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ON THE RANK NUMBERS OF AN ARC 

J. TURGEON 

0. Introduction. The &th rank number, r a n k ^ , of a differentiable arc B 
in real projective w-space is the least upper bound of the number of osculating 
^-spaces of B which meet an (n — k — l)-flat, k = 0, 1, . . . , n — 1. The 
number rank0I? is called the order of B\ cf. 1.1-1.3. It has been conjectured by 
Peter Scherk that 

(0.1) rank*5 ^ (k + l)(n - k), 

equality holding if and only if B has the order n; cf. [2, p. 396]. In this paper 
we prove the following results. 

THEOREM 1. If B is a differentiable elementary arc, then (0.1) holds for 
k = 0, 1, . . . , n - 1. 

THEOREM 2. / / B is a differentiable elementary arc and order B > n, then 
rank*£ > (k + 1) (n - k) for k = 1, . . . , n - 2. 

By a theorem of Park [3, p. 38], every differentiable arc contains a subarc 
of order n. This eliminates the assumption that B is elementary from 
Theorem 1. We do not know whether it can be dropped from Theorem 2. 

Acknowledgment. My thanks are due to Professor Peter Scherk for his help 
and guidance. 

1. Prerequisites, We first list some definitions and known results which 
will be used throughout the paper. Unless otherwise stated, they are quoted 
from [4]. 

1.1. We consider arcs in real projective w-space Rn. An arc B is the con
tinuous image of an open interval. Thus the points of B depend continuously 
on a real parameter s. The point corresponding to the parameter 5 will also 
be denoted by s. 

The image of a neighbourhood of the parameter 5 on the parameter interval 
is a neighbourhood of the point s on B. If a sequence of parameter values 
converges to the parameter 5, we say that the corresponding sequence of 
points on B also converges to the point s. 
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790 J. TURGEON 

1.2. The order of B is the least upper bound of the number of points that B 
can have in common with any hyperplane in Rn. Clearly, the order of B is not 
less than n. An arc of order n has end points. 

An arc is elementary if it is the finite union of arcs of order n and of their 
end points. 

The order of a point s on B is defined to be the order of a sufficiently small 
neighbourhood of s on B. A point s is called regular if it has order n. An ele
mentary arc has only finitely many singular, i.e., non-regular, points. An arc 
is regular if all its points are regular. 

1.3. We call a point 5 of B differentiable if all the linear osculating spaces Lk
n (s) 

exist, k = — 1, 0, 1, . . . , n. We construct them inductively. Define L^in(s) = 0. 
Suppose that we have defined the osculating &-space Lk

n(s) and postulated 
its existence. Then we postulate that: 

(i ) if / 7e s is a point of B sufficiently close to s, then tLk
n (s) is a (k + 1 )-space 

(here, tLk
n(s) denotes the linear subspace spanned by t and Lk

n(s); a similar 
notation will be used throughout). 

(ii) this (k + 1)-space converges as t —> s. Then we define 

Lk+1
n(s) = lim tLk

n(s). 

Thus L0
n(s) is the point 5 itself. We call Ln^Çs) the osculating hyperplane 

of B at s. If a hyperplane contains Lk
n(s) but not Lk+in(s), we say that it 

contains Lk
n(s) exactly, —l^k^n — 2. 

We say that B is differentiable if each of its points is differentiate. 

1.4. Let <p denote the projection of Rn from a point P . 
(a) If B is differentiable in Rn, then <pB is differentiable in Rn-i. 
(b) If B has order n and P £ B, then <pB has order n — 1. 
(c) If B has order n and P is an arbitrary point in space, then <pB is an arc 

of order n or n — 1. By a theorem of Haupt, every differentiable arc of order n 
in i^_i is elementary; cf. [2, p. 249]. Hence, the projection of an elementary 
arc is also elementary. 

(d) If B is regular and P does not lie on any osculating hyperplane of B, 
then ç>B is regular. 

From now on, "arc" means il differentiable elementary arc". 

1.5. A duality maps the family of the osculating ^-spaces of an arc B into a 
family of (n — k — 1)-spaces Mn-k-i(s) in the dual n-space. In particular, 
the osculating hyperplanes of B are mapped onto a family C of points. This 
family C is an arc and Ml-k-i(s) is the osculating (n — k — 1)-space of C at 
s, k = 0, 1, . . . , n — 1. 

1.6. Let B be an arc of order n; s Ç B. If a hyperplane contains Lk
n(s) 

exactly, count 5 with the multiplicity k + 1 as a point of contact of B with 
this hyperplane. Then the sum of the multiplicities of the points of contact of B 
with a hyperplane is at most n. 
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Dually, if a point P lies on Ln_k
n(s) but not on Z^-fc-iCO, count Ln^{s) as 

passing through P with the multiplicity ft. Then the sum of the multiplicities 
with which the osculating hyperplanes pass through P is at most n. 

These statements remain valid if one but not both end points are added to B. 

1.7. The class of any arc B is the least upper bound of the number of osculat
ing hyperplanes of B passing through a point P in Rn. The statements of 1.6 
imply that B has order n if and only if it has class n. 

1.8. If ft + 1 points of an arc B of order n converge to a point 5 of B, then 
the ft-space spanned by them converges to Lk

n(s) and, by duality, the inter
section of their osculating hyperplanes is an (n — ft — 1)-space which con
verges to Ln-k-i(s) (strong differentiability and strong dual differentiability). 

These statements also hold if we take into account the multiplicities 
described in 1.6. For instance, if S\ and s2 converge to s and 0 ^ j ^ ft — 1, 
S\ 7e s2, then the ft-space Ljl(s1)Ll-j_i(s2) converges to Lk

n(s). 
In particular, if all the ft + 1 points are identified, i.e. if one point is counted 

with the multiplicity ft + 1, we obtain the statement that the osculating 
spaces Lk

n(s) of an arc of order n vary continuously with s. Clearly, this last 
property extends to all our elementary arcs. 

1.9. Dualizing the projection of the dual of B, we obtain the dual projection 
<p* of B. Then ç*B is an arc in E = Rn-i whose points are given by 

9 w l e n i ^ O ) otherwise. 

This dual projection has the following properties; cf. 1.4. 
(a) If B has order n and E is an osculating hyperplane of B, then <p*B has 

order n — 1. 
(b) If B has order n and E is an arbitrary hyperplane, then <p*B is an arc 

of order n or n — 1. 
(c) If B is regular and E does not meet B, then cp*B is regular. 

2. Lower bounds for the rank numbers. 

2.1. LEMMA. Let B be a regular arc in Rn, s0 Ç B. Let I be a straight line which 
is not contained in any osculating hyperplane of B. Consider the mapping 

T(S) = m u w 
of B into I. If T(S) changes its direction at SQ, then 

T(SQ) = ir\Ln„2
n(so). 

Proof. Since B is elementary and regular, every point of B is strongly 
differentiate and strongly dually differentiable. 

The arc r{B) on / may be considered as the result of repeated dual pro
jections. Hence r{B) is elementary and r(s) changes its direction only finitely 
many times. 
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Since T(S) changes its direction at So, there are sequences st and s/, both 
converging monotonically to s0, such that 50 lies between st and s/ on B, for 
every i, and 

T(SÎ) = r ( s / ) = r<, 
say. Thus 

Let i —> oo. Then 
Ln-i

n(Si) r\ Ln-i
n(s/) —>Ln-2

n(so), 

by the strong dual differentiability of s0. Hence 

Ti —> T(S0) = Ln-2
n(so) H /. 

2.2. The following lemma is a slight generalization of a result due to Derry 
[1, P- 161]. 

LEMMA. Let Bbea regular arc in Rn. Let Pbea point ofRn lying on k osculating 
hyper planes of B, say 

pa^i)n..,nufe)) 
where Si < s2 < . . . < sk. If Q is a point of Rn which does not lie on any osculat
ing hyper plane of B, and <p is the projection of Rn from Ç, then <pP lies on at least 
k — 1 osculating hyper planes of <pB, say 

^a::ton...ni:;:l(u 
where 

si < h < s2 < . . . < 4- i < s*. 

Proof. Since Q does not lie on any osculating hyperplane of B, the inter
section 

T(S) = PQr\Ln^
n{s) 

is uniquely defined for all s £ B. Since 

r(Si) = r(si+1) = P 

for i = 1, . . . , k — 1 and T(S) is always distinct from Q, there exists at least 
one point tt on B with st < tt < si+h where T(S) changes its direction. By 2.1, 

The statement follows. 

2.3. LEMMA. For a fixed value of k, 0 g k ^ n — 2, to 2$i, . . . , Bn-k be 
regular arcs in Rn and let P i , . . . , Pn__k be points of Rn such that 

(i) Pi , . . . , Pn-k are independent, i.e., 

dim(Pi...P,_,) = n - k - 1, 

(ii) P i fo'es 0?£ w osculating hyper planes of Bu 

(iii) for all h with l ^ h ^ n — k — 1 awd ^ ^ r j ^ Ç Bjy 

&m{Lnr.h*(th)Pil...Pjh) = n 
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for every choice of the (h + 1)-tuple j 0 , . . . ,jh from 1, . . . , n — k. Then 
P i . . . Pn-k meets the osculating k-spaces ofk + l points of each of Bi9..., Bn„k. 

Proof. For i — 1, . . . , n — &, let <pt be the projection of Rn from Pt. Then, 
by property (iii) and 1.4(d), VnVn-i • • • <£W2#i is a regular arc in Rn-(h-D and 
<Pn . . . <p2Ph+i does not lie on any osculating hyperplane of <ph . . . <?2 î, 
1 ^ h -^ n — k — 2 (for h = 1, the <ps do not appear). Hence by 2.2, <p2Pi lies 
on n — 1 osculating hyperplanes of <p2 î, <PZÇ<LP\ lies o n n - 2 osculating 
hyperplanes of ÇW2-S1, and, in general, ^ + i . . . <p2Pi lies o n w - ^ osculating 
hyperplanes of çh+i. . . <£>2̂>i, A = l , . . . , w — fe — 1. Thus <pn_fc . . . <p2Pi lies 
on k + 1 osculating hyperplanes of ^_ f c . . . Ç2B1. But this means that 
Pi . . . Pw_fc meets & + 1 osculating ^-spaces of B\. Symmetrically, it meets 
k + 1 osculating ^-spaces of each of B2, . . . , Bn-k. 

2.4. LEMMA. Le/ 0 ^ & ^ w — 2. Suppose that si, . . . , 5w_fc are regular points 
of B with the following properties: 

(2.1) si, . . . , sn-k are independent 

and 

(2.2) dim(Ln_^(5J0)5^ . . . sJh) = n (h = 1, . . . , n - k - 1) 

for every choice of the (h + 1)-tuple j 0 , . . . , j h from 1, . . . , n — k. Then for 
i = 1, . . . , n — k, there exists a closed neighbourhood Ntof st in Rn containing st 

in its interior and such that, if Pt is any point of Nt and tt is any point of a 
neighbourhood Bt of s{ on B, Bt C Nu then 

(2.3) Pi , . . . , Pn-k are independent 

and 

(2.4) dim ( L ^ / J P ^ . . . PJh) =n (h = 1, . . . , n - k - 1) 

for every choice of the (h + 1)-tuple jo, . . . , jn from 1, . . . , n — k. 

Proof. Suppose (2.4) were false. Then there would exist an (h + 1)-tuple 
of indices jo, . . . , jh from 1, . . . , n — k and a sequence of (h + 1)-tuples 

/ x p x p x \ _ i o 

such that 

(2.5) lim tj* = sj01 lim P y i
x = sn, . . . , lim P ^ x = sjh 

and that 
T>n-hn\tjo )> P jx 1 • • • > P jh 

lie in a hyperplane E \ We may assume that the £ x converge to a hyperplane E. 
Since Ln-h

n(s) is continuous, (2.5) implies that 

•Lfn—h \Sjo)} Sjn • • • > SjTi 

lie in E, contradicting (2.2). 
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The proof of (2.3) is even simpler. 

2.5. Proof of Theorem 1. Without loss of generality, we may assume that 
n ^ 3, 1 ^ k ^ n — 2, and that B has order n. 

Let si, . . . , sn-jc be any n — k points of B. By 1.6, they satisfy conditions 
(2.1) and (2.2). Hence there exist closed neighbourhoods N\, . . . , Nn-k with 
the properties (2.3) and (2.4). 

Let Pi be a point of Nt lying on n osculating hyperplanes of a neighbour
hood Bi of St on B} Bx C Nu i = 1, . . . , n — k. Such points always exist by 
the strong dual differentiability of B; cf. 1.8. Then the points Pt and the 
subarcs Bi satisfy the assumptions of 2.3. Therefore the (n — k — l)-flat 
Pi . . . Pn-jc meets the osculating ^-spaces of at least k + 1 points of each of 
J3i, . . . , Bn-jc, i.e., altogether it meets at least (k + \){n — k) osculating 
^-spaces of B. 

3. Two lemmas. 

3.1. LEMMA. Let B be an arc of order greater than n in Rn. Let 2n be any finite 
set of points of B containing all the singular points of B. Then there exist a 
hyperplane E and n + 1 points s\, . . . , sn+1 of B such that 

(1)»: £ n s » = 0, 

(2)n: E contains si, . . . , sn+i exactly, 

(3)„: si, . . . , sn span E, 

(4)„: slf . . . , sn_i, 5w+i 5pa» £ , 

(5)n: dimÇLn^isj^Sj, . . . sjh) = n (h = 1, . . . , « - 3), 

/or ez/ery choice of the (h + 1) -tuple j 0 , . . . , j h from 1, . . . , n — 2. 

Note that the parameters sn and sn+i are distinct, but that the corresponding 
points in Rn may coincide. 

Proof. We note that (5)« is void for w ^ 3. 
The case n = 1 is trivial. Suppose that the statement is true up to n — 1. 
Some hyperplane meets B in more than n points. We may assume that these 

points span the hyperplane. Hence at least one of them, say s0, has the property 
that the projection <poB of B from s0 has order > n — 1. With B, cpoB is an 
elementary arc; cf. 1.4(c). 

Let S0
W be the union of 2n with s0 and all the points of B which coincide 

with so. 
Let Zon~1 be the set consisting of <£>o20

w, the points of <poB coinciding with 
points of <po%on, and the singular points of <p0B. 
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By our induction hypothesis, there exists a hyperplane Eo through SQ and 

through n points s0i, . . . , s0n of B such t h a t 

(l)n_i: cp0E0 C\ 2on~l = 0, and thus {soh . . . , s0n} H 20
w = 0, 

(3)re_i: <£>oSoi, • • • , < ô̂ o,w-i span çoE0} 

(4)w_r. <poSoi, • • • , <poSotn-2, <PoSQn span <p0£o. 

Hence, except possibly for the pair So,w-i, 5ow, no two of the points 
Soi, • • • , ^ofW-i, s0n can coincide. 

If n = 2 and Soi and S02 coincide, p u t 52 = Soi and s$ = s02. Each of the 
conditions 

(i) s1 (L L I 8 ( 5 8 ) W L I ! ( J 8 ) , 

(ii) s2 g Li2(*i) , 
(iii) 5is2 H 2 2 = 0 

excludes only a finite number of points. Hence there is a point si satisfying 
all three of them. Then s±, s2l and s3 satisfy our requirements. 

If n = 2 and s0i and s02 do not coincide or if w > 2, then we pu t $i = s0i. 
Then $i does not coincide with any of so2, . . . , Son, so t ha t Si has the following 
properties: 

(a) i : Sx i 2W, 
(b) i : if <pi is the projection from si, then order <piB > n — 1, since E0 

meets 5 in s0, si} s02, . . . , sow 
Define 

Si" = 2* U {5 G B\ s G Z*-iw(*i)} U {5 G B | 5i G Lw_iw0>)}. 

Let 2 * - 1 consist of <pi2in and all the points of ç>iB coinciding with any point 
of <pi2f. Then cp^ G S""1 since Si G L„_in(si) . 

By the induction assumption, there exists a hyperplane E\ through s\ and 
through n points Su, . . . , Si,n+i on B such t h a t 

( l )„_i : ^ i £ i C\ 2*"1 = 0, and thus {s12, . . . , s M + i } H 2X
W = 0, 

(3)w_i: <piSi2, . . . , ç>i5iw span <pi£i, 

(4)n_i: ^i5i2, . . . , ^i5i,„_i, <^i5i,n+i span <pi£i. 

If « = 2, then by the definition of 2W_1 , £ = 5iSi2Si3 has the required proper
ties. F rom now on we may assume t h a t n ^ 3. 

Except perhaps for the pair s\ni $i,n+i, no two of the points si, si2, . . . , s i , w t i 
coincide. P u t s2 = Si2. Then the points Si, s2 have the following properties: 

(a) 2 : 5 ! 5 2 n S w = 0, 

(b)2: if <Pi is the projection from st, 

i = 1, 2, then order <piB > n — 1 and order <p2(fiB > n — 2, 

(c)2 : dim(si52) = 1, 

(d)2*. dim(Lw_iw(5 ; o)5 ; i) = n for any permuta t ion j 0 , j i of 1, 2. 
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Now suppose that we have k points su . . . , sk for some fixed k, 
2 ^ k ^ n - 3, such that 

(a),: Sl . . . sk H 2* = 0, 

(b)*: if ^i is the projection from st (i = 1, . . . , k), then 

order ç>jh . . . çhB > n — h (h = 1, . . . , k), 

where j i , . . . ,7^ is any /z-tuple from 1, . . . , k, 

(c)*: d im^i . . . sk) = k - 1, 

(d)*: dim(Ln_/(5 i 0)^^ . . . sJh) = n for any (h + l ) - tuple j 0 , • . • Jh 

from 1, . . . , k (h = 1, . . . , k — 1). 

Define 

2 / = 2W U {5 € JB| dim(s Sl . . . **) < &} 

U { 5 Ç 5 | d i m ( L n _ / ( ^ 0 ) 
^'î • • • sjh) ^ w 

for some h, 1 ^ h ^ £, and some (A + 1)-tuple 
5,0, . . . , sjh from 5, 5i, . . . , 5*}. 

Put &k = <pk . . . <pi. Let 2w_fc consist of ^ 2 / and all the points of ^kB 
coinciding with any point of ^ 2 / . Then ^kst G 2W_A: since s* G L^-a-iCs*)» 
i = 1, . . . , k. 

Again by our induction hypothesis, there exists a hyperplane Ek through 
su . . . , sk and through n — k + 1 points sktk+i, . . . , ^ iW+i on 5 such that 

(1)B_*: *kEk r\ 2n~k = 0, and thus {sktk+1, . . . , sti)l+1} Pi 2 / = 0, 

(3)„_*: ^* ,*+ i , • • • , ^kS&n span ^ £ f c , 

(4)»-*: ^*. j t+i , • • • , ^hSjcn-i, ^kSk,n+i span •¥*£*. 

In particular, no two of the points sktk+i, . . . , sktn+i coincide, except possibly 
for the pair sk,n, skf7l+i. Put sk+i = skik+1. Then the points sh . . . , sk+i have 
the properties (a)k+i, (b)A+i, (c)*+i> and (d)*+i. We have thus proved by 
induction the existence of n — 2 points s±, . . . , sn_2 with the corresponding 
properties (a)„_2, . . . , (d)w_2. 

We now define 

2W_2
W = 2W U {5 G 5 | dimO Sl. . . s„_2) < » - 2} 

\J {s £ B\ dim(Liw0) si . . . $i_iLin(s<)s«+i . . . sn-2) < n 

for some i, 1 ^ i ^ w - 2 | . 

Put SI> = <pw_2 . . . <pi. Let 22 consist of ^ 2 n _ 2
n and all the points of ^B 

coinciding with some point of ^2W_2
W. Then ^st G 22 since sf G Zaw(s0> 

'̂ = 1, . . . , n — 2. 
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Since ^B has order > 2 (by property (b)n_2), there is a hyperplane E 
through si, ... , 5n_2 and through three points v_i, sn, sn+i of B such that 

(1)2: * E H 22 = 0, and thus {5jl_lf sBf sw+1} H 2„_2
W = 0, 

(2)2: \FJE contains >f%_i, SI%, \fon+i exactly, 

(3)2: ^ n - i , *s» span ^ E , 

(4)2: ^ » - i , ^s„+i span ^ E . 

We can now verify that si, . . . , sn+i possess the properties ( l ) w , . . . , (5)n. 

Verification of (l)n. If s lies on s±. . . v_2, then si sw, by (a)w_2. Hence, 
if 5 G £ H 2W, then s Î 5 i . . . s„_2 and 

*s € * ( E n sw) c ^ n s 2 = 0, 
a contradiction. 

To verify (2)n, first let 1 g i ^ w — 2. Since SFs* G S2, we have ^rst (? SFE, 
by (1)2. Hence Lin(si) (£_ E and E contains st exactly. 

If n - l ^ i ^ n + 1, then Vst G *E. Thus * s , g S2, by (1)2, and 
Sit sx... sn-2. By (2)2, L i 2 (^<) £ ^ £ - BY t h e definition of 2n_2", 

dim(Li , l(5 i) 5 i . . . sn-2) = » — 1. 

Hence Liw (s,) ^ £ . 

Verification of (3)n. By (c)w_2, dim($i . . . sw_2) = w — 3. Hence 
dim \I>E — 1. Let Si, . . . , sn span the subspace F of E. Since 

Sn—1> ^BJ ̂ w+1 G 5 I . . . Sw_ 2 

and ïïsn-i, ^fsn span ^ E , we have ^F = ^ E . Hence dim ^F = 1, dim 
F = n - 1 and F = E. 

As for (4)n, clearly, we can replace sw by V u and (3)2 by (4)2 in the 
verification of (3)ra to obtain (4)n. 

Finally, the property (d)w_2 of si, . . . , sw_2 yields (5)n. 
This completes the proof of 3.1. 

3.2. LEMMA. Let B be an arc of order n in Rn. Let so G B and 

- t o G •L'n—l >(so)\Ln_2
n(so). 

Then there exist an open neighbourhood 0 of Pjjn Rn and a closed neighbourhood 
Bo of so on B such that, if P is any point in 0*Jhen 

(3.1) P G Ln^(s)\Ln.2
n(s) 

for some s G BQ. 
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Proof. Since Po lies on at most n osculating hyperplanes of B, we can find 
a closed neighbourhood B0 of s0 on B, with endpoints, say, Si and s2, such that 
P 0 i Ln-i

n(s) for all 5 Ç ^ 0 , s ̂  s0. Let 

2 = Lw_iw(*i) U I B „ ; f e ) U U L,-2W(5). 

Suppose that there is no neighbourhood of P 0 with the desired property. 
Then there exists a sequence Pi , P2 , . . . of points converging to P 0 for which 
(3.1) does not hold. Since 2 is closed and Po (? 2 , we may assume that no 
point of the sequence Pi , P2 , . . . is in 2. Thus 

(3.2) Pi € Z ^ O O for all 5 £ B0, i = 1, 2, . . . . 

Let /j = PoPi and 

(3.3) Ti(s) = ! , n J W f c ) , 5 G J3o-

Since Pw is compact and r*(s) is continuous, Ti(Po) is a closed segment on lt 

containing P 0 . By 2.1, the end points of T*(P 0 ) are points of 2. Since 
Po G Ti(^o)\2, Po is an interior point of Ti(B0). 

By (3.2) and (3.3), Pt € r*(-Bo) and, for all i, Pt and P 0 are separated on Z* 
by two points of 2. Since 2 is closed, no sequence of points of 2 can converge 
to P0 . Thus the sequence Pt does not converge to P 0 either, a contradiction. 

4. Proof of Theorem 2. For n è 3, let 5 be an arc of order greater than 
n in Rn. Let E and si, . . . , sw+i be chosen according to 3.1, with 2W consisting 
of the singular points of B. 

Given k, 1 ̂  k ^ n — 2, let SP" denote the projection of Rn from 
F = Si . . . Sn-jc-i. By 3.1, (3)w, and (4)n, P does not contain any of 
sw_fc, . . . , sn+i. Hence ^?B is an arc of order greater than k + 1 in ^Rn = P^+i. 
Hence also 

class VB > k + 1. 

Let 2*+1 be the finite set of points of ̂ B consisting of s1} . . . , sn-k-i, 2W, 
and the singular points of ^B. Then applying duality to 3.1, we obtain 
k + 2 points gi, . . . , gfc+2 on ^rB and a point Q in ^PTO such that 

(l)*+i*: Qd Lk*+Hs) if ̂  € 2*+1, 

(2)*+i*: Q e L^iq^LltKqj), j = 1, . . . , * + 2. 

Thus g, g 2*+1. 
By 3.2, there exists an open neighbourhood of Q in ^Rnf all of whose points 

have the above properties. Projection being continuous, the inverse image of 
that neighbourhood is an open set 0 in Rn. Thus, if T is any point in 0, there 
are values tj near q3- on B such that 

*T g JV+^s) if * € 2**1 
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and 

Hence 

(4.1) T € FLk
n(s) if Vs € 2*+* 

and 

(4.2) T 6 FLk"{tj)\FLk^{tj). 

By (5)„, the flats 

Ln_ft_iw(Si0)sfl . . . s** (A = 1, . . . , n - k - 2) 

are hyperplanes in Rn; here i0, • • • , H is any (h + 1)-tuple from 

1, . . . , n — k — 1. 

Being open, 0 is not contained in any of these hyperplanes nor in any of the 
osculating hyperplanes Lw_iw(sO> i = I, . . . ,n — k — 1. Moreover, we may 
choose 0 so small that none of these hyperplanes meets 0, i.e., that if T is any 
point of 0, then 

(4.3) T <Z Ln^
n{Si) (i = 1, . . . , n - k - 1) 

and 

(4.4) T £ L ^ i - ^ o K . . . sih (h = 1, . . . , n - k-2), 

where io, . . . , ih is any (h + l)-tuple from 1, . . . , n — k — 1. 
Let T 6 0 and let tù G B be fixed satisfying (4.2), j = 1, . . . , k + 2. Let 

/ be any line through T such that 

KZFLk
n(tj), i = l , . . . , & + 2 . 

Consider the mapping 

r ( F , 0 = {FLk
n(t))C\l 

defined for all t on 5 for which 

(4.5) dim(FL t" (0) = » - 1 

and 

(4.6) KlFUit). 

Since, by (4.1) and the definition of 2fc+1, (4.5) holds for each tjy (4.5) will 
be satisfied for all t sufficiently close to any tj. For these values of t, the hyper-
plane FLk

n{t) will depend continuously on t, and hence (4.6) will be satisfied 
for all t close to tj. Thus T(F, t) will be defined and continuous in some neigh
bourhood of tj, j = 1, . . . , k + 2. 

Similarly, since by (4.2), 

(4.7) r ( F , 0 g FL*-i"(0 
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for t = tj, this relation will still hold in some smaller neighbourhood of tj. 
Thus altogether, r (P , t) will be defined, continuous, and, by 2.1, monotonie 
in that smaller neighbourhood of tj. Let <Tj denote, for each 7, the image of 
that neighbourhood on I. Thus T Ç Gj and there is a closed neighbourhood a 
of T on I containing T in its interior and contained in all the <J j and in O. 

Let Qi and Q2 denote the endpoints of <r. Then there are points hj and t2j 

near ^ such that 

(4.8) T(F, hj) = Ql9 T{F, t2j) = Q2f j = 1, . . . , k + 2. 

As / moves from /^ to t2j, T(F, t) moves monotonically through a from Ci to Q2. 
Let 5 ; denote the closed neighbourhood of tj on B bounded by hj and t2j. 

By properties (3)n and (5)n of $i, . . . , sn+i> we may apply 2.4 to the 
points Si, . . . , sn-fc-i of 5 . Thus for i = 1, . . . , ^ — k — 1, there exists a 
closed neighbourhood Ntoi st containing st in its interior such that if P t Ç iV* 
and s/ is any point of a neighbourhood 5* of st on £ , 5* C Nit then 

(4.9) dim ( P i . . . Pn-ic-i) = » - Jfe - 2 

and 

(4.10) dim(Z„_ft_/0>,o')-Pu • . . Pih) = n - 1 (A = 1, . . . , n - jb - 2) 

for every choice of the (h + l)-tuple i0, . . . , ih from 1, . . . , n — k — 1. 
Since a C 0, (4.1) and the definition of 2*+1 imply that a- C\ F = 0. Also 

by (4.3), 

a H Lw_f(5,) = 0, i = 1, . . . , n - k - 1. 

Finally, (4.4) implies 

o- C\ (L»-»_in(s<o)s<i . . . sih) = 0 (A = 1, . . . , n - k - 2) 

for every (h + l)-tuple i0, . . . , ih from 1, . . . , n — k — 1. On the other hand, 
the flats 

F = P1... Pn_,_! 

and the hyperplanes 

Ln-h-in(Si ) and Ln-h-i
n (si0')Pn . . . Pih 

depend continuously on the points s/ and PU cf. (4.10). Hence, a being 
closed, we may assume that the neighbourhoods iVi, . . . , Nn-k_i were taken 
so small that 

(4.11) ar\ F = 0, 

(4.12) <rH £„_!*(*/) = 0, 

and 

(4.13) a r\ (Z*^- i*W)P<i • • • -Pu) = 0, 
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for all choices of Pt in Nt and s/ in a neighbourhood Bt oî st on B, Bt (Z Niy 

i = 1, . . . , n — fe — 1. For the same reason, we may choose the Nt so small 
that the subarcs Bt are regular and that (4.5), (4.6), and (4.7) also hold for 
P, i.e., that 

dim FLk
n(t) = n - 1, I (£ FLk

n(t) 
and that 

r(F,t) = {FLk
n{t))CM(lFLk^{t) 

for all F = Px . . . Pn-k-i and all t £ U j i i 5 ; . Thus T(F, t) is defined on each 
B j and maps it continuously and monotonically into /. 

Let a' be a closed segment on / containing T in its interior and contained in 
the interior of a. Then 

r(F,tj) = T 6 </ 
and, by (4.8), 

r(F,taj) = Qui *', a = 1,2. 

Hence there are closed neighbourhoods Mt of st contained in Nt and such that 
St lies in the interior of Mu r(F, t3) £ o-', and 

T(F, taj) £ a' for all Pt Ç Af<, i = 1, . . . , n - & - 1, a = 1, 2. 

Choose Pi , . . . , Pn-Tc-i arbitrarily but fixed in ikfi, . . . , Afn_fc_i, respectively. 
Then, P is fixed and, as J moves on Bj from /^ through tj to £2j, T ( F , 0 moves 
continuously and monotonically from T(F, hj) (? o-' through r(F, 2y) G o7 to 
T(F, hj) £ <?'. Hence <rf C T(F, BJ) and for each Q £ o7, there exists a ^ Ç P -̂
such that 

Q = T(F,tj), j= 1, . . . , * + 2 . 

Thus the (n — k — l)-flat PQ meets the osculating &-space of one point of 
each of Pi , . . . , -8*4.2; cf. (4.11). 

Let Bt be a neighbourhood of Si on B, Bt C M^. Let <p denote the projection 
of Rn from a point Q of o7. Let P* be a point of Mt which lies on the osculating 
hyperplanes of n distinct points of BÙ cf. 1.8. 

We next verify that the arcs <pBi and the points çPt in cpRn satisfy all the 
assumptions of 2.3. By (4.12), the arcs <pBt are regular. By (4.9) and (4.11), 
dim (pF = n — k — 2 and thus the points <pPi, . . . , (pPn_k„i are independent. 
By (4.12) and 2.2, the points (pPt lie on n — 1 osculating hyperplanes of <pB *. 
Finally, by (4.10) and (4.13), 

dim (P(Ln_h_1
n(si0

,)Pil . . . Pih) = w - 1, 

for every choice of the (^ + 1)-tuple i0, . . . , % from l , . . . , w — & — 1, 
A = 1, . . . , » - k - 2. Therefore by 2.3, the (n - k ~ 2)-flat <?Pi. . . cpPn~ic-i 
meets the osculating ^-spaces of k + 1 points of each of <pBi, . . . , <pBn-k-i. 
Hence the (n — k — l)-flat FQ meets the osculating ^-spaces of k + 1 points 
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of each of Bi, . . . , Bn-k-i and of one point of each of Bi, . . . , Bk+2, altogether 

at least 

(n - k - l)(k + 1) + (k + 2) > in - k)(k + 1) 

osculating ^-spaces of B. This completes our proof. 
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