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THE OSTROWSKI INTEGRAL INEQUALITY FOR MAPPINGS OF
BOUNDED VARIATION

S.S. DRAGOMIR

A generalisation of the Ostrowski integral inequality for mappings of bounded varia-
tion and applications for general quadrature formulae are given.

1. INTRODUCTION

In 1938, Ostrowski proved the following integral inequality [7, p.468]

THEOREM 1 . Let f : [a, b] —> R be continuous on [a, b] and differentiable on (a, b)

with derivative f : (a, 6) -» R is bounded on (a, b), that is, Wf'W^, := sup | / ' ( i ) | < oo.

Then the inequality

dt

21

(b-a)2 (b-a)\\f\\

hold for all x G [a, b]. The constant 1/4 is the best possible.

For some generalisations and related results see the book [7, p.468-484].

In [3], Dragomir and Wang obtained the inequality

dt <
1
2

_i_

X
a

6 -

+ b
2
a

for all x € [a, b], provided / is continuous on [a, b] and differentiable on (a, b) with
derivative / ' € Lx (a, b).

Note that this result can also be obtained from Fink's theorem [7, Theorem 1, p.47l]
for n — 1 and appropriate computations.

Some applications of the above results in numerical integration and for special means
have been given in [3, 4, 5, 6].

In the recent paper [7], Dragomir pointed out the following natural generalisation
of the above result for the class of mappings of bounded variation.
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496 S.S. Dragomir [2]

THEOREM 2 . Let f : [a, b] —> R be a mapping of bounded variation on [a, b] and
its total variation on [a,b]. Then the inequality

dt
x —

a + b

b-a

holds for all x e [a, 6]. The constant 1/2 is the best possible.

In this paper we point out a new generalisation of Ostrowski's inequality for map-
pings of bounded variation and apply it for quadrature formulae in numerical analysis.
Some connections with the rectangle, the midpoint and Simpson's rule are also estab-
lished.

2. SOME INTEGRAL INEQUALITIES

We start with the following theorem.

THEOREM 3 . Let Ik : a — x0 < xi < ... < xk-\ < xk = b be a division of
the interval [a, 6] and a; (i = 0,..., k + 1) be k + 2 points so that c*o = a, on € [ZJ_I, Zj]
(i = l,...,k) and afc+i = b. If f : [a,b] -» R is of bounded variation on [a,6], then we
have the inequality:

(2.1)

0

/ • i=0

^ -v (h) + max < ,i = 0,...,k-l\\vo

where v (h) :— max{/ij | i = 0,..., k — l } , hi := xi+i - xt (i = 0,..., k - 1) and Vo*(/) is
the total variation of f on the interval [a,b].

PROOF: Define the mapping K : [a, b] -* R by (see also [1])

K(t):=

t-a2, te[xi,x2)

t — otk-i, t e [xk-2,Xk-i)

t-ak, t e [ i t_ i ,6] .
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[3] Ostrowski integral inequality for mappings of BV 497

Integrating by parts using the Riemann-Stieltjes integral, we have successively

(t-ai+l)df(t)

dt

i=0

t=0

k-l

n — T \ f (T \ -A- IT- — n \ f (T- W — I f (t\C*t+1 xi) J (Xi) -t- (Xt+i — CCi+i) J (.3-t+ljJ — / / (.IJ dt

A - l t - 2

«=o
0

+ (b-an)f(b)-Jf(t)dt
a

k-l k-l

— (di ~ o,) j (a) + y \&i+i ~ Xi) j \Xi) + y (Xi — cxi) j \Xi)

b

+ {b-On)f(b)-Jf(t)dt
a

= (al-a)f(a) + J2(ai+1-ai)f(xi) + (b-an)f(b)- f f (t)

i=o {

and then we have the integral equality which is of interest in itself too:

b L b

dt

(2.2)
r

(ai+1 - at) f (an) - K{t) df (t).

On the other hand, we have

6 fc-l I i + 1 k-l Xiil

JK{t)df{t) = £ [ K(t)df(t) <J2 I
J i=o I »=o i.

:— T.
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But

J (t-ai+ dt s^ sup \t~ai+l\V^(f)

= m£LX "jQlj-j-i — Xiy XJ_LJ — G?j_|_i

"i,

Then

i =0

max -hi +
t=o,...,Jt-i 12

Now, as

then

max

and consequently,

+

k-l

i = 0

rih)

The theorem is completely proved. D

Now, if we assume that the points of the division Ik are given, then the best inequality
we can obtain from Theorem 3 is embodied in the following corollary:

COROLLARY 1 . Let f and Ik be as above. Then we have the inequality:

b

(2.3)
5: , r *-i ]

J f (X) dx - - ( H - o) / (O) + ^ (Xi+1 - !«_!) / (Xi) + (b- Xfc_0 / (6)

P R O O F : We choose in Theorem 3,

a + x
a0 = a, ai =

Xk-2

a2 =
+ x2

and ak+i — o.
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In this case we get

k

(Qi+1 - <*i) f (xi)
i=0

= («i - oo) / (a) + (or2 - ati) / (ari) + ... + (a* - ar*-i) / (**-i) + (& - a*) / (b)

\ + Yt (xi+1 - i4_x) / (Xi) + (b- x^) f (b)\ .

Now, applying the inequality (2.1), we get (2.3). D

The following corollary for equidistant partitioning also holds.

COROLLARY 2 . Let

Ik:xi-.= a+{b-a)^ (i = 0, ...,*)

be an equidistant partitioning of[a,b]. If f is as above, then we have the inequality:

( 2 . 4 )

3. THE CONVERGENCE OF A GENERAL QUADRATURE FORMULA

Let An : a = 4 " ' < ^in ) < - < x ^ i < xfi = b be a sequence of division of [a, 6]
and consider the sequence of numerical integration formulae

where u>j (j = 0,..., n) are the quadrature weights.

The following theorem provides a sufficient condition for the weights iwjn) so that
6

/„ (/, An, wn) approximates the integral / / (x) dx.
a

THEOREM 4 . Let f : [a, 6] —> R be a mapping of bounded variation on [a,b]. If
the quadrature weights Wj satisfy the condition

i

\n) - a < 2 wn) < xi(3.1) x\n) - a < 2 win) < xi+i - a for al/» = 0,.... n - 1,
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then we have the estimate

b

(3.2) In(f,An,wn)- J f(x)dx

-i/ (/i(n)) + max •
(n) , (n)

j = 0

i = 0,. . . ,n- 1

where v (h^) := max |/i[n) | i = 0,..., n - l j and h\n) := x{^\ - a;|n). In particuiar

b

(3.3) Urn In(f,An,wn)= f f{x)dx

a

uniformly related to the wn.

PROOF: Define the sequence of real numbers

j=o

Note that

j=0

and observe also that a{^\ G y ^ .

Define a^ :— a and compute

(") (n)
\ - a^; = a,

i - l

l , • • • , " - ! ) ,
j=0 j=0
/ n - l \

i=o

Then

i=0 i=0

Applying the inequality (2.1), we get the estimate (3.2).
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The uniform convergence related to the quadrature weights w^ is obvious by the
last inequality. 0

Now, consider the equidistant partitioning of [a, b] given by

and define the sequence of numerical quadrature formulae

i=0

The following corollary which can be more useful in practice holds:

COROLLARY 3 . Let f be as above. If the quadrature weight wj"' satisfy the
condition:

(3.4)

then we have:

n b — a*-
3=0

(3.5)
J
a

\b-a
2n \- max

2i + l (6 -a )

i=o n
,i = 0,.. . ,n- 1

particular, we have the limit

0

lim /„ (/, tun) = / / (i) dx,
n—+oo /

uniformly related to the wn.

4. SOME PARTICULAR INTEGRAL INEQUALITIES

The following proposition holds.

PROPOSITION 1 . Let f : [a,b] -» R be a mapping of bounded variation on
[a,b]. Then we have the inequality:

b

^(6-a)(4.1)

for all a € [a, b].
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The proof follows by Theorem 3, on choosing x0 = a, xx — b, a0 = a, ai = a € [a, b]

and o?2 = b.

REMARK 1.

(a) If in (4.1) we put a = b, then we get the "left rectangle inequality"

(4.2)
0

Jf(x)dx-(b-a)f(a)

(b) If a = a, then by (4.1) we get the "right rectangle inequality"

b

(4.3) Jf(x)dx-(b-a)f(b)

(c) It is easly to see that the best inequality we can get from (4.1) is for
a = (a + b)/2 obtaining the "trapezoid inequality"

(4.4) / / (x) dx ^ - ^ (6 - a)

Another proposition with many interesting particular cases is the following one:

PROPOSITION 2 . Let f be as above and a ^ Xi ^ 6, a ^ a\ ^ xi ^ a2 ^ b.

Then we have

b

(4.5)
a

b

j f (x) dx - [(ttl - a) / (a) + (a2 - Ol) / (xx) + (b - a2) / (&)]

J(&-a) a + b

Of! -
a +

(b-a)

PROOF: Consider the division a = xn ^ xi ^ x2 ^ b and the numbers an = a, ai £
[a,xi], a2 € [xi,b] and a 3 = b. Now, applying Theorem 3, we get

b

f f (x) dx - [(ax - o) / (a) + (a2 - ai) / (xi) + (b - a2) / (b)]

- max{xi — a,b - x\} + maxj ai
+ Xi

" 2 - Va
b(f)
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a + b

a2-
xx+b

2

a2- vbAf)

and the first inequality in (4.5) is proved.

Now, observe that

- a
2 ' a2-

b —

Consequently,

max < lai — a2- 1H - a,b —

and the second inequality in (4.5) is proved.

The last inequality is obvious. D

REMARK 2. If we choose above a\ = a, a2 = b, then we get the following Ostrowski
type inequality obtained by Dragomir in the recent paper [2]:

b

(4.6) jf(x)dx-(b-a)f(x1)

for all Xi € [a, b].

We note that the best inequality we can get in (4.6) is for xi = (a + b)/2 obtaining
the "midpoint inequality"

b

(4.7)

(b) If we choose in (4.5) ax = (5a + 6)/6, a2 = (a + 56)/6 and xx € [(5a + b)/6,
(a + 5b)/6], then we get

(4.8)

0

Jf(x)dx- b-a\f (a)

+ max •

. 1
55 2 [2

2a+ 6

a + b

a + 26

Particularly, if we choose in (4.8), X\ = (a+b)/2, then we get the following "Simpson'?
rule inequality"

b

(4.9) [f{x)dx--—Z\'i->yr'+2f[^)\ <|(6-a)'
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5. SOME COMPOSITE QUADRATURE FORMULAE

Let us consider the partition of the interval [a, b] given by An : a = XQ <

X\ < ... < xn_i < xn — b and put hi := Xj+i — Xi (t = 0,...,n—1) and u(h) :=

max {hi | i — 0,..., n — 1}.
The following theorem holds.

THEOREM 5 . Let f : [a, b] —> R be of bounded variation on [a, 6] and k ^ 1.
Then we have the composite quadrature formula

b

(5.1) J f(x)dx = Ak(&nJ) + Rk (An, f)
a

where

(5.2)

and

(5.3)

^ ( A n , / ) : = -
i=0 j=l

i =0

is the trapezoid quadrature formula.

The remainder Rk (An, / ) satisfies the estimate

(5.4)

PROOF: Applying Corollary 2 on the intervals [xj,Xi+i] (i = 0, ...,n - 1) we get

Now, using the generalised triangle inequality, we get:

n - l

t = 0

/ (x<) + / (*i+i),

n-l n - l

" " t=0 " ' " i=0

and the theorem is proved.

The following corollaries hold.

^W1
2k

(k-j)xi+.
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COROLLARY 4 . Let f be as above. Then we have the formula:

b

(5.5) J }{x)dx = \ [Tn (An> /) + Mn (An, /)] + R2 (An, /)
a

where Mn (An, / ) is the midpoint quadrature formula,

and the remainder R2 (An, / ) satisfies the inequality:

(5.6) \R2 (An, f)\^\u(h) Vb
a{f).

COROLLARY 5 . Under the above assumptions we have

(5.7) I f (x) dx = I [TB (An> /) + g / (g
The remainder i?3 (An, / ) satisfies:

(5.8) | f l 3 ( A n , / ) | ^ ( / i ) V ; 6 ( / ) -

The following theorem holds:

THEOREM 6 . Let f and An be as above and ^ G [x{, xi+i] (i = 0,..., n - 1). Then
we have the quadrature formula:

n - l

(5.9)

The remainder R (^, An, / ) satisfies:

(5.10)

R (f. A«' /) •

for all £i as above.

PROOF: Apply Proposition 1 on the interval [xi, xi+1] (i = 0,..., n — 1) to get

(x) dx - [(£ - x4) / (x,-)

£ -/I,
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Summing over i from 0 t o n - 1, using the generalised triangle inequality and the
properties of the maximum mapping, we get (5.10).

COROLLARY 6 . Let / and An be as above. Then we have

(1) the "left rectangle rule"

r d _^X
(5.11) Jf(x)dx-^f(xi)hi + Rl{AnJ);

(2) the "right rectangle rule"

6

(5.12)

(5.13)

where

and

[ H*) (An, / ) ;
«=o

(3) the "trapezoid rule"

b

1

The following theorem also holds.

THEOREM 7 . Let f and An be as above and £t s [XJ,X;+I],
oq ^ Xi+\. Then we have the quadrature formula:

b n - l n- l
I \ , V ^ ( (2) (1
iXi) ~r 7 I Q - — OS-

t = 0

R

D

a
1'

), af, An,

The remainder R U, a\1], af\ An, / ) satisfies

(5.15)

+ max

1 ,.

< max «,(1) ~ max

• max
t=0,...n-l
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PROOF: Apply Proposition 2 on the interval [a:i,zi+i] to obtain

i

f (x) dx - [(a|x) - Xi) f (Xi) + (a|2) - a|1}) / &) + (xi+l - fc) f (xi+1)]

j + Xj+
+ max

(2) _ & + Si+
< 2

Summing over z from 0 to n - 1 and using the properties of modulus and maximum

we get the desired inequality.

We shall omit the details. D

The following corollary is the result of Dragomir from the recent paper [2].

COROLLARY 7 . Under the above assumptions, we have the Riemann's quadra-
ture formula:

(5.16) I
n - l

«=o

The remainder RR (£, An, / ) satisfies

(5.17) \RR(Z,AnJ)\s b(f)

for all ^ G [xi, xi+i] (i - 0,..., n).

Finally, the following corollary which generalises Simpson's quadrature formula
holds.

COROLLARY 8 . Under the above assumptions and if £4 € [(xt+i + 5XJ)/6,

(x{ + 5xi+i)/6] (i = 0,..., n — 1), then we have the formula:

(5.18)
i=0 >=0

The remainder S (/, An,£) satisfies

(5.19) | S ( / , A B , O |

+ max{ max , max

The proof follows by the inequality (4.8) and we omit the details.
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REMARK 3. Now, if we choose in (5.18), & = (x; + xi+l)/2, then we get "Simpson's
quadrature formula"

(5.20) ^

where the remainder term 5 (/, An) satisfies

(5-21)
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