A) = I(k[[\beta]]/A)$ for $n \gg 1$. Thus, by Theorem 3, if $D^n(\bar{A}/A)$ is isomorphic to $D^n(\bar{E}/E)$, then the multiplicities of the branch sequences for A and E are identical. Since the multiplicities of the branch sequences for A and A' are the same, and $A' \subset E' \subset \bar{A}$, it follows from [4, Corollary 3.10] that A' = E'.

Conversely, suppose A' = E'. Since A contains the field k, the Arf closure A' of A is the same as the strict closure of A in \overline{A} . Thus, for all $n, D^n(\overline{A}/A) = D^n(\overline{A}/A') = D^n(\overline{A}/E') = D^n(\overline{A}/E)$.

We cannot hope for such a nice result in the general situation $t \ge 1$. This is because the module $D^n(\bar{A}/A)$ cannot distinguish between unramified extensions. For suppose, $A \in \Gamma_t$ (t > 1) is unramified. Then by Theorem 2, \bar{A} is a separable algebra over A. If E is any ring such that $A \subset E \subset \bar{A}$, then \bar{A} is also separable over E. Thus, $D^n(\bar{A}/A) = D^n(\bar{A}/E) = 0$ for $n \gg 1$. Since A'need not be equal to E', we see that Proposition 3 is false if t > 1.

However, if $A, E \in \Gamma_t$ are special enough, we can state a generalization of Proposition 3. Let A_i as usual denote the *i*th blow up of A. Let us say that the local rings $A \subseteq E$ in Γ_t are *compatible* if

- (a) $A_i \subseteq E_i$ for all $i = 0, 1, \ldots$, and
- (b) For all maximal ideals M ⊂ Ā and for all i, the number of minimal primes in A_i which are contained in M ∩ A_i is exactly the same as the number of minimal primes of E_i contained in M ∩ E_i.

From the remarks made above, it is clear that in order to state any analog of Proposition 3, we must avoid the unramified situation. Since $D^n(\bar{A}/A) \cong$ $I(\hat{V}_1/A) \oplus \ldots \oplus I(\hat{V}_t/A)$ $(n \gg 1)$, due care must also be made to match up proper components of $D^n(\bar{A}/A)$ and $D^n(\bar{E}/E)$. Thus, a correct analog of Proposition 3 is as follows:

PROPOSITION 4. Let $A \in \Gamma_t$ have minimal primes $\{p_1, \ldots, p_t\}$ and assume $A/p_i \subsetneq \hat{V}_i$ for all $i = 1, \ldots, t$. Let $E \in \Gamma_t$ such that $A \subset E$, and A and E are compatible. Assume that we have labeled the minimal primes $\{q_1, \ldots, q_t\}$ of E so that $A/p_i \subset E/q_i \subset \hat{V}_i$ $i = 1, \ldots, t$. If there exists a $k[[\beta]] \oplus \ldots \oplus k[[\beta]]$

WILLIAM C. BROWN

isomorphism T: $D^n(\overline{A}/A) \to D^n(\overline{E}/E)$ (for $n \gg 1$) such that $T(I(\hat{V}_i/A)) = I(\hat{V}_i/E)$ for all i = 1, ..., t, then the Arf closures of A and E in \overline{A} coincide.

Proof. Since $A/p_i \neq \hat{V}_i$, $I(\hat{V}_i/A) \neq 0$. Therefore, $I(\hat{V}_i/E) \neq 0$, and $E/q_i \neq \hat{V}_i$. Since $I(\hat{V}_i/A) \cong I(\hat{V}_i/E)$, the multiplicity sequences of A/p_i and E/q_i are identical. Thus, using the notation of Proposition 2, we have $\mu\{(A/p_i)_j\} = \mu\{(E/q_i)_j\}$ for all i and j.

Now let M be a maximal ideal of \overline{A} . We wish to compute the multiplicity of the local ring $(E_1)_{M \cap E_1}$. We proceed as in the proof of Proposition 2. Let $\{q_1^{(1)}, \ldots, q_l^{(1)}\}$ denote the minimal primes of E_1 . We can assume that $q_1^{(1)}, \ldots, q_l^{(1)} \subset M \cap E_1$, and $q_{l+1}^{(1)}, \ldots, q_l^{(1)} \not\subset M \cap E_1$. Here $1 \leq l \leq t$. Then the minimal primes in $(E_1)_{M \cap E_1}$ are just $\{q_1^{(1)}(E_1)_{M \cap E_1}, \ldots, q_l^{(1)}(E_1)_{M \cap E_1}\}$. A simple calculation shows that each localization $\{(E_1)_{M \cap E_1}\}q_i^{(1)}(E_1)_{M \cap E_1}$, $i = 1, \ldots, l$, is a field, and that

$$(E_1)_{M\cap E_1}/q_i^{(1)}(E_1)_{M\cap E_1}\cong E_1/q_i^{(1)}\cong (E/q_i)_1.$$

Thus by the projection formula, $\mu\{(E_1)_{M \cap E_1}\} = \sum_{i=1}^{l} \mu\{(E/q_i)\}$.

Since A and E are compatible, $A_1 \subset E_1$. Thus, $q_i^{(1)}$ contracts to $p_i^{(1)}$ in A_1 . Since the number of minimal primes of E_1 contained in $M \cap E_1$ is exactly the same as the number of minimal primes of A_1 in $M \cap A_1$, we see that $\{p_1^{(1)}, \ldots, p_i^{(1)}\}$ are exactly the minimal primes of A_1 contained in $M \cap A_1$. Thus, a similar computation as in the preceding paragraph gives $\mu\{(A_1)_{M \cap A_1}\}$ $= \sum_{i=1}^{l} \{(A/p_i)_1\}$. Therefore, $\mu\{(A_1)_{M \cap A_1}\} = \mu\{(E_1)_{M \cap E_1}\}$. Continuing in this fashion, we can show that for all $i = 0, 1, \ldots, \mu\{(A_i)_{M \cap A_1}\}$ $= \mu\{(E_i)_{M \cap E_i}\}$. Since M was arbitrary, we conclude that A and E have the same multiplicity sequence along each maximal ideal of \overline{A} . It now follows from [4, Corollary 3.10] that the Arf closures of A and E in \overline{A} coincide.

Finally, we note that Proposition 4 is a true generalization of Proposition 3. For suppose $A, E \in \Gamma_1$ with $A \subset E$, and $D^n(\overline{A}/A) \cong D^n(\overline{E}/E)$. Then $\mu(A_i) = \mu(E_i)$ for every $i = 0, 1, \ldots$. Each ring A_i or E_i is local, and a transversal for either is just an element of minimum positive order (relative to the canonical valuation of $k[[\beta]]$). Since $\mu(A_i) = \mu(E_i)$, a common transversal for both A_i and E_i can be chosen out of A_i . But this immediately implies that $A_{i+1} \subset E_{i+1}$. Thus, A and E satisfy condition (a) in the definition of compatibility. Since condition (b) is trivial, we see that A and E are compatible. Thus, Proposition 4 implies that the Arf closures of A and E in \overline{A} are the same.

References

- M. Auslander and D. A. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math. 81 (1959), 749-765.
- F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics 181 (Springer-Verlag, 1971).
- **3.** K. Fischer, The module decomposition $I(\overline{A}/A)$, Trans. Amer. Math. Soc. 186 (1973), 113–128.
- 4. J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.

- K. Mount and O. E. Villamayor, *Taylor series and higher derivations*, Departmento de Mathematicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Serie No. 18, Buenos Aires, 1969.
- 6. M. Nagata, Local rings (Interscience, 1969).
- 7. Y. Nakai, Higher order derivations I, Osaka J. Math. 7 (1970), 1-27.
- 8. D. Sanders, Epimorphisms and subalgebras of finitely generated algebras, Thesis, Michigan State University.
- 9. O. Zariski and P. Samuel, Commutative algebra, Vol. II. (D. Van Nostrand, Princeton, 1960).

Michigan State University, East Lansing, Michigan