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BLOW UP SEQUENCES AND THE MODULE OF 
nth ORDER DIFFERENTIALS 

WILLIAM C. BROWN 

I n t r o d u c t i o n . Let C denote an irreducible, algebraic curve defined over an 
algebraically closed field k. Let ? be a singular point of C. We shall employ 
the following notation throughout the rest of this paper: R will denote the local 
ring a t P, K the quotient field of R, R the integral closure of R in K, A the 
completion of R with respect to its radical topology, and Â the integral closure 
of A in its total quotient ring. 

We wish to s tudy the relationships between the ^4-module Dn(Â/A) of nth 
order differentials over A and the multiplicities of the blow up sequence 
B: R = R0 < R, < . . . < Roi R. 

The module Dn(Â/A) of nth order differentials is defined as follows: Let 
cr : Â 0 A Â —> Â be the multiplication mapping given by o-(X) a% ® bt)

 = 

]T dibi. Let I(Â/A) denote the kernel of a. Then 

Dn{A/A) - I(A/A)/In+l(Â/A). 

The module Dn(A/A) is the universal object for n th order ^.-derivations and 
satisfies many functorial properties. We refer the reader to [5] or [7] for all 
per t inent properties of Dn(Â/A) used in this paper. 

The blow up sequence B: R = R0 < Ri < . . . < Ris defined as in [4, p. 669]. 
E a c h i ? i+i is obtained from Rt by blowing up the Jacobson radical of Rt. By the 
multiplicity IJL(RÏ) of Rif we shall mean the multiplicity of the Jacobson radical 
of Rf. By the multiplicities of B, we shall mean the sequence }/x(i^)}. We 
similarly define the blow up sequence B: A = A0 < A\ < . . . < Â and 
multiplicities ix(At). I t is easy to show (see Proposition 1) t ha t for each i, 
At = Rt ®RA, and M ( ^ Z ) = ^(At). Thus , the multiplicities of B are given 
by B. 

We note tha t since R is a finitely generated i^-module, the sequence of 
.R-modules in B stabilizes a t some point, i.e. Rn = Rn+i — . . . for some n y> 1. 
Thus , there are only a finite number of different ii(Ri) for B. The problem is 
to characterize the n(Ri) in terms of some suitably defined invariants of 
Dn(Â/A) for » » 1. 

Since Â = R ®R A} we see tha t À is a finitely generated A -module. I t then 
follows from [3, Lemma 1.1] tha t I(Â/A) is a finitely generated left Z-module . 
Since R is a finitely generated i^-module, R is a semilocal ring. Let { w i , . . . ,mt] 
be the maximal ideals of R. Set VL = Rmi (R localized a t w z ) for i — 1, . . . , t. 
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Then each Vi is a discrete rank one valuat ion ring dominat ing R, and 
Â = V\ 0 . . . © Vt. Here Vt of course denotes the completion of Vf. Thus , 
Â is always a finite direct sum of principal ideal domains. 

Now suppose C is unibranched a t P, i.e. R is a local ring. Then / = 1 in the 
above discussion, and Â = V\ is a principal ideal domain. In this case, I{Â/A ) 
(being a finitely generated module over Â) has a set of invar iant factors 
<5i, Ô2, . . . , 5r associated with it. These <5Z- are elements of Â given by <5i = Ai, 
<52 = A2Ai_1, etc. Here A* is the greatest common divisor of all i X i subdeter-
minates of the relations matr ix of I (A/A). These <5Z- are unique up to units in 
A. We next note t h a t since k is algebraically closed, Â = k[[ff]] for some 
element /3 analytically independent over k. Thus , each ôt can be written in the 
following form ô* = (3e{, for some integer et. 

Now consider the blow up sequence B. We can write B as B: A = A{) < 
Ai < • • • < AN < AN+i = AN+2 = . . . = Â. Since Ï is a local ring, each A t 

is local. I t was shown in [3, Lemmas 3.4 and 4.2] f t ha t the decomposition of the 
module I(Â/A) over the P . I .D . Â uniquely determines the multiplicities 
fx(A f) of B. For, if the decomposition of I{Â/A) is known, then we can compute 
the nontrivial invariant factors/3e i , . . . , /36r of I(Â/A). T h e n r = \i(A) — 1, and it 
follows from [3, Lemma 3.4] t ha t ]8ei~ / i (A) , . . . , (3er-^A) is a set of invar iant factors 
of I(A/A\). Thus , the decomposition of I (A/A) determines the decomposition 
of I(A/A,). From [3, Lemma 4.2], M ( ^ i ) = dmk{I{Â/A,)/$I(Â/A,)\. So, 
I (A/A) determines ii(Ai). If we now eliminate the l ' s appearing in 
pei-^A)^ per-^A)^ w e obtain the nontrivial invar iant factors of I(Â/A\). 

There are exactly n(Ai) — 1 of them, and we may repeat the above process to 
compute JU(^42). Continuing in this fashion, we see tha t the decomposition of 
I(Â/A) determines the multiplicities ii(At) of B. Conversely, if the multipli
cities ii(Aj) of B are known, then it follows from [3, Theorem 3.5] tha t 

(1) /^(^O^ . . f$n(A0) ^ n(AQ) + fi(Ai) pn(A0) + fl(A1) ^ 

ii(A0) - n(Ai) M(-4I ) - M(^42) 

n(AN) - 1 

is a set of invariant factors of I(Â/A). Thus , the decomposition of the module 
I (A/A) uniquely determines the multiplicities of the blow up sequence B, and, 
therefore, the multiplicities of B as well. I t was also shown in [3, Theorem 
1.1] t ha t for n sufficiently large, Dn(Â/A) = I(Â/A). Thus , if C is unibranched 
a t P , the decomposition of the module Dn(Â/A) (n ^>> 1) uniquely determines 
the multiplicities /x(^i) of the blow up sequence B a t P. 

|The proofs of the main results in [3] are not quite complete if k has characteristic p ^ 0. 
However, slight modifications of the techniques in [3] will give complete proofs in the charac
teristic p case. 
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The purpose of this paper is to s tudy how much of this theory remains intact 
if we remove the assumption tha t C is unibranched a t P. Surprisingly, most of 
the theory survives. We shall show tha t for n sufficiently large, Dn(Â/A) = 
0 L i I(Vi/A), and each I{VJA) is nilpotent. We shall examine two cases a t 
this point. Ei ther R is unramified over R or R is ramified over R. 

We shall show tha t R is unramified over R if and only if Dn(Â/A) = 0 for n 
sufficiently large. In this case, the multiplicity sequence for B is particularly 
simple. We have IJL(RÎ) = n(R) = t for all i. In other words, the number of 
branches of C centered a t P gives the multiplicities of the blow up sequence B 
when C is unramified a t P. 

If R is ramified over R, then Dn(Â/A) ^ 0 for any n. In this case, B is con
siderably more complicated. For example, the unibranched case considered in 
[3] is a subcase of this case. 

In general, we shall be able to a t tach a set of invariant factors to Dn(Â/A) 
which in either case (ramified or unramified) uniquely determine the multi
plicities in the blow up sequence B. The general theory developed in this paper 
will include and actually come from the unibranch theory discussed in [3]. 

1. S o m e pre l iminary resu l t s . We use the same notat ion as in the intro
duction. Thus , R denotes the local ring at a singular point P of some irreducible 
algebraic curve C defined over an algebraically closed field k. For the t ime 
being, we make no assumptions about the nature of the singularity a t P. We 
shall let m denote the maximal ideal of R. All topological s ta tements about R 
and related rings will be made relative to the m-adic topology on 7?. 

Now let R denote the integral closure of R in its quotient field K, and let 
B: R < Rl < R2 < . . . < R be the blow up sequence of R. Each Ri+1 is ob
tained from Rt by blowing up the Jacobson radical Jt of Rt. Since k is infinite, 
any open ideal in Rt has a transversal element. In particular, Jt has a t rans
versal element say x(i). Then Ri+i = Ri[x]./x(i), . . . , xr/x(i)} where 
{xi, . . . , xT] are elements in Rt which generate Jt. Thus , each R{ in B is a 
semilocal ring which is finitely generated as an /^-module. We note t ha t since 
R is a Noetherian 7^-module, there exists an integer n such tha t 
Rn = Rn+\ = . . . . Now Rn = R. For, Rn+i is the blow up of Rn along its 
Jacobson radical Jn. Thus , Rn+i = Rn implies t ha t Jn is principal. But this 
immediately implies tha t every localization of Rn (at maximal ideals) is a 
regular local ring. Thus , Rn is normal and hence Rn = R. Therefore, B always 
has the form 

(2) B: R = Ro < Ri < . . . < Rn = R = R = R • • • 

for some n ^> 1. 

If A is the completion of R and Â the integral closure of A in its total 
quotient ring, then similar remarks can be made about the blow up sequence 
B: A < Ax < . . . < Â. For a detailed discussion of blow up sequences, we 
refer the reader to [4]. 
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In the introduction, we mentioned tha t the multiplicities of B and B are 
the same. This is pa r t of the following proposition: 

PROPOSITION 1. Let B and B denote the blow up sequences of R and A respec

tively. Let J\ denote the Jacobson radical of Rt. Then 
(a) JtA i is the Jacobson radical of At. 
(b) At = Rt®RA i = 0, 1, . . . 

(c) n(At) = M ( * , ) i = 0, 1 , . . . 

Proof. This proposition follows from the proof of Proposition 2.8 in [4]. We 
proceed via induction on i. If i = 0, then clearly (a), (b) and (c) hold for 
Ro = R and AQ = A, the completion of R. Thus , assume the proposition is 
proven for i and consider Ai+i. Since At = Rt ®R A, and A is flat over R, we 
have At is flat over Rt. Denoting blow-ups with superscripts and using [4, 
Corollary 1.2], we have 

(3) Ai+1 = At
J<A< = Ri+1®RlAt. 

But, Ri+1 ®RiAi = Ri+1 ®Rl(Rt ®R A) = Ri+l ®RA. Thus , we have 
established (b) in the i + 1 case. As for (a) , we first note t ha t A i + i is integral 
over A since Ai+i C Â. Thus , every maximal ideal of Ai+\ contracts to mA 
in A and consequently to m in R. Since Ri+i is integral over R, we see every 
maximal ideal in A i + 1 contracts to a maximal idea in Ri+i. Therefore, if 
J(Ai+i) denotes the Jacobson radical of At+i, we have Ji+iAi+1 C J(Ai+i). 
But 

(4) Ai+1/Ji+1Ai+1 9* (A/tnA) ®R/m(Ri+i/Ji+i) = k ® . . . ® k. 

Thus , Ji+iAi+i = J(Ai+i) and the proof of (a) is complete. Since each A t is 
jus t the completion of Rf with respect to its radical topology, (c) follows 
directly from [9, Lemma 1, p . 285]. 

Thus , to compute the multiplicities in the blow-up sequence B, we may use 
the sequence B. 

We now set up the notat ion for the main theorem of this section. As in the 
introduction, let {mi, . . . , mt) be the maximal ideals of R. Set Vt — Rmi, 
i = 1, . . . , t. Then each Vt is a discrete rank one valuat ion ring which domi
nates R. We shall let Vf denote the completion of Vt with respect to its maxi
mal ideal mtVi. Since k is algebraically closed, we have the integral closure A 
of A in its total quot ient ring is jus t the completion of R [9, Theorem 33, 
p. 320]. Thus , Â = Vi 0 • • • 0 Vt. Let TTI denote the na tura l projection of 
A onto Vt. Set pt = ker -wi C\ A for i = 1, . . . , /. Then pi, . . . , pt are exactly 
the minimal primes of A, and we have (0) = p\C\ - - - C\ pt- Thus , the image 
of A in Vi is jus t A/pt. When we write Vt ®A Vu I(Vt/A) etc., we shall mean 
Vi®AIVl Vi,I(Vi/A/Pi), etc. 

As in the introduction, I{VJA) will denote the kernel of the multiplication 
mapping af. Vt ®A Vt —> Vt. Since Â is a finitely generated yl-module, each 
Vi is a finitely generated ^ 4 / £ r m o d u l e . Consequently, I(Vi/A) is a finitely 
generated left F r m o d u l e as well as a finitely generated left F r a l g e b r a . 
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We can now prove the main result of this section. 

THEOREM 1. Let A be the complete local ring at a singular point P of an 
irreducible algebraic curve C defined over an algebraically closed field k. Let Â = 
V\ 0 . . . 0 Vt be the integral closure of A where { V\, . . . , Vt) are the discrete 
rank one valuation rings in K which dominate the local ring R at P. Then for all n 
sufficiently large, Dn(Â/A) = I{VX/A) 0 . . . ®I(Vt/A) and each I{Vt/A) 
is nilpotent. 

Proof. We first note that for any natural number n, Dn(A/A) = 
Dn(V1/A) © . . . 0 Dn(Vt/A). For, let a: A ®A A -> A be the multiplication 
map. Since the Vf are pair wise orthogonal in A, we have A ®A A = 
0!,y=i(t^ <8>A Vj). Thus, I (A/A), which is the kernel of a, is given by 

(5) I(A/A) = liVr/A) © . . . ®I{Vt/A) © { 0 W ( P , ® A Vj)} 

Thus, 

Dn(A/A) = I(A/A)/In+HÂ/A) = I(V1/A)/P+1(Vl/A) 

© . . . ®I(Vt/A)/P^{Vt/A) =D"{Vl/A) © . . . ®Dn(Vt/A). 

Thus, to prove the theorem, it suffices to show that each I(Vi/A) is nil-
potent. 

Let R denote the integral closure of R in K. Since R is a Dedekind domain 
with finitely many maximal ideals, R is a principal ideal domain. Thus, the 
Jacobson radical J = m\ . . . mt of R is principal. Let /3 Ç R such that 
fiR — J. Then (3 generates the maximal ideal ideal mtVi in each valuation ring 
V^ Hence, 0 is a common uniformizing parameter for the Vt i = 1, . . . , /. 
Since k is algebraically closed, we conclude that Vt ~ k[[/3]] for each 
i = 1 , . . . ,/. 

Now let c denote the conductor of R in R. Since P is a singular point of C, 
R T^ R. Thus, c is a proper ideal in R. Since R is Noetherian with m as its only 
proper prime, we see that -y/c~= m. Thus, some power, say no, of m falls in c, 
i.e., mn° C c. Now consider mR. Since every mt is an associated prime of mR, 
we have / = \/mR. Thus, some power of /3 falls inside of mR, and, conse-
sequently, some possibly larger power falls in c. Suppose fin G c. 

We note that 0W+Z £ c C R C A for / = 0, 1, . . . . Let pu . . . , pt be the 
minimal primes of (0) in A. Since (3n is net a zero-divisor in R, fin is not a zero-
divisor in A. Thus, (3n d ULip*. Therefore, iri(fin) = {iri(fi))n is a nonzero 
element of A/pt. For simplicity of notation, we shall identify ff with 7r*(/3). 
Then since Vt = fe[[/3]], we see Vt is a finitely generated module over A/pt 

with generators 1, 0, • • • , /372-1. 
Let <5*: F* —>/(t^/M) be the canonical Taylor series given by ôt(x) = 

1 ®4 x — x (8>4 1. It now follows from [5, Lemma 1.1] that I(Vi/A) is a left 
FValgebra generated by {8t(0), <5*(02), . . . , Ô^/S"-1)}. Since /3n £ c C A, we 
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have 5,08") = 0. But, then 

(6) 0 = 5,03") = ( \ )tr%(fi) + ... + [8,(0)]". 

Solving (6) for [ô,(/3)]M, we get 

(7) [èt(i3)]n = -/?{( * )r%03) + ... + („" J i s ^ r 1 } . 

Now any element of c annihilates I(Vf/A). Consequently, raising Equat ion 
(7) to the nth power gives [ôi(P)]n2 = 0. Thus , 5i(P) is nilpotent. If we apply 
the same argument to /32, /53 • • • /3W_1, we see t ha t each generator ôi(fiJ) j = 
1, . . . , n — 1 of / ( F i / ^ 4 ) is nilpotent. Thus , I(Vt/A) is nilpotent and the 
proof of Theorem 1 is complete. 

We conclude this section with a proposition which will be useful in both the 
ramified and unramified case. 

For each j = 1, . . . , t, we can consider the blow up sequence Bj of A/pj in 
Vj. Thus , 

(8) Ê,: A/pj = (A/pj), < (A/Pj)! < ...< Vj. 

One can easily check tha t V:j is the integral closure of A/pj in its quot ient field. 
Since Vj is a local ring, each term in the chain Bj is a local ring. We note tha t 
if A/pj = Vj, then Bj is just the trivial sequence Bj.: Vj = Vj = . . . . 

Now let B: R < Ri < R2 < . . . < R denote the blow up sequence of R. 
We wish to relate the multiplicities occurring in B with the multiplicities of 
the Bj. Since the multiplicities of B are the same as the multiplicities of B: 
A < Ai < A2 < . . . < Â, the following proposition gives us the relationship. 

PROPOSITION 2. Let A be the completion of the local ring of a singular point P 
of an irreducible algebraic curve C defined over an algebraically closed field, k. Let 
A = Vi © . . . © Vt be the integral closure of A in its total quotient ring, and let 
{pi> . . . , pt\ oe the minimal primes of A. Let B: A < Ai < . . . < A and 
BJ: A/pj < (A/pj)i < . . . < Vj, j = 1, . . . , t be the blow up sequences for A 
and A/pj respectively. Then ix(At) = Yl^i^iiA/pj) t) for each i = 0, 1, . . . . 

Proof. Consider a fixed ring At in the blow up sequence B. Then Ai C Â, 
and we can consider the kernel of the projection map TTJ of Â onto Vj when 
restricted to A t. Set pj{l) = ker TTJ r\ At. Then a simple a rgument shows tha t 
pi(i\ • • • ,pt{i) are exactly the minimal primes of A t. Since At is reduced, 
(Ai)Pjii) (the localization of A t a t pj{i)) is a reduced, Noetherian local ring of 
dimension zero. Thus , (Ai)Pjii) is a field. Consequently, the length of the 
Artinian local ring (Ai)Pjii) is one. We also note t ha t if Jt is the Jacobson 
radical of A u then for each j = 1, . . . , /, Ji(Ai/pj{i)) is the Jacobson radical 
of A t/pj{i). I t now follows from the projection formula [6, (23.5)] t ha t IL{A/) = 
X ^ = I M ( ^ 4 Z / ^ / ° ) . Thus , the proposition will be proven if we can show t h a t 

(9) At/pS» ç* (A/pj)i j= 1, . . . , / . 
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If i = 0, then (9) certainly holds. Now consider A\ and {A/pf)\. If x is a 
regular element of A, then x d {Ji=ipi- In particular x (? pj. Therefore, 7ry(x) 
is a regular element of A/pj. Thus , TTJ has a natural extension to a map djm. 
Am -> (A/pjYiW. Now 4 m = 4 i , (A/pi)**™ = {A/pj)i and 0, is just TT,-
restricted to ^4i. Since 7 -̂: 4̂ -^ A/pj is surjective, we have Of. Ai —» (A/pf)i 
is also surjective. Finally, since 0̂  is just TJ restricted to Ai, the kernel of 6j 
is exactly p ^ \ Thus , A^p^ ^ (A/p^x. 

We now proceed by induction on i. Thus , we may assume tha t TTJ when 
restricted to At-i maps 4̂ <_i onto {A/pf)i-\ and has kernel pj{i~l). If x is a 
regular element in At-\, then, x (? \J \=ip i{i~l). In particular, Wj(x) is a regular 
element in {A/pf)i-\. Thus , as in the case i = 1, Wj has a unique extension 

Again we have 

AÎ1V = At, (A/pjY^ = (A/Pj)t 

and 6j is just TTJ restricted to At. Thus , Bj is surjective and has kernel p^l). 
Hence, (9) is proven and the proof of Proposition 2 is complete. 

2. T h e unramif ied case . In this section, we shall assume tha t C has no 
ramification a t P. In other words, we shall assume tha t R is unramified over R. 
Recall this means tha t m generates the maximal ideal in each Vu i = 1, . . . , t, 
and tha t VJmVi is a seprable field extension of R/m for every i = 1, . . . , t. 
Since k = R/m = Vi/mVu the last par t of the definition is always satisfied. 
T h e following theorem completely characterizes when R is unramified over R. 

T H E O R E M 2. Let R be the local ring at a singular point P of an irreducible 
algebraic curve C defined over an algebraically closed field k. Let R be the integral 
closure of R, A the completion of R and Â the integral closure of A. Then the fol
lowing statements are equivalent: 

(a) R is unramified over R. 
(b) R is a separable R-algebra, i.e. R is projective as a left R <g>R R-module. 
(c) The Jacob son radical of R is generated by an element of R. 
(d) For all n sufficiently large, Dn(Â/A) = 0. 

Proof: The fact t ha t (a) and (b) are equivalent is well known. A proof can 
be found in [1, Theorem 2.5]. We show (c) and (b) are equivalent. First, assume 
R is separable over R. Then by [2, Theorem 7.1], R/mR must be separable over 
R/m = k. Thus , mR must be the Jacobson radical of R. Since k is infinite, m 
has a transversal element, say x. Then letting Rm denote the blow up of R by 
m, we have mR = mRmR = xRmR = xR. Thus , the Jacobson radical of R is 
generated by an element x Ç m. Conversely, assume mi . . . mt (the Jacobson 
radical of R) is generated by some element x G R. Then necessarily x Ç m, and 
we have xVi = xRmi = (mi . . . mt)Rmi = miRmi = mtVi. Thus , mVi = 
mtVi. So, R is unramified over R and therefore separable over R. 
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Finally, we argue t h a t (d) is equivalent to the rest. Suppose first t ha t R is 
unramified over R. Then by (c), the Jacobson radical of R is generated by some 
element of R. Thus , in the proof of Theorem 1, we can take fi to lie in 7?. Bu t 
then TTi(@) is a nonzero element in A/pi. This implies t ha t A/pt = 
Vi, i = 1, . . . , t. Therefore, I(Vt/A) = 0 for a lH = 1, . . . , t. So, by Theorem 
1, Dn(Â/A) = 0 for all n sufficiently large. 

Conversely, assume (d) holds. Then by Theorem 1 I{VJA) = 0, i = 
1, . . . , t. Thus , ai : V'i ®A/Pi Vi —> Vi is an isomorphism. I t now follows from 
[8; Theorem 1.1] t h a t the inclusion map A/pt —» Vt is an epimorphism in the 
category or rings. Since Vi is a finitely generated A/prmodule, [8, Proposition 
1.6] implies t ha t A/pt = Vt. Thus , Proposition 2 implies t ha t fi(R) = 
M(4) = /. 

Now let x be a transversal for m. By the remarks in [4, p. 657], we have 
t = n(R) = \B(R/xR). Here \R(M) denotes the length of the /^-module M. 
But, \R(R/mi . . . mt) = Xfi(^^) = t. Since xR C m\...mu we have 
\nim\ . . . mt/xR) = 0. So xR = Mi . . . mt. Thus , the Jacobson radical of R 
is generated by x. Therefore, (d) implies (c), and the proof of Theorem 2 is 
complete. 

In the introduction of this paper, we claimed t ha t if R is unramified over R 
then the multiplicities of the blow-up sequence B are part icularly simple. I t is 
clear from Theorem 2 and Proposition 2 t h a t if R is unramified over R, then 
the multiplicities of B are given by the cons tant sequence {/}. 

3. T h e genera l case . As usual, we shall assume R is the local ring a t a 
singular point P of C. We shall let A denote the completion of 7^, and Â the 
integral closure of A in its total quot ient ring. Throughou t this section, we 
shall make no assumptions about the na ture of the singularity a t P. Thus , R 
could be ramified or unramified over R. 

By Theorem 1, Dn(A/A) = I{VX/A) ® . . . © I(Vt/A) for n » 1. Recall 
t h a t I(Vi/A) means I{Vt/A/pi) where {pi, . . . , pt) are the minimal primes 
of A. 

Now for any i = 1, . . . , t, I(Vl/A) is a finitely generated module over the 
principal ideal domain Vt. Thus , the decomposition of the LYmodule I(Vt/A) 
is uniquely determined by a set of invariant factors {<5i\ . . . , <5r(i)

z} which are 
unique up to units in Vf. By the invariant factors of Dn(Â/A), we shall mean 
the set ULi{<5i*, . . . , <5r(i)

2'}. Note , t ha t if I(Vt/A) = 0 for some i, then we can 
and do take for {ôi* . . .8^$*}, the set {1^-}. Here l£t- denotes the ident i ty 
of Vt. 

We can now s ta te the general result. 

T H E O R E M 3. Let A be the completion of the local ring R at a singular point P 
of an irreducible algebraic curve C defined over an algebraically closed field k. Let 
A be the integral closure of A in its total quotient ring. Then the decomposition of 
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the module Dn (A /A ) for n ^> 1 uniquely determines the multiplicities of the blow 
up sequence B of R. 

Proof. Theorem 3 follows easily from Proposition 2 and [3, Theorem 3.5]. 
Let B : R < R\ < . . . < R be the blow up sequence of R. By Proposition 1, 
v(Ri) = n(Ai) where B: A < A\ < . . . < Â is the blow up sequence of A. 
Thus , by Proposition 2 the multiplicities of B are uniquely determined by the 
multiplicities of Bh j = 1, . . . , /. 

Now for n sufficiently large, Theorem 1 implies tha t Dn(Â/A) — 
I{VX/A) © . . . ®I(Vt/A). If Dn(A/A) = 0, then the invariant factors of 
Dn(Â/A) are just F = {lVl, . . . , lVt\. Then as shown in Theorem 2, for each 
i = 1, . . . , /, A/pi = Vt. Consequently, 5* has the form B*: Vt = Vt = . . . . 
So, the multiplicities of Bt are identically one, and Proposition 2 implies tha t 
the multiplicities of B are identically t. Thus , if the invariant factors F of 
Dn(Â/A) for n ^> 1 are trivial, i.e., F = {lVl, . . . , lVt], then the multipli
cities of B are identically /. 

Let us suppose Dn(Â/A) ^ 0. Then after suitably relabeling, we may sup
pose liVJA) 7± 0 for i = 1, . . . , h, and I{VJA) = 0 for i > h. Here, of 
course, 1 ^ h S t. Thus , the invariant factors of Dn(Â/A) can be wri t ten a 

F = {<5i, . . . , <5r(i), . . . , 5i, . . . 8r(h), lvh+iy • • • » Ivt}-

Now the multiplicities of the local rings in Bu i = 1, . . . , h, are by [3, Lemmas 
3.4 and 4.2] uniquely determined by the invariants {<5i\ . . . , 5r(*)1'}. The exact 
relationship was discussed in the introduction of this paper. The multiplicities 
of the local rings in Bu i > h, are identically one. Thus , the multiplicities of 
the Bu i = 1, . . . , /, are uniquely determined by the decomposition of 
Dn(Â/A). Consequently, by Proposition 2, the module Dn(Â/A) uniquely 
determines the multiplicities of the blow up sequence B. 

We note t h a t Theorem 3 gives the correct result if C is unibranched at P. 
In this case, t = 1, Dn{A/A) = I{Vi/A) for ny> 1, and we re turn to the 
sett ing in [3]. 

The reader may be wondering why we don ' t consider I(R/R) and its 
invariants when studying the multiplicities of the blow up sequence B of R. 
Note t ha t R is a principal ideal domain, and thus, I(R/R) has a natural set of 
invariant factors associated with it. 

One reason wre don ' t s tudy I(R/R) is tha t when we pass to the completion, 
the branches of C a t P get separated, and the computat ions for I(Vi/A), 
i = 1, . . . , / are a bit easier to make. For example, if R is unramified over R, 
then I(Vt/A) = 0 for every i = 1, . . . , / . On the other hand, since R je R, [8, 
Theorem 1.1 and Proposition 1.6] impies t ha t I(R/R) is never zero for any 
singular point P. Thus , I(R/R) always has associated with it a set of non-
trivial invariant factors. A second reason we avoid I(R/R) is t ha t its invariants 
don ' t seem to give us the multiplicities of the blow up sequence B in any natural 
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way as in Theorem 3. We conclude this section with an example which illus
t ra tes this last point. 

Example. Consider the curve C: Y2 = X2 + X 3 defined over the complex 
numbers C. Let R denote the local ring a t the origin (0, 0) . If we let x and y 
denote the images of X and Y in the coordinate ring of C, then we can write 
R = C[x, y\(x,y) where y2 = x2(x + 1). If we set z = y/x, then we can easily 
check tha t R[z] is the integral closure R of R in C(x,y). R = R[z] has 
exactly two maximal ideals Mi — (z — 1) and M 2 = (z + 1) which lie over 
m = (x,y) in R. Since M\M.i = (z2 — 1) = (x) = mR, we see R is 
unramified over R. Thus , the blow up sequence B for R is trivial, i.e., 
B: R < R = R = . . . , and the multiplicities of B are identically 2. 

Let us now investigate I(R/R). Since R is a separable /^-algebra, I (R/R) 
is generated by an idempotent . By pulling back the separabili ty idempotent 
from (R/mR) ®c (R/mR) to R ® R R, the reader can easily verify that the 
idempotent e which generates I(R/R) is exactly £ = ( — z/2)(l®R z — z ®R 1). 
Since I (R/R) is a cyclic ^ -modu le generated by 1 . ®R z — z ®R 1, we see 
I(R/R) = Re. One can easily check tha t xR is the annihilator of I (R/R). Thus , 
the set of invariant factors for I (R/R) is just {x}. 

How we are to decide tha t the multiplicities of B are {2, 2, . . .} by looking 
a t the set {x} is unclear. However, since the invariants of Dn(A/A) (for 
ny> 1) are just { 1 ^ , ly2}> w e would know immediately from the discussion 
in Theorem 3 t ha t B is trivial with constant multiplicity 2. 

4. Dn(Â/A) a n d i s o m o r p h i s m c lasses of A. Let C as usual denote an 
irreducible algebraic curve defined over an algebraically closed ground field k. 
Let A denote the completion of the local ring a t a singular point P of C. Then 
as we have seen, Â always has the form k[[fi]] © . . . ©&LM]- T h e number 
of summands present here is equal to the number of b rand ies of C centered at 
P. Now suppose t ha t 2iï is another irreducible algebraic curve defined over k, 
and let Q be a singular point of £iï. Let E denote the completion of the local 
ring a t Q. Then if the number of branches of C centred a t P is the same as the 
number of branches of 2iï centered a t Q, then A = Ë. In this case, it makes 
sense to inquire when Dn(Â/A) ^ Dn(Ë/E) for n » 1. 

Let T, denote the collection of complete local rings A such that A is the 
completion of the local ring a t a singular point P of some irreducible algebraic 
curve C (defined over k) which has exactly / branches a t P. Thus , if A and E 
are members of Tt, then their integral closures Â and Ë are isomorphic to 
k[[&]] © . . . © k[[]3]] (t summands) . We wish to briefly discuss when 
Dn(A/A) ^ Dn(E/E) for A., E £ Tt. 

I t would be nice if Dn(Â/A) ^ Dn(E/E) as k[[p]] © . . . © k[[(3]] - mod
ules implies t ha t A and E are isomorphic. Unfortunately, it is well known tha t 
this is false even in the unibranch case / = 1. For example, if A Ç Ti, and A' 
denotes the Arf closure of A in Â, then A' G I \ , and Dn(A/A) = Dn(A/A') 
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for all n. Since every A £ Ti is not necessarily an Arf ring, we cannot hope 
t ha t Dn(À/A) determines A up to isomorphism. The reader is urged to con
sult [4] for the pert inent facts about Arf rings used in this section. 

If A and E £ Ti satisfy some order relationship such as A C E or E C A, 
then we do have a positive result concerning A' and E', the Arf closures of A 
and E. Namely: 

PROPOSITION 3. Suppose A, E Ç I \ swcfc J&aJ .4 C E. Then Dn(Â/A) ^ 
Dn(Ë/E) as £[[#]] - modules if and only if the Arf closures Af and E' of A and 
E in k[[fi]] are equal. 

Proof. This proposition is the main content of [3, Theorem 4.7]. In the uni-
branch case, Dn{A/A) = I(k[[/3]]/A) for n » 1. Thus , by Theorem 3, if 
Dn(A/A) is isomorphic to Dn(É/E), then the multiplicities of the branch 
sequences for A and E are identical. Since the multiplicities of the branch 
sequences for A and A' are the same, and A' C E' C Â, it follows from [4, 
Corollary 3.10] tha t A' = E''. 

Conversely, suppose A' — E'. Since A contains the field k, the Arf closure 
A' of A is the same as the strict closure of A in Â. Thus , for all n, Dn(Â/A) — 
Dn(Â/A') = Dn(Â/Ef) = Dn(Â/E). 

We cannot hope for such a nice result in the general situation / ^ 1. This is 
because the module Dn(Â/A) cannot distinguish between unramified exten
sions. For suppose, A Ç Tt (t > 1) is unramified. Then by Theorem 2, Â is 
a separable algebra over A. If £ is any ring such tha t A C E C Â, then Â is 
also separable over E. Thus , Dn{A/A) = Dn(A/E) = 0 for n » 1. Since A' 
need not be equal to Ef, we see tha t Proposition 3 is false if t > 1. 

However, if A, E Ç Tt are special enough, we can state a generalization of 
Proposition 3. Let A t as usual denote the it\\ blow up of A. Let us say tha t 
the local rings A Ç E in r * are compatible if 

(a) , 4 , C E , for all i = 0, 1, . . . , and 
(b) For all maximal ideals M C A and for all i, the number of minimal 

primes in A t which are contained in M C\ A t is exactly the same as the 
number of minimal primes of Et contained in M C\ Et. 

From the remarks made above, it is clear tha t in order to s tate any analog 
of Proposition 3, we must avoid the unramified situation. Since Dn(Â/A) ~ 
I(Vi/A) © . . . © I(Vt/A) (n y> 1), due care must also be made to match up 
proper components of Dn(Â/A) and Dn(E/E). Thus , a correct analog of Propo
sition 3 is as follows: 

PROPOSITION 4. Let A £ Tt have minimal primes {pu . . . , pt) and assume 
AI pi $i y if or all i = 1, . . . , /. Let E G Tt such that A C E, and A and E are 
compatible. Assume that we have labeled the minimal primes \qu . . . , qt) of E 
so that AI pi C E/qt C Vt i = 1, . . . , t. If there exists a k[[fi]] © . . . © k[[0]]-
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isomorphism T: Dn{A/A) - » Dn(E/E) (for n » 1) such that T(I(VJA)) = 

I(Vi/E) for ail i = 1, . . . , /, then the Arf closures of A and E in A coincide. 

Proof. Since A/p^V,, J ( ? < / i 4 ) ?* 0. Therefore, I(VJE) ^ 0, and 

E/g* 5* F*. Since I(V' J A) ^ I(Vt/E), the multiplicity sequences of 4 / ^ * and 

E/g* are identical. Thus , using the notat ion of Proposition 2, we have 

uKA/p^j} = /x{(E/g*);} for all i and j . 

Now let M be a maximal ideal of ^4. We wish to compute the multiplicity of 
the local ring (Ei)MC]El. We proceed as in the proof of Proposition 2. Let 
{gi(1), . . . , qt

(l)} denote the minimal primes of E i . We can assume tha t q\{l), . . . , 

çz(1) C M r\ Eu and ql+i(1\ . . . , qt<» (£ M C\ Ei. Here 1 g l S t. Then the 
minimal primes in ( E i ) M n i ? 1 are jus t }çi(1) ( E i ) M n ^i» • • • » #z(1) ( £ I ) M n #ii- A 
simple calculation shows t ha t each localization {(E^M n Ei}qi(1) (Ei)M n EU 

i = 1, . . . , / , is a field, and tha t 

( £ I ) M n tfiA?*(1)(£I)Mn *i = Ei/g< (1 ) ^ (E/g<)i. 

T h u s by the projection formula, /x{ {EX)M n ^ } = ]T-= 1 M{ (E/qOi. 

Since 4̂ and £ are compatible, ^4i C E\. Thus , g/1 } contracts to p^l) in Ax. 
Since the number of minimal primes of E\ contained in M C\ E\ is exactly 
the same as the number of minimal primes of Ai in M C\ A\y we see t h a t 
{pi{l\ . . . , pi(1)} are exactly the minimal primes of Ai contained in M P\ A\. 
Thus , a similar computa t ion as in the preceding paragraph gives jit{ (Ai)M n AA 
= E U {(A/PM. Therefore, n{(Ax) M n AI) — M{ ( E I ) M n tfil- Continuing 
in this fashion, wTe can show t h a t for all i = 0, 1, . . . , v{(A {)M n Al} 
= ju{ (Ei)M n # ,} . Since M was arbi t rary , we conclude t h a t A and E have the 
same multiplicity sequence along each maximal ideal of Â. I t now follows from 
[4, Corollary 3.10] t h a t the Arf closures of A and E in Â coincide. 

Finally, we note t ha t Proposition 4 is a t rue generalization of Proposition 3. 
For suppose A,E £ I \ with A C E, and Dn{A/A) ^ Dn(E/E). Then n(A <) = 
n(Ei) for every i = 0, 1, . . . . Each ring A t or E* is local, and a transversal for 
either is jus t an element of minimum positive order (relative to the canonical 
valuat ion of fe[[/3]]). Since ^(Af) = M ( E Z ) , a common transversal for both A t 

and Et can be chosen out of A t. But this immediately implies t h a t A i+i C 
Ei+i. Thus , A and E satisfy condition (a) in the definition of compatibi l i ty. 
Since condition (b) is trivial, we see t h a t A and E are compatible. Thus , 
Proposition 4 implies t h a t the Arf closures of A and £ in I are the same. 
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