ON THE RANK NUMBERS OF AN ARC

J. TURGEON

0. Introduction. The k th rank number, $\operatorname{rank}_{k} B$, of a differentiable arc B in real projective n-space is the least upper bound of the number of osculating k-spaces of B which meet an ($n-k-1$)-flat, $k=0,1, \ldots, n-1$. The number $\operatorname{rank}_{0} B$ is called the order of $B ;$ cf. 1.1-1.3. It has been conjectured by Peter Scherk that

$$
\begin{equation*}
\operatorname{rank}_{k} B \geqq(k+1)(n-k), \tag{0.1}
\end{equation*}
$$

equality holding if and only if B has the order n; cf. [2, p. 396]. In this paper we prove the following results.

Theorem 1. If B is a differentiable elementary arc, then (0.1) holds for $k=0,1, \ldots, n-1$.

Theorem 2. If B is a differentiable elementary arc and order $B>n$, then $\operatorname{rank}_{k} B>(k+1)(n-k)$ for $k=1, \ldots, n-2$.

By a theorem of Park [3, p. 38], every differentiable arc contains a subarc of order n. This eliminates the assumption that B is elementary from Theorem 1. We do not know whether it can be dropped from Theorem 2.

Acknowledgment. My thanks are due to Professor Peter Scherk for his help and guidance.

1. Prerequisites. We first list some definitions and known results which will be used throughout the paper. Unless otherwise stated, they are quoted from [4].
1.1. We consider arcs in real projective n-space R_{n}. An $\operatorname{arc} B$ is the continuous image of an open interval. Thus the points of B depend continuously on a real parameter s. The point corresponding to the parameter s will also be denoted by s.

The image of a neighbourhood of the parameter s on the parameter interval is a neighbourhood of the point s on B. If a sequence of parameter values converges to the parameter s, we say that the corresponding sequence of points on B also converges to the point s.

[^0]1.2. The order of B is the least upper bound of the number of points that B can have in common with any hyperplane in R_{n}. Clearly, the order of B is not less than n. An arc of order n has end points.

An arc is elementary if it is the finite union of arcs of order n and of their end points.

The order of a point s on B is defined to be the order of a sufficiently small neighbourhood of s on B. A point s is called regular if it has order n. An elementary arc has only finitely many singular, i.e., non-regular, points. An arc is regular if all its points are regular.
1.3. We call a point s of B differentiable if all the linear osculating spaces $L_{k}{ }^{n}(s)$ exist, $k=-1,0,1, \ldots, n$. We construct them inductively. Define $L_{-1}{ }^{n}(s)=\emptyset$. Suppose that we have defined the osculating k-space $L_{k}{ }^{n}(s)$ and postulated its existence. Then we postulate that:
(i) if $t \neq s$ is a point of B sufficiently close to s, then $t L_{k}{ }^{n}(s)$ is a $(k+1)$-space (here, $t L_{k}{ }^{n}(s)$ denotes the linear subspace spanned by t and $L_{k}{ }^{n}(s)$; a similar notation will be used throughout).
(ii) this $(k+1)$-space converges as $t \rightarrow s$. Then we define

$$
L_{k+1}{ }^{n}(s)=\lim _{t \rightarrow s} t L_{k}^{n}(s) .
$$

Thus $L_{0}{ }^{n}(s)$ is the point s itself. We call $L_{n-1}{ }^{n}(s)$ the osculating hyperplane of B at s. If a hyperplane contains $L_{k}{ }^{n}(s)$ but not $L_{k+1}{ }^{n}(s)$, we say that it contains $L_{k}{ }^{n}(s)$ exactly, $-1 \leqq k \leqq n-2$.

We say that B is differentiable if each of its points is differentiable.
1.4. Let φ denote the projection of R_{n} from a point P.
(a) If B is differentiable in R_{n}, then φB is differentiable in R_{n-1}.
(b) If B has order n and $P \in B$, then φB has order $n-1$.
(c) If B has order n and P is an arbitrary point in space, then φB is an arc of order n or $n-1$. By a theorem of Haupt, every differentiable arc of order n in R_{n-1} is elementary; cf. [2, p. 249]. Hence, the projection of an elementary arc is also elementary.
(d) If B is regular and P does not lie on any osculating hyperplane of B, then φB is regular.

From now on, "arc" means "differentiable elementary arc".
1.5. A duality maps the family of the osculating k-spaces of an $\operatorname{arc} B$ into a family of $(n-k-1)$-spaces $M_{n-k-1}^{n}(s)$ in the dual n-space. In particular, the osculating hyperplanes of B are mapped onto a family C of points. This family C is an arc and $M_{n-k-1}^{n}(s)$ is the osculating ($n-k-1$)-space of C at $s, k=0,1, \ldots, n-1$.
1.6. Let B be an arc of order $n ; s \in B$. If a hyperplane contains $L_{k}{ }^{n}(s)$ exactly, count s with the multiplicity $k+1$ as a point of contact of B with this hyperplane. Then the sum of the multiplicities of the points of contact of B with a hyperplane is at most n.

Dually, if a point P lies on $L_{n-k}{ }^{n}(s)$ but not on $L_{n-k-1}^{n}(s)$, count $L_{n-1}{ }^{n}(s)$ as passing through P with the multiplicity k. Then the sum of the multiplicities with which the osculating hyperplanes pass through P is at most n.

These statements remain valid if one but not both end points are added to B.
1.7. The class of any $\operatorname{arc} B$ is the least upper bound of the number of osculating hyperplanes of B passing through a point P in R_{n}. The statements of 1.6 imply that B has order n if and only if it has class n.
1.8. If $k+1$ points of an $\operatorname{arc} B$ of order n converge to a point s of B, then the k-space spanned by them converges to $L_{k}{ }^{n}(s)$ and, by duality, the intersection of their osculating hyperplanes is an ($n-k-1$)-space which converges to $L_{n-k-1}^{n}(s)$ (strong differentiability and strong dual differentiability).

These statements also hold if we take into account the multiplicities described in 1.6. For instance, if s_{1} and s_{2} converge to s and $0 \leqq j \leqq k-1$, $s_{1} \neq s_{2}$, then the k-space $L_{j}{ }^{n}\left(s_{1}\right) L_{k-j-1}^{n}\left(s_{2}\right)$ converges to $L_{k}{ }^{n}(s)$.

In particular, if all the $k+1$ points are identified, i.e. if one point is counted with the multiplicity $k+1$, we obtain the statement that the osculating spaces $L_{k}{ }^{n}(s)$ of an arc of order n vary continuously with s. Clearly, this last property extends to all our elementary arcs.
1.9. Dualizing the projection of the dual of B, we obtain the dual projection φ^{*} of B. Then $\varphi^{*} B$ is an arc in $E=R_{n-1}$ whose points are given by

$$
\varphi^{*}(s)= \begin{cases}s & \text { if } L_{1}{ }^{n}(s) \subset E \\ E \cap L_{1}{ }^{n}(s) & \text { otherwise }\end{cases}
$$

This dual projection has the following properties; cf. 1.4.
(a) If B has order n and E is an osculating hyperplane of B, then $\varphi^{*} B$ has order $n-1$.
(b) If B has order n and E is an arbitrary hyperplane, then $\varphi^{*} B$ is an arc of order n or $n-1$.
(c) If B is regular and E does not meet B, then $\varphi^{*} B$ is regular.

2. Lower bounds for the rank numbers.

2.1. Lemma. Let B be a regular arc in $R_{n}, s_{0} \in B$. Let l be a straight line which is not contained in any osculating hyperplane of B. Consider the mapping

$$
\tau(s)=l \cap L_{n-1}^{n}(s)
$$

of B into l. If $\tau(s)$ changes its direction at s_{0}, then

$$
\tau\left(s_{0}\right)=l \cap L_{n-2}^{n}\left(s_{0}\right)
$$

Proof. Since B is elementary and regular, every point of B is strongly differentiable and strongly dually differentiable.

The arc $\tau(B)$ on l may be considered as the result of repeated dual projections. Hence $\tau(B)$ is elementary and $\tau(s)$ changes its direction only finitely many times.

Since $\tau(s)$ changes its direction at s_{0}, there are sequences s_{i} and $s_{i}{ }^{\prime}$, both converging monotonically to s_{0}, such that s_{0} lies between s_{i} and $s_{i}{ }^{\prime}$ on B, for every i, and

$$
\tau\left(s_{i}\right)=\tau\left(s_{i}^{\prime}\right)=\tau_{i},
$$

say. Thus

$$
\tau_{i} \in L_{n-1}^{n}\left(s_{i}\right) \cap L_{n-1}^{n}\left(s_{i}^{\prime}\right) \cap l
$$

Let $i \rightarrow \infty$. Then

$$
L_{n-1}{ }^{n}\left(s_{i}\right) \cap L_{n-1}{ }^{n}\left(s_{i}{ }^{\prime}\right) \rightarrow L_{n-2}{ }^{n}\left(s_{0}\right),
$$

by the strong dual differentiability of s_{0}. Hence

$$
\tau_{i} \rightarrow \tau\left(s_{0}\right)=L_{n-2}^{n}\left(s_{0}\right) \cap l
$$

2.2. The following lemma is a slight generalization of a result due to Derry [1, p. 161].

Lemma. Let B be a regular arc in R_{n}. Let P be a point of R_{n} lying on k osculating hyperplanes of B, say

$$
P \in L_{n-1}^{n}\left(s_{1}\right) \cap \ldots \cap L_{n-1}^{n}\left(s_{k}\right),
$$

where $s_{1}<s_{2}<\ldots<s_{k}$. If Q is a point of R_{n} which does not lie on any osculating hyperplane of B, and φ is the projection of R_{n} from Q, then φP lies on at least $k-1$ osculating hyperplanes of φB, say

$$
\varphi P \in L_{n-2}^{n-1}\left(t_{1}\right) \cap \ldots \cap L_{n-2}^{n-1}\left(t_{k-1}\right)
$$

where

$$
s_{1}<t_{1}<s_{2}<\ldots<t_{k-1}<s_{k}
$$

Proof. Since Q does not lie on any osculating hyperplane of B, the intersection

$$
\tau(s)=P Q \cap L_{n-1}{ }^{n}(s)
$$

is uniquely defined for all $s \in B$. Since

$$
\tau\left(s_{i}\right)=\tau\left(s_{i+1}\right)=P
$$

for $i=1, \ldots, k-1$ and $\tau(s)$ is always distinct from Q, there exists at least one point t_{i} on B with $s_{i}<t_{i}<s_{i+1}$, where $\tau(s)$ changes its direction. By 2.1,

$$
P Q \cap L_{n-2}{ }^{n}\left(t_{i}\right) \neq \emptyset .
$$

The statement follows.
2.3. Lemma. For a fixed value of $k, 0 \leqq k \leqq n-2$, let B_{1}, \ldots, B_{n-k} be regular arcs in R_{n} and let P_{1}, \ldots, P_{n-k} be points of R_{n} such that
(i) P_{1}, \ldots, P_{n-k} are independent, i.e.,

$$
\operatorname{dim}\left(P_{1} \ldots P_{n-k}\right)=n-k-1
$$

(ii) P_{i} lies on n osculating hyperplanes of B_{i},
(iii) for all h with $1 \leqq h \leqq n-k-1$ and every $t_{j} \in B_{j}$,

$$
\operatorname{dim}\left(L_{n-h}^{n}\left(t_{j_{0}}\right) P_{j_{1}} \ldots P_{j_{h}}\right)=n
$$

for every choice of the $(h+1)$-tuple j_{0}, \ldots, j_{n} from $1, \ldots, n-k$. Then $P_{1} \ldots P_{n-k}$ meets the osculating k-spaces of $k+1$ points of each of B_{1}, \ldots, B_{n-k}.

Proof. For $i=1, \ldots, n-k$, let φ_{i} be the projection of R_{n} from P_{i}. Then, by property (iii) and 1.4 (d), $\varphi_{h} \varphi_{h-1} \ldots \varphi_{3} \varphi_{2} B_{1}$ is a regular arc in $R_{n-(h-1)}$ and $\varphi_{h} \ldots \varphi_{2} P_{h+1}$ does not lie on any osculating hyperplane of $\varphi_{h} \ldots \varphi_{2} B_{1}$, $1 \leqq h \leqq n-k-2$ (for $h=1$, the φ s do not appear). Hence by $2.2, \varphi_{2} P_{1}$ lies on $n-1$ osculating hyperplanes of $\varphi_{2} B_{1}, \varphi_{3} \varphi_{2} P_{1}$ lies on $n-2$ osculating hyperplanes of $\varphi_{3} \varphi_{2} B_{1}$, and, in general, $\varphi_{h+1} \ldots \varphi_{2} P_{1}$ lies on $n-h$ osculating hyperplanes of $\varphi_{h+1} \ldots \varphi_{2} B_{1}, h=1, \ldots, n-k-1$. Thus $\varphi_{n-k} \ldots \varphi_{2} P_{1}$ lies on $k+1$ osculating hyperplanes of $\varphi_{n-k} \ldots \varphi_{2} B_{1}$. But this means that $P_{1} \ldots P_{n-k}$ meets $k+1$ osculating k-spaces of B_{1}. Symmetrically, it meets $k+1$ osculating k-spaces of each of B_{2}, \ldots, B_{n-k}.
2.4. Lemma. Let $0 \leqq k \leqq n-2$. Suppose that s_{1}, \ldots, s_{n-k} are regular points of B with the following properties:

$$
\begin{equation*}
s_{1}, \ldots, s_{n-k} \text { are independent } \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(L_{n-h}^{n}\left(s_{j_{0}}\right) s_{j_{1}} \ldots s_{j_{h}}\right)=n \quad(h=1, \ldots, n-k-1) \tag{2.2}
\end{equation*}
$$

for every choice of the $(h+1)$-tuple j_{0}, \ldots, j_{n} from $1, \ldots, n-k$. Then for $i=1, \ldots, n-k$, there exists a closed neighbourhood N_{i} of s_{i} in R_{n} containing s_{i} in its interior and such that, if P_{i} is any point of N_{i} and t_{i} is any point of a neighbourhood B_{i} of s_{i} on $B, B_{i} \subset N_{i}$, then

$$
\begin{equation*}
P_{1}, \ldots, P_{n-k} \text { are independent } \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(L_{n-n}^{n}\left(t_{j_{0}}\right) P_{j_{1}} \ldots P_{j_{h}}\right)=n \quad(h=1, \ldots, n-k-1) \tag{2.4}
\end{equation*}
$$

for every choice of the $(h+1)$-tuple j_{0}, \ldots, j_{n} from $1, \ldots, n-k$.
Proof. Suppose (2.4) were false. Then there would exist an $(h+1)$-tuple of indices j_{0}, \ldots, j_{h} from $1, \ldots, n-k$ and a sequence of $(h+1)$-tuples

$$
t_{j_{0}}{ }^{\lambda}, P_{j_{1}}{ }^{\lambda}, \ldots, P_{j h}^{\lambda}, \quad \lambda=1,2, \ldots,
$$

such that

$$
\begin{equation*}
\lim t_{j_{0}}^{\lambda}=s_{j_{0}}, \lim P_{j_{1}}^{\lambda}=s_{j_{1}}, \ldots, \lim P_{j_{h}}^{\lambda}=s_{j_{h}} \tag{2.5}
\end{equation*}
$$

and that

$$
L_{n-h}{ }^{n}\left(t_{j 0}{ }^{\lambda}\right), P_{j_{1}}{ }^{\lambda}, \ldots, P_{j h}^{\lambda}
$$

lie in a hyperplane E^{λ}. We may assume that the E^{λ} converge to a hyperplane E. Since $L_{n-h}{ }^{n}(s)$ is continuous, (2.5) implies that

$$
L_{n-h^{n}}\left(s_{j_{0}}\right), s_{j_{1}}, \ldots, s_{j_{h}}
$$

lie in E, contradicting (2.2).

The proof of (2.3) is even simpler.
2.5. Proof of Theorem 1. Without loss of generality, we may assume that $n \geqq 3,1 \leqq k \leqq n-2$, and that B has order n.

Let s_{1}, \ldots, s_{n-k} be any $n-k$ points of B. By 1.6 , they satisfy conditions (2.1) and (2.2). Hence there exist closed neighbourhoods N_{1}, \ldots, N_{n-k} with the properties (2.3) and (2.4).

Let P_{i} be a point of N_{i} lying on n osculating hyperplanes of a neighbourhood B_{i} of s_{i} on $B, B_{i} \subset N_{i}, i=1, \ldots, n-k$. Such points always exist by the strong dual differentiability of B; cf. 1.8. Then the points P_{i} and the subarcs B_{i} satisfy the assumptions of 2.3 . Therefore the $(n-k-1)$-flat $P_{1} \ldots P_{n-k}$ meets the osculating k-spaces of at least $k+1$ points of each of B_{1}, \ldots, B_{n-k}, i.e., altogether it meets at least $(k+1)(n-k)$ osculating k-spaces of B.

3. Two lemmas.

3.1. Lemma. Let B be an arc of order greater than n in R_{n}. Let Σ^{n} be any finite set of points of B containing all the singular points of B. Then there exist a hyperplane E and $n+1$ points s_{1}, \ldots, s_{n+1} of B such that
$(1)_{n}$:

$$
E \cap \Sigma^{n}=\emptyset
$$

$(2)_{n}:$
E contains s_{1}, \ldots, s_{n+1} exactly,
(3) ${ }_{n}$:

$$
s_{1}, \ldots, s_{n} \text { span } E \text {, }
$$

(4) ${ }_{n}$:

$$
s_{1}, \ldots, s_{n-1}, s_{n+1} \text { span } E
$$

(5) $)_{n}: \quad \operatorname{dim}\left(L_{n-h}^{n}\left(s_{j_{0}}\right) s_{j_{1}} \ldots s_{j_{h}}\right)=n \quad(h=1, \ldots, n-3)$,
for every choice of the $(h+1)$-tuple j_{0}, \ldots, j_{n} from $1, \ldots, n-2$.
Note that the parameters s_{n} and s_{n+1} are distinct, but that the corresponding points in R_{n} may coincide.

Proof. We note that $(5)_{n}$ is void for $n \leqq 3$.
The case $n=1$ is trivial. Suppose that the statement is true up to $n-1$.
Some hyperplane meets B in more than n points. We may assume that these points span the hyperplane. Hence at least one of them, say s_{0}, has the property that the projection $\varphi_{0} B$ of B from s_{0} has order $>n-1$. With $B, \varphi_{0} B$ is an elementary arc ; cf. 1.4(c).

Let $\Sigma_{0}{ }^{n}$ be the union of Σ^{n} with s_{0} and all the points of B which coincide with s_{0}.

Let $\Sigma_{0}{ }^{n-1}$ be the set consisting of $\varphi_{0} \Sigma_{0}{ }^{n}$, the points of $\varphi_{0} B$ coinciding with points of $\varphi_{0} \Sigma_{0}{ }^{n}$, and the singular points of $\varphi_{0} B$.

By our induction hypothesis, there exists a hyperplane E_{0} through s_{0} and through n points $s_{01}, \ldots, s_{0 n}$ of B such that
(1) $n_{n-1}: \quad \varphi_{0} E_{0} \cap \Sigma_{0}{ }^{n-1}=\emptyset$, and thus $\left\{s_{01}, \ldots, s_{0 n}\right\} \cap \Sigma_{0}{ }^{n}=\emptyset$,
$(3)_{n-1}: \quad \varphi_{0} S_{01}, \ldots, \varphi_{0} S_{0, n-1} \quad \operatorname{span} \varphi_{0} E_{0}$,
$(4)_{n-1}: \quad \varphi_{0} S_{01}, \ldots, \varphi_{0} s_{0, n-2}, \varphi_{0} S_{0 n} \quad$ span $\varphi_{0} E_{0}$.
Hence, except possibly for the pair $s_{0, n-1}, s_{0 n}$, no two of the points $s_{01}, \ldots, s_{0, n-1}, s_{0 n}$ can coincide.

If $n=2$ and s_{01} and s_{02} coincide, put $s_{2}=s_{01}$ and $s_{3}=s_{02}$. Each of the conditions
(i) $s_{1} \notin L_{1}{ }^{2}\left(s_{2}\right) \cup L_{1}{ }^{2}\left(s_{3}\right)$,
(ii) $s_{2} \notin L_{1}{ }^{2}\left(s_{1}\right)$,
(iii) $s_{1} s_{2} \cap \Sigma^{2}=\emptyset$
excludes only a finite number of points. Hence there is a point s_{1} satisfying all three of them. Then s_{1}, s_{2}, and s_{3} satisfy our requirements.

If $n=2$ and s_{01} and s_{02} do not coincide or if $n>2$, then we put $s_{1}=s_{01}$. Then s_{1} does not coincide with any of $s_{02}, \ldots, s_{0 n}$, so that s_{1} has the following properties:
(a) $1_{1}: s_{1} \notin \Sigma^{n}$,
(b) 1 : if φ_{1} is the projection from s_{1}, then order $\varphi_{1} B>n-1$, since E_{0} meets B in $s_{0}, s_{1}, s_{02}, \ldots, s_{0 n}$.

Define

$$
\Sigma_{1}{ }^{n}=\Sigma^{n} \cup\left\{s \in B \mid s \in L_{n-1}{ }^{n}\left(s_{1}\right)\right\} \cup\left\{s \in B \mid s_{1} \in L_{n-1}{ }^{n}(s)\right\} .
$$

Let Σ^{n-1} consist of $\varphi_{1} \Sigma_{1}{ }^{n}$ and all the points of $\varphi_{1} B$ coinciding with any point of $\varphi_{1} \Sigma_{1}{ }^{n}$. Then $\varphi_{1} s_{1} \in \Sigma^{n-1}$ since $s_{1} \in L_{n-1}{ }^{n}\left(s_{1}\right)$.

By the induction assumption, there exists a hyperplane E_{1} through s_{1} and through n points $s_{12}, \ldots, s_{1, n+1}$ on B such that
(1) $n_{n-1}: \varphi_{1} E_{1} \cap \Sigma^{n-1}=\emptyset$, and thus $\left\{s_{12}, \ldots, s_{1, n+1}\right\} \cap \Sigma_{1}{ }^{n}=\emptyset$,
(3) $)_{n-1}$:
$\varphi_{1} s_{12}, \ldots, \varphi_{1} s_{1 n} \operatorname{span} \varphi_{1} E_{1}$,
(4) $)_{n-1}: \quad \varphi_{1} s_{12}, \ldots, \varphi_{1} s_{1, n-1}, \varphi_{1} s_{1, n+1} \operatorname{span} \varphi_{1} E_{1}$.

If $n=2$, then by the definition of $\Sigma^{n-1}, E=s_{1} s_{12} s_{13}$ has the required properties. From now on we may assume that $n \geqq 3$.

Except perhaps for the pair $s_{1 n}, s_{1, n+1}$, no two of the points $s_{1}, s_{12}, \ldots, s_{1, n+1}$ coincide. Put $s_{2}=s_{12}$. Then the points s_{1}, s_{2} have the following properties:
(a) ${ }_{2}$:
$s_{1} s_{2} \cap \Sigma^{n}=\emptyset$,
(b) 2 :
if φ_{i} is the projection from s_{i},
$i=1,2$, then order $\varphi_{i} B>n-1$ and order $\varphi_{2} \varphi_{1} B>n-2$,
(c) ${ }_{2}$:

$$
\operatorname{dim}\left(s_{1} s_{2}\right)=1
$$

(d) $)_{2}: \quad \operatorname{dim}\left(L_{n-1}{ }^{n}\left(s_{j_{0}}\right) s_{j_{1}}\right)=n$ for any permutation j_{0}, j_{1} of $1,2$.

Now suppose that we have k points s_{1}, \ldots, s_{k} for some fixed k, $2 \leqq k \leqq n-3$, such that
$(\mathrm{a})_{k}: \quad s_{1} \ldots s_{k} \cap \Sigma^{n}=\emptyset$,
(b) ${ }_{k}: \quad$ if φ_{i} is the projection from $s_{i}(i=1, \ldots, k)$, then order $\varphi_{j_{h}} \ldots \varphi_{j_{1}} B>n-h \quad(h=1, \ldots, k)$, where j_{1}, \ldots, j_{h} is any h-tuple from $1, \ldots, k$,
(c) ${ }_{k}$:

$$
\operatorname{dim}\left(s_{1} \ldots s_{k}\right)=k-1
$$

(d) $)_{k}: \operatorname{dim}\left(L_{n-h}{ }^{n}\left(s_{j_{0}}\right) s_{j_{1}} \ldots s_{j_{h}}\right)=n$ for any $(h+1)$-tuple j_{0}, \ldots, j_{h} from $1, \ldots, k(h=1, \ldots, k-1)$.
Define

$$
\begin{aligned}
& \Sigma_{k}{ }^{n}=\Sigma^{n} \cup\left\{s \in B \mid \operatorname{dim}\left(s s_{1} \ldots s_{k}\right)<k\right\} \\
& \cup\left\{s \in B \mid \operatorname{dim}\left(L_{n-h}{ }^{n}\left(s_{j_{0}}\right) s_{j_{1}} \ldots s_{j_{h}}\right)<n\right. \\
& \quad \text { for some } h, 1 \leqq h \leqq k, \text { and some }(h+1) \text {-tuple }
\end{aligned}
$$

$$
\left.s_{j_{0}}, \ldots, s_{j h} \text { from } s, s_{1}, \ldots, s_{k}\right\} .
$$

Put $\Psi_{k}=\varphi_{k} \ldots \varphi_{1}$. Let Σ^{n-k} consist of $\Psi_{k} \Sigma_{k}{ }^{n}$ and all the points of $\Psi_{k} B$ coinciding with any point of $\Psi_{k} \Sigma_{k}{ }^{n}$. Then $\Psi_{k} s_{i} \in \Sigma^{n-k}$ since $s_{i} \in L_{n-k-1}^{n}\left(s_{i}\right)$, $i=1, \ldots, k$.

Again by our induction hypothesis, there exists a hyperplane E_{k} through s_{1}, \ldots, s_{k} and through $n-k+1$ points $s_{k, k+1}, \ldots, s_{k, n+1}$ on B such that
(1) $)_{n-k}: \quad \Psi_{k} E_{k} \cap \Sigma^{n-k}=\emptyset$, and thus $\left\{s_{k, k+1}, \ldots, s_{k, n+1}\right\} \cap \Sigma_{k}{ }^{n}=\emptyset$,
(3) $)_{n-k}: \quad \Psi_{k} s_{k, k+1}, \ldots, \Psi_{k} s_{k n} \quad \operatorname{span} \Psi_{k} E_{k}$,
(4) $)_{n-k}: \quad \Psi_{k} s_{k, k+1}, \ldots, \Psi_{k} s_{k, n-1}, \Psi_{k} s_{k, n+1} \quad \operatorname{span} \Psi_{k} E_{k}$.

In particular, no two of the points $s_{k, k+1}, \ldots, s_{k, n+1}$ coincide, except possibly for the pair $s_{k, n}, s_{k, n+1}$. Put $s_{k+1}=s_{k, k+1}$. Then the points s_{1}, \ldots, s_{k+1} have the properties $(\mathrm{a})_{k+1},(\mathrm{~b})_{k+1},(\mathrm{c})_{k+1}$, and $(\mathrm{d})_{k+1}$. We have thus proved by induction the existence of $n-2$ points s_{1}, \ldots, s_{n-2} with the corresponding properties (a) $)_{n-2}, \ldots,(\mathrm{~d})_{n-2}$.

We now define

$$
\begin{aligned}
\Sigma_{n-2}{ }^{n}=\Sigma^{n} & \cup\left\{s \in B \mid \operatorname{dim}\left(s s_{1} \ldots s_{n-2}\right)<n-2\right\} \\
& \cup\left\{s \in B \mid \operatorname{dim}\left(L_{1}{ }^{n}(s) s_{1} \ldots s_{i-1} L_{1}{ }^{n}\left(s_{i}\right) s_{i+1} \ldots s_{n-2}\right)<n\right.
\end{aligned}
$$

for some $i, 1 \leqq i \leqq n-2\}$.
Put $\Psi=\varphi_{n-2} \ldots \varphi_{1}$. Let Σ^{2} consist of $\Psi \Sigma_{n-2}{ }^{n}$ and all the points of ΨB coinciding with some point of $\Psi \Sigma_{n-2}{ }^{n}$. Then $\Psi s_{i} \in \Sigma^{2}$ since $s_{i} \in L_{1}{ }^{n}\left(s_{i}\right)$, $i=1, \ldots, n-2$.

Since ΨB has order >2 (by property (b) $)_{n-2}$), there is a hyperplane E through s_{1}, \ldots, s_{n-2} and through three points s_{n-1}, s_{n}, s_{n+1} of B such that
$(1)_{2}: \quad \Psi E \cap \Sigma^{2}=\emptyset$, and thus $\left\{s_{n-1}, s_{n}, s_{n+1}\right\} \cap \Sigma_{n-2}{ }^{n}=\emptyset$,
$(2)_{2}: \quad \Psi E$ contains $\Psi s_{n-1}, \Psi s_{n}, \Psi s_{n+1}$ exactly,
$(3)_{2}: \quad \Psi s_{n-1}, \Psi s_{n}$ span ΨE,
$(4)_{2}$:
$\Psi s_{n-1}, \Psi s_{n+1}$ span ΨE.
We can now verify that s_{1}, \ldots, s_{n+1} possess the properties $(1)_{n}, \ldots,(5)_{n}$.
Verification of $(1)_{n}$. If s lies on $s_{1} \ldots s_{n-2}$, then $s \notin \Sigma^{n}$, by (a) $)_{n-2}$. Hence, if $s \in E \cap \Sigma^{n}$, then $s \notin s_{1} \ldots s_{n-2}$ and

$$
\Psi s \in \Psi\left(E \cap \Sigma^{n}\right) \subset \Psi E \cap \Sigma^{2}=\emptyset
$$

a contradiction.
To verify $(2)_{n}$, first let $1 \leqq i \leqq n-2$. Since $\Psi s_{i} \in \Sigma^{2}$, we have $\Psi s_{i} \notin \Psi E$, by (1) $)_{2}$. Hence $L_{1}{ }^{n}\left(s_{i}\right) \not \subset E$ and E contains s_{i} exactly.

If $n-1 \leqq i \leqq n+1$, then $\Psi s_{i} \in \Psi E$. Thus $\Psi s_{i} \notin \Sigma^{2}$, by (1$)_{2}$, and $s_{i} \notin s_{1} \ldots s_{n-2}$. By $(2)_{2}, L_{1}{ }^{2}\left(\Psi s_{i}\right) \not \subset \Psi E$. By the definition of $\Sigma_{n-2}{ }^{n}$,

$$
\operatorname{dim}\left(L_{1}{ }^{n}\left(s_{i}\right) s_{1} \ldots s_{n-2}\right)=n-1
$$

Hence $L_{1}{ }^{n}\left(s_{i}\right) \not \subset E$.
Verification of $\quad(3)_{n} . \quad$ By $\quad(\mathrm{c})_{n-2}, \quad \operatorname{dim}\left(s_{1} \ldots s_{n-2}\right)=n-3 . \quad$ Hence $\operatorname{dim} \Psi E=1$. Let s_{1}, \ldots, s_{n} span the subspace F of E. Since

$$
s_{n-1}, s_{n}, s_{n+1} \notin s_{1} \ldots s_{n-2}
$$

and $\Psi s_{n-1}, \Psi s_{n}$ span ΨE, we have $\Psi F=\Psi E$. Hence $\operatorname{dim} \Psi F=1$, dim $F=n-1$ and $F=E$.

As for $(4)_{n}$, clearly, we can replace s_{n} by s_{n+1} and (3) $)_{2}$ by (4) $)_{2}$ in the verification of (3) $)_{n}$ to obtain (4) n.

Finally, the property $(\mathrm{d})_{n-2}$ of s_{1}, \ldots, s_{n-2} yields $(5)_{n}$.
This completes the proof of 3.1.
3.2. Lemma. Let B be an arc of order n in R_{n}. Let $s_{0} \in B$ and

$$
P_{0} \in L_{n-1}{ }^{n}\left(s_{0}\right) \backslash L_{n-2}{ }^{n}\left(s_{0}\right) .
$$

Then there exist an open neighbourhood O of $P_{0}{ }^{\text {r }}$ in R_{n} and a closed neighbourhood B_{0} of s_{0} on B such that, if P is any point in O, then

$$
\begin{equation*}
P \in L_{n-1}{ }^{n}(s) \backslash L_{n-2}^{n}(s) \tag{3.1}
\end{equation*}
$$

for some $s \in B_{0}$.

Proof. Since P_{0} lies on at most n osculating hyperplanes of B, we can find a closed neighbourhood B_{0} of s_{0} on B, with endpoints, say, s_{1} and s_{2}, such that $P_{0} \notin L_{n-1}{ }^{n}(s)$ for all $s \in B_{0}, s \neq s_{0}$. Let

$$
\Sigma=L_{n-1}^{n}\left(s_{1}\right) \cup L_{n-1}^{n}\left(s_{2}\right) \cup \bigcup_{s \in B_{0}} L_{n-2}^{n}(s) .
$$

Suppose that there is no neighbourhood of P_{0} with the desired property. Then there exists a sequence P_{1}, P_{2}, \ldots of points converging to P_{0} for which (3.1) does not hold. Since Σ is closed and $P_{0} \notin \Sigma$, we may assume that no point of the sequence P_{1}, P_{2}, \ldots is in Σ. Thus

$$
\begin{equation*}
P_{i} \notin L_{n-1}^{n}(s) \quad \text { for all } s \in B_{0}, \quad i=1,2, \ldots \tag{3.2}
\end{equation*}
$$

Let $l_{i}=P_{0} P_{i}$ and

$$
\begin{equation*}
\tau_{i}(s)=l_{i} \cap L_{n-1}^{n}(s), \quad s \in B_{0} \tag{3.3}
\end{equation*}
$$

Since R_{n} is compact and $\tau_{i}(s)$ is continuous, $\tau_{i}\left(B_{0}\right)$ is a closed segment on l_{i} containing P_{0}. By 2.1, the end points of $\tau_{i}\left(B_{0}\right)$ are points of Σ. Since $P_{0} \in \tau_{i}\left(B_{0}\right) \backslash \Sigma, P_{0}$ is an interior point of $\tau_{i}\left(B_{0}\right)$.

By (3.2) and (3.3), $P_{i} \notin \tau_{i}\left(B_{0}\right)$ and, for all i, P_{i} and P_{0} are separated on l_{i} by two points of Σ. Since Σ is closed, no sequence of points of Σ can converge to P_{0}. Thus the sequence P_{i} does not converge to P_{0} either, a contradiction.
4. Proof of Theorem 2. For $n \geqq 3$, let B be an arc of order greater than n in R_{n}. Let E and s_{1}, \ldots, s_{n+1} be chosen according to 3.1 , with Σ^{n} consisting of the singular points of B.

Given $k, 1 \leqq k \leqq n-2$, let Ψ denote the projection of R_{n} from $F=s_{1} \ldots s_{n-k-1}$. By 3.1, (3) $)_{n}$, and (4),F does not contain any of s_{n-k}, \ldots, s_{n+1}. Hence ΨB is an arc of order greater than $k+1$ in $\Psi R_{n}=R_{k+1}$. Hence also

$$
\text { class } \Psi B>k+1
$$

Let Σ^{k+1} be the finite set of points of ΨB consisting of $s_{1}, \ldots, s_{n-k-1}, \Sigma^{n}$, and the singular points of ΨB. Then applying duality to 3.1 , we obtain $k+2$ points q_{1}, \ldots, q_{k+2} on ΨB and a point Q in ΨR_{n} such that

$$
\begin{array}{lc}
(1)_{k+1}{ }^{*}: & Q \notin L_{k}^{k+1}(s) \\
(2)_{k+1}^{*}: & \text { if } s \in \Sigma^{k+1}, \\
& Q \in L_{k}^{k+1}\left(q_{j}\right) \backslash L_{k-1}^{k+1}\left(q_{j}\right), \\
j=1, \ldots, k+2 .
\end{array}
$$

Thus $q_{j} \notin \Sigma^{k+1}$.
By 3.2, there exists an open neighbourhood of Q in ΨR_{n}, all of whose points have the above properties. Projection being continuous, the inverse image of that neighbourhood is an open set O in R_{n}. Thus, if T is any point in O, there are values t_{j} near q_{j} on B such that

$$
\Psi T \notin L_{k}^{k+1}(s) \quad \text { if } s \in \Sigma^{k+1}
$$

and

$$
\Psi T \in L_{k}^{k+1}\left(t_{j}\right) \backslash L_{k-1}^{k+1}\left(t_{j}\right) .
$$

Hence

$$
\begin{equation*}
T \notin F L_{k}^{n}(s) \quad \text { if } \Psi s \in \Sigma^{k+1} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T \in F L_{k}^{n}\left(t_{j}\right) \backslash F L_{k-1}^{n}\left(t_{j}\right) \tag{4.2}
\end{equation*}
$$

By (5) ${ }_{n}$, the flats

$$
L_{n-h-1}{ }^{n}\left(s_{i_{0}}\right) s_{i_{1}} \ldots s_{i_{h}} \quad(h=1, \ldots, n-k-2)
$$

are hyperplanes in R_{n}; here i_{0}, \ldots, i_{h} is any $(h+1)$-tuple from

$$
1, \ldots, n-k-1
$$

Being open, O is not contained in any of these hyperplanes nor in any of the osculating hyperplanes $L_{n-1}{ }^{n}\left(s_{i}\right), i=1, \ldots, n-k-1$. Moreover, we may choose O so small that none of these hyperplanes meets O, i.e., that if T is any point of O, then

$$
\begin{equation*}
T \notin L_{n-1}^{n}\left(s_{i}\right) \quad(i=1, \ldots, n-k-1) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T \notin L_{n-h-1}^{n}\left(s_{i_{0}}\right) s_{i_{1}} \ldots s_{i_{h}} \quad(h=1, \ldots, n-k-2), \tag{4.4}
\end{equation*}
$$

where i_{0}, \ldots, i_{h} is any $(h+1)$-tuple from $1, \ldots, n-k-1$.
Let $T \in O$ and let $t_{j} \in B$ be fixed satisfying (4.2), $j=1, \ldots, k+2$. Let l be any line through T such that

$$
l \not \subset F L_{k}^{n}\left(t_{j}\right), \quad j=1, \ldots, k+2 .
$$

Consider the mapping

$$
\tau(F, t)=\left(F L_{k}^{n}(t)\right) \cap l
$$

defined for all t on B for which

$$
\begin{equation*}
\operatorname{dim}\left(F L_{k}{ }^{n}(t)\right)=n-1 \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
l \not \subset F L_{k}{ }^{n}(t) . \tag{4.6}
\end{equation*}
$$

Since, by (4.1) and the definition of Σ^{k+1}, (4.5) holds for each t_{j}, (4.5) will be satisfied for all t sufficiently close to any t_{j}. For these values of t, the hyperplane $F L_{k}{ }^{n}(t)$ will depend continuously on t, and hence (4.6) will be satisfied for all t close to t_{j}. Thus $\tau(F, t)$ will be defined and continuous in some neighbourhood of $t_{j}, j=1, \ldots, k+2$.

Similarly, since by (4.2),

$$
\begin{equation*}
\tau(F, t) \notin F L_{k-1}^{n}(t) \tag{4.7}
\end{equation*}
$$

for $t=t_{j}$, this relation will still hold in some smaller neighbourhood of t_{j}. Thus altogether, $\tau(F, t)$ will be defined, continuous, and, by 2.1 , monotonic in that smaller neighbourhood of t_{j}. Let σ_{j} denote, for each j, the image of that neighbourhood on l. Thus $T \in \sigma_{j}$ and there is a closed neighbourhood σ of T on l containing T in its interior and contained in all the σ_{j} and in O.

Let Q_{1} and Q_{2} denote the endpoints of σ. Then there are points $t_{1 j}$ and $t_{2 j}$ near t_{j} such that

$$
\begin{equation*}
\tau\left(F, t_{1 j}\right)=Q_{1}, \quad \tau\left(F, t_{2 j}\right)=Q_{2}, \quad j=1, \ldots, k+2 . \tag{4.8}
\end{equation*}
$$

As t moves from $t_{1 j}$ to $t_{2 j}, \tau(F, t)$ moves monotonically through σ from Q_{1} to Q_{2}. Let \bar{B}_{j} denote the closed neighbourhood of t_{j} on B bounded by $t_{1 j}$ and $t_{2 j}$.

By properties (3) $)_{n}$ and $(5)_{n}$ of s_{1}, \ldots, s_{n+1}, we may apply 2.4 to the points s_{1}, \ldots, s_{n-k-1} of B. Thus for $i=1, \ldots, n-k-1$, there exists a closed neighbourhood N_{i} of s_{i} containing s_{i} in its interior such that if $P_{i} \in N_{i}$ and $s_{i}{ }^{\prime}$ is any point of a neighbourhood B_{i} of s_{i} on $B, B_{i} \subset N_{i}$, then

$$
\begin{equation*}
\operatorname{dim}\left(P_{1} \ldots P_{n-k-1}\right)=n-k-2 \tag{4.9}
\end{equation*}
$$

and
(4.10) $\operatorname{dim}\left(L_{n-h-1}{ }^{n}\left(s_{i_{0}}{ }^{\prime}\right) P_{i_{1}} \ldots P_{i_{h}}\right)=n-1 \quad(h=1, \ldots, n-k-2)$
for every choice of the $(h+1)$-tuple i_{0}, \ldots, i_{h} from $1, \ldots, n-k-1$.
Since $\sigma \subset O$, (4.1) and the definition of Σ^{k+1} imply that $\sigma \cap F=\emptyset$. Also by (4.3),

$$
\sigma \cap L_{n-1}^{n}\left(s_{i}\right)=\emptyset, \quad i=1, \ldots, n-k-1
$$

Finally, (4.4) implies

$$
\sigma \cap\left(L_{n-h-1}^{n}\left(s_{i_{0}}\right) s_{i_{1}} \ldots s_{i_{h}}\right)=\emptyset \quad(h=1, \ldots, n-k-2)
$$

for every $(h+1)$-tuple i_{0}, \ldots, i_{h} from $1, \ldots, n-k-1$. On the other hand, the flats

$$
\widetilde{F}=P_{1} \ldots P_{n-k-1}
$$

and the hyperplanes

$$
L_{n-h-1}{ }^{n}\left(s_{i}^{\prime}\right) \quad \text { and } \quad L_{n-h-1}^{n}\left(s_{i_{0}}^{\prime}\right) P_{i_{1}} \ldots P_{i h}
$$

depend continuously on the points $s_{i}{ }^{\prime}$ and P_{i}; cf. (4.10). Hence, σ being closed, we may assume that the neighbourhoods N_{1}, \ldots, N_{n-k-1} were taken so small that

$$
\begin{gather*}
\sigma \cap \widetilde{F}=\emptyset, \tag{4.11}\\
\sigma \cap L_{n-1}^{n}\left(s_{i}^{\prime}\right)=\emptyset, \tag{4.12}
\end{gather*}
$$

and

$$
\begin{equation*}
\sigma \cap\left(L_{n-h-1}^{n}\left(s_{i_{0}}^{\prime}\right) P_{i_{1}} \ldots P_{i_{h}}\right)=\emptyset \tag{4.13}
\end{equation*}
$$

for all choices of P_{i} in N_{i} and $s_{i}{ }^{\prime}$ in a neighbourhood B_{i} of s_{i} on $B, B_{i} \subset N_{i}$, $i=1, \ldots, n-k-1$. For the same reason, we may choose the N_{i} so small that the subarcs B_{i} are regular and that (4.5), (4.6), and (4.7) also hold for \widetilde{F}, i.e., that

$$
\operatorname{dim} \widetilde{F} L_{k}{ }^{n}(t)=n-1, \quad l \not \subset \widetilde{F} L_{k}{ }^{n}(t)
$$

and that

$$
\boldsymbol{\tau}(\widetilde{F}, t)=\left(\widetilde{F} L_{k}^{n}(t)\right) \cap l \not \subset \widetilde{F} L_{k-1}^{n}(t)
$$

for all $\widetilde{F}=P_{1} \ldots P_{n-k-1}$ and all $t \in \bigcup_{j=1}^{k+2} \bar{B}_{j}$. Thus $\tau(\widetilde{F}, t)$ is defined on each \bar{B}_{j} and maps it continuously and monotonically into l.

Let σ^{\prime} be a closed segment on l containing T in its interior and contained in the interior of σ. Then

$$
\tau\left(F, t_{j}\right)=T \in \sigma^{\prime}
$$

and, by (4.8),

$$
\tau\left(F, t_{\alpha j}\right)=Q_{\alpha} \notin \sigma^{\prime}, \quad \alpha=1,2 .
$$

Hence there are closed neighbourhoods M_{i} of s_{i} contained in N_{i} and such that s_{i} lies in the interior of $M_{i}, \tau\left(\widetilde{F}, t_{j}\right) \in \sigma^{\prime}$, and

$$
\tau\left(\widetilde{F}, t_{\alpha j}\right) \notin \sigma^{\prime} \quad \text { for all } P_{i} \in M_{i}, \quad i=1, \ldots, n-k-1, \quad \alpha=1,2 .
$$

Choose P_{1}, \ldots, P_{n-k-1} arbitrarily but fixed in M_{1}, \ldots, M_{n-k-1}, respectively. Then, \widetilde{F} is fixed and, as t moves on \bar{B}_{j} from $t_{1 j}$ through t_{j} to $t_{2 j}, \tau(\widetilde{F}, t)$ moves continuously and monotonically from $\tau\left(\widetilde{F}, t_{1 j}\right) \notin \sigma^{\prime}$ through $\tau\left(\widetilde{F}, t_{j}\right) \in \sigma^{\prime}$ to $\tau\left(\widetilde{F}, t_{2 j}\right) \notin \sigma^{\prime}$. Hence $\sigma^{\prime} \subset \tau\left(\widetilde{F}, \bar{B}_{j}\right)$ and for each $Q \in \sigma^{\prime}$, there exists a $t_{j} \in \bar{B}_{j}$ such that

$$
Q=\tau\left(\widetilde{F}, t_{j}\right), \quad j=1, \ldots, k+2
$$

Thus the $(n-k-1)$-flat $\widetilde{F} Q$ meets the osculating k-space of one point of each of $\bar{B}_{1}, \ldots, \bar{B}_{k+2}$; cf. (4.11).

Let B_{i} be a neighbourhood of s_{i} on $B, B_{i} \subset M_{i}$. Let φ denote the projection of R_{n} from a point Q of σ^{\prime}. Let P_{i} be a point of M_{i} which lies on the osculating hyperplanes of n distinct points of B_{i}; cf. 1.8.

We next verify that the $\operatorname{arcs} \varphi B_{i}$ and the points φP_{i} in φR_{n} satisfy all the assumptions of 2.3 . By (4.12), the arcs φB_{i} are regular. By (4.9) and (4.11), $\operatorname{dim} \varphi \widetilde{F}=n-k-2$ and thus the points $\varphi P_{1}, \ldots, \varphi P_{n-k-1}$ are independent. By (4.12) and 2.2, the points φP_{i} lie on $n-1$ osculating hyperplanes of φB_{i}. Finally, by (4.10) and (4.13),

$$
\operatorname{dim} \varphi\left(L_{n-h-1}{ }^{n}\left(s_{i_{0}}{ }^{\prime}\right) P_{i_{1}} \ldots P_{i_{h}}\right)=n-1
$$

for every choice of the $(h+1)$-tuple i_{0}, \ldots, i_{h} from $1, \ldots, n-k-1$, $h=1, \ldots, n-k-2$. Therefore by 2.3 , the $(n-k-2)$-flat $\varphi P_{1} \ldots \varphi P_{n-k-1}$ meets the osculating k-spaces of $k+1$ points of each of $\varphi B_{1}, \ldots, \varphi B_{n-k-1}$. Hence the $(n-k-1)$-flat $\widetilde{F} Q$ meets the osculating k-spaces of $k+1$ points
of each of B_{1}, \ldots, B_{n-k-1} and of one point of each of $\bar{B}_{1}, \ldots, \bar{B}_{k+2}$, altogether at least

$$
(n-k-1)(k+1)+(k+2)>(n-k)(k+1)
$$

osculating k-spaces of B. This completes our proof.

References

1. D. Derry, The duality theorem for curves of order n in n-space, Can. J. Math. 3 (1951), 159-163.
2. O. Haupt and H. Künneth, Geometrische Ordnungen, Die Grundlehren der mathematischen Wissenschaften, Band 133 (Springer-Verlag, Berlin-New York, 1967).
3. R. Park, On Barner arcs, Dissertation, University of Toronto, Toronto, Ontario, 1968.
4. P. Scherk, Über differenzierbare Kurven und Bögen. I. Zum Begriff der Charakteristik; II. Elementarbogen und Kurve n-ter Ordnung im R_{n}, Časopis Pěst. Mat. Fys. 66 (1937), 165-191.

University of Toronto, Toronto, Ontario;
Université de Montréal, Montréal, Québec

[^0]: Received June 20, 1969. This research was supported by bursaries from the Province of Quebec. It is part of a Ph.D. thesis written at the University of Toronto under the supervision of Professor Peter Scherk.

