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Abstract

We consider sequences of closed cycles of exponential single-server nodes with a single
bottleneck. We study the cycle time and the successive sojourn times of a customer when
the population sizes go to infinity. Starting from old results on the mean cycle times under
heavy traffic conditions, we prove a central limit theorem for the cycle time distribution.
This result is then utilised to prove a weak convergence characteristic of the vector of
a customer’s successive sojourn times during a cycle for a sequence of networks with
population sizes going to infinity. The limiting picture is a composition of a central limit
theorem for the bottleneck node and an exponential limit for the unscaled sequences of
sojourn times for the nonbottleneck nodes.
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1. Introduction

We study the behaviour of cyclic networks of exponential single-server queues when a fixed
number of nodes is filled with an ever increasing population. Such studies date back to the
general model construction of Gordon and Newell [8]. There are essentially two different
cases.

(i) All servers have the same load. In this case the total population in the system is shared
equally by all nodes up to random fluctuations.

(ii) Differently loaded servers exist. In this case bottlenecks occur, which in the simplest
case with exactly one slowest server means that almost the whole population is queued
up at this slowest server.

In the cyclic case the load carried by the different nodes is proportional to their mean service
times. This means that in case (i) (the case of balanced machines) all servers have the same
service rate, and in case (ii) if there is exactly one server with smallest service rate then this
node evolves as a unique bottleneck.
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Our main interest is in the detailed travel-time behaviour of individual customers in case (ii).
The starting point is the steady-state distribution of a customer’s vector of successive sojourn
times at the different nodes during a cycle. Furthermore, we are interested in the customer’s
cycle time distribution. These distributions are known, given in the transform domain by their
respective Laplace–Stieltjes transforms (LSTs) [4], [18]. We transform these formulae in a
way that allows us to prove weak convergence results for the customer’s travel-time behaviour
when the bottleneck dominates the travel times. This was studied as the influence of the slowest
server in [3].

The usual interpretation of the results obtained by Gordon and Newell [8] is that with an
increasing number of customers the bottleneck node approaches asymptotically a Poissonian
source for the network, while all the other nodes eventually form an open ergodic tandem
system, the behaviour of which is well understood: local geometrical queue length distribution
and independence over the nodes in steady state. While this is generally understood as a
statement about the queue length description of the cycle, it seems to be rather obvious that a
similar property should hold for cycle times and their asymptotic behaviour, respectively, for
the joint sojourn times of a customer during a cycle.

The influence of the slowest server [3] and Chow’s [6] observation about the asymptotic
distributional behaviour of cycle times in a two-stage cycle suggest that there should be a
standard normal limit of the scaled cycle times; this is proved in Theorem 4.1. On the other hand,
the usual interpretation suggests that even the unscaled sojourn times at the nonbottleneck nodes
should converge in some sense to exponential distributions. This will come out from our main
theorem, Theorem 5.1, as an immediate corollary and supports anew the usual interpretation.

Theorem 5.1 aggregates all sojourn times of a customer during a cycle, in the bottleneck and
the nonbottleneck nodes. Owing to the above discussion, the limiting procedure should not be
performed using a general scaling over all nodes. It turns out that, for the bottleneck node, a
central limit scaling is appropriate, while, for the nonbottleneck nodes, no scaling is necessary.

This is different to the case of balanced machines (case (i)), where Kelly [11] proved that
an overall law of large numbers scaling is the appropriate one to obtain distributional limits for
sojourn times, which nevertheless are not normal.

Our approach in this paper is in line with the classical investigation of Gordon and Newell [8],
where the bottleneck was considered to be exploding when the population increased, while the
nonbottleneck nodes showed regular behaviour and were studied using conventional network
processes. These results describe the networks’ behaviour at a fixed time point in equilibrium
and the networks’ limiting distributions. More recent research in this direction has been carried
out; see, e.g. [1] and the references therein.

We consider the exploding bottleneck and the regularly developing nodes in a joint picture,
which is only possible if the behaviour of the bottleneck is described suitably rescaled. Because
we are interested in sojourn and cycle times of customers, we have to observe the different
networks not only at a fixed time instant or asymptotically, but in a suitable equilibrium over a
(finite) random time horizon.

Owing to the normal limits which our results exhibit, our investigations are clearly related to
the diffusion approximation. In the literature there are two paths in this area: the diffusion limit
of the steady states for a sequence of networks via the central limit theorem and the diffusion
limit of the sequence of (transient) processes via functional central limit theorems. An early
survey on both problems is [13, Section 3], which dealt with closed systems of the repairman
type: approximating the equilibrium distribution and the processes as a whole. More recent
book sections on diffusion approximations for general closed networks via functional central
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limit theorems are [5, Section 7.10] and [12, Section 6.2]; see also survey [19]. As will be
seen, our results are related to both paths, because on the one hand we only consider systems
in steady state, but on the other hand we observe the systems’ behaviour over time.

But our approach is different from the standard diffusion approximations of networks. One
important difference is that we do not have state space collapse, which means that there is
convergence in distribution ‘in heavy traffic (after normalization) to diffusion limits which
“live” on a lower dimensional space than the original system’ [17]. Such a state space collapse
would happen in our systems if the nonbottleneck sojourn time sequences underwent a central
limit theorem scaling. This can be concluded from the description in the cited references from
the respective statements on actual workloads (which in the case of first-come–first-served
(FCFS) is the actual waiting time of a customer), and will be obvious from our proofs.

Further related results on sojourn time approximations in simple closed queueing networks
with processor sharing systems are proved by Mitra and Morrison; see [15] and the references
therein. Diffusion approximation for sojourn times in open Jackson networks is developed
in [16].

The paper is organized as follows. In Section 2 we describe the model and collect the
necessary results on sojourn time distributions. In Section 3 we recall Boxma’s result on the
influence of the slowest server on the total cycle time and add on a somewhat curious observation
about the behaviour of the joint vector of a customer’s sojourn times given that his total cycle
is known. This and the asymptotic moments of the cycle times and the local sojourn times
(presented here) will be utilised in the proof of Theorem 5.1. In Section 4 we prove the central
limit theorem for the overall cycle time when the population size grows unboundedly. The
main problem in performing the proof is to suppress the strong dependencies in the summands
which constitute the cycle times. The asymptotic behaviour of the joint vector of sojourn times
is derived in Section 5.

2. Closed cycle with M stations

We consider a closed cyclic queueing network withM nodes (stations), where stationQ[i],
i = 1, . . . ,M , is a single server with infinite waiting room under a FCFS queueing discipline.
A fixed number N ≥ 1 of identical customers circulate in the network. If the service of
a customer at node Q[i] terminates, he moves instantaneously to node Q[i + 1] (he moves
instantaneously to node Q[1] if a service ends at node Q[M]). The customers at station Q[i]
(if there are any) move one position forward and the service of the customer at the head of the
queue begins immediately. If there are further customers present at queue Q[i] at the arrival
instant of the moving customer, he joins the tail of the queue; if there are no further customers,
his service begins immediately. Jumps and reorganisation of the queues take zero time. Service
times of all customers at station Q[i] are exp(µi)-distributed and are an independent family
and independent of anything else. The joint queue length process of the cycle is a strong
Markov process, which is irreducible and positive recurrent with steady-state distribution [8],
given by

π(M,N)(n1, . . . , nM) = 1

G(M,N)

M∏
i=1

(
1

µi

)ni
(2.1)

with

(n1, . . . , nM) ∈ Z(M,N) = {(n1, . . . , nM) ∈ N : n1 + · · · + nM = N}
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and normalising constant

G(M,N) :=
∑

n∈Z(M,N)

M∏
i=1

(
1

µi

)ni
.

We fix some test customer (TC) and evaluate the asymptotic and stationary characteristics of the
TC’s sojourn times and cycle times. The starting instants of the TC’s cycles are his successive
entrance times into station Q[1]. The limiting distribution of the vector of the TC’s successive
sojourn times during his cycles is determined by the LST (see [4, Theorem 1]):

φ(M,N)(θ1, . . . , θM) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M∏
j=1

(
µj

µj + θj

)nj+1

, 0 ≤ θj < 1.

(2.2)
Here π(M,N−1)(n1, . . . , nM) (given by (2.1)) is the steady-state probability that at the arrival
instants of the TC atQ[1] there are n1 further customers present at nodeQ[1] (without counting
the TC himself), and nj customers at nodes Q[j ] for j ∈ {2, . . . ,M}.

The LST of the limiting distribution of the TC’s cycle time is (see [18])

ψ(M,N)(θ) =
∑

n∈Z(M,N−1)

π(M,N−1)(n)

M∏
j=1

(
µj

µj + θ

)nj+1

. (2.3)

The sojourn and cycle time distributions, (2.2) and (2.3), are by definition limiting distributions.
They can also be considered as stationary distributions under a customer stationary regime [7].
Our results can be interpreted in both situations. We henceforth fix the following notation for
a cycle with M nodes and N customers, including the TC.

An M-dimensional vector with nonnegative real coordinates

(S
(N)
1 , S

(N)
2 , . . . , S

(N)
M ) ∼ φ(M,N)(θ1, . . . , θM),

i.e. having distribution with LST φ(M,N)(θ1, . . . , θM), denotes the TC’s successive sojourn
times during a cycle under customer stationary conditions, and a nonnegative real variable

S(N) ∼ ψ(M,N)(θ),

i.e. having distribution with LST ψ(M,N)(θ), denotes the TC’s cycle time under customer
stationary conditions.

It is well known that in the case that not all service ratesµj are the same in networks with many
customers cycling, bottlenecks will occur, i.e. nodes where almost all customers will queue up
in the long run. The bottleneck nodes are the stationsQ[i] withµi = min{µj : j = 1, . . . ,M}.

We shall assume throughout (unless otherwise stated) thatQ[1] is the only bottleneck station
and, for technical reasons, that all service rates are distinct, i.e. µ1 < µ2 < · · · < µM . From
the product-form steady state and sojourn time distributions, this ordering assumption does not
reduce generality.
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3. The influence of the slowest server

If station Q[1] is the only bottleneck of the cycle, it is not surprising to the TC that in the
case of a large population almost all other customers are waiting before him at Q[1] when his
cycle commences. Then, in particular, it follows (see [3]) that, even for µ1 < µ2 ≤ · · · ≤ µM ,

E(S(N)) = Nµ−1
1

(
1 +O

((
µ1

µ2

)N))
,

var(S(N)) = Nµ−2
1

(
1 +O

((
µ1

µ2

)N))
, N → ∞.

(3.1)

From (3.1), obviously in heavy traffic the slowest queue generates the main fraction of the cycle
time of the TC. This clearly reflects the bottleneck behaviour with respect to the number of
customers. So, it is reasonable to approximate the distribution of the cycle time for large values
ofN by the sum ofN consecutive service times at the slowest queue. This tempting conjecture
is supported by Chow’s [6] observation that in a two-stage cycle a result parallel to (3.1) holds
for the LST of the cycle times as well. Moreover, this suggests that there should hold some
form of central limit theorem for the rescaled cycle time, when the number of customers tends
to ∞, while the number of stations remains fixed. This will indeed be proved in Section 4.

Although the quantitative results in (3.1) are completely in line with intuition, there is still
something behind the first- and second-order picture expressed there. This can be expressed as
a conditional invariance property of the sojourn times; see [14] for a discussion. We state the
result here without further comments because we shall need it for the derivations later on.

Theorem 3.1. (An invariance property for the conditional sojourn time distribution.) For
cycles with general service rates (with or without bottlenecks), the conditional distribution
of the TC’s successive sojourn times, given his cycle time, is independent of the number N of
customers.

For measurable and bounded h : RM+ → R, we have the conditional expectation

E
(
h ◦ (

S
(N)
1 , . . . , S

(N)
M

) | S(N)1 + · · · + S
(N)
M = t

)

=
∫
�tM−1

h

(
t −

M∑
j=2

xj , x2, . . . , xM

)
µ1 exp(−µ1t)

×
M∏
j=2

µj exp(−xj (µj − µ1)) d(x2, . . . , xM)

×
(∫

�tM−1

µ1 exp(−µ1t)

M∏
j=2

µj exp(−xj (µj − µ1)) d(x2, . . . , xM)

)−1

,

where, for M ∈ N+ and t ≥ 0, we define

�tM = {(x1, . . . , xM) ∈ RM+ : x1 + · · · + xM ≤ t}.

As preparation (which is of independent interest) for performing the analysis, we state the
asymptotics of the moments’ behaviour for cycle times (which follows directly from Boxma’s
results) and for local sojourn times (which is done by direct but tedious computations from (2.2)).
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Lemma 3.1. For pairwise distinct service rates, we have the following local asymptotics of
moments.

(i) The mean cycle time and the cycle time variance:

lim
N→∞

1

N
E(S(N)) = 1

µ1
, lim

N→∞
1

N
var(S(N)) = 1

µ2
1

.

(ii) The bottleneck mean and the variance of the sojourn time:

lim
N→∞

1

N
E
(
S
(N)
1

) = 1

µ1
, lim

N→∞
1

N
var

(
S
(N)
1

) = 1

µ2
1

.

(iii) The nonbottleneck mean and the variance of the sojourn time:

lim
N→∞ E

(
S
(N)
k

) = 1

µk − µ1
, lim

N→∞ var
(
S
(N)
k

) = 1

(µ1 − µk)2
.

(iv) The covariance of sojourn times at a bottleneck and some other station:

lim
N→∞ cov

(
S
(N)
1 , S

(N)
l

) = − 1

(µ1 − µl)2
.

(v) The covariance of sojourn times at two nonbottleneck stations:

lim
N→∞ cov

(
S
(N)
k , S

(N)
l

) = 0, k, l 	= 1.

A short comment may be in order here. From Lemma 3.1(iv) we see that the covariances
between a customer’s sojourn times at the bottleneck and the other nonbottleneck nodes do not
vanish in the limit. In contrast to this, the usual interpretation, as described on page 334, states
that in the limiting open tandem system the Poissonian source is independent of the service
mechanism at the stations. By direct computations, it can be shown that results similar to
Lemma 3.1(iv) and (v) hold for the joint queue length vector as well.

4. A central limit theorem for the cycle time

As suggested by the influence of the slowest server, we will prove in this section a central
limit theorem for the TC’s cycle time. The running index which tends to ∞ in this statement
will be the number of customers in the cycle.

The main problem which we have to overcome are the strong dependencies of the TC’s
successive sojourn times during his cycle. Although the result of Boxma suggests that cycle
times can be approximated by sums of independent exp(µ1) variables, the dependent sojourn
times at the nonbottleneck nodes will come into play. To suppress these dependencies requires
lengthy computations.

Theorem 4.1. The sequence (T (N))N∈N of the normalised and centred sojourn times

T (N) := S(N)− E(S(N))√
var(S(N))

converges with an increasing number of customers weakly to the standard normal distribu-
tion N(0, 1).
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Before proving the theorem, we prepare some preliminary steps. For pairwise distinct service
ratesµi 	= µj for i, j ∈ {1, . . . ,M} and i 	= j , we can write the normalising constant in closed
form [9] as

G(M,N) =
M∑
i=1

(
1

µi

)N M∏
j=1
j 	=i

(
µj

µj − µi

)
. (4.1)

We define coefficients Ci,N+1, i ∈ {1, . . . ,M} and N ∈ N0, related to G(M,N) by

Ci,N+1 :=
(

1

µi

)N M∏
j=1
j 	=i

µj

µj − µi

/ M∑
i=1

(
1

µi

)N M∏
j=1
j 	=i

µj

µj − µi
. (4.2)

Lemma 4.1. For µ1 < µ2 < · · · < µM , the coefficients Ci,N have the following properties:

(i)
∑M
i=1 Ci,N = 1,

(ii) limN→∞ C1,N = 1,

(iii) limN→∞NrCk,N+1 = 0, k 	= 1, r ∈ R+,

(iv) Ck,N > 0 for k odd and Ck,N < 0 for k even.

Proof. From 1 > µ1/µ2 > µ1/µ3 > · · · > µ1/µM > 0 we directly conclude (ii):

lim
N→∞C1,N+1 = lim

N→∞

( M∏
j=1
j 	=1

µj

µj − µ1

/( M∏
j=2

µj

µj − µ1
+

M∑
i=2

(
µ1

µi

)N M∏
j=1
j 	=i

µj

µj − µi

))

= 1.

In order to prove (iii), we take into account the fact that µ1/µk < 1 for every i = 2, . . . ,M,
and write

NrCk,N+1 = Nr

(
1

µk

)N M∏
j=1
j 	=k

µj

µj − µk

/ M∑
i=1

(
1

µi

)N M∏
j=1
j 	=i

µj

µj − µi

= Nr

(
µ1

µk

)N M∏
j=1
j 	=k

µj

µj − µk

/( M∏
j=2

µj

µj − µ1
+

M∑
i=2

(
µ1

µi

)N M∏
j=1
j 	=i

µj

µj − µi

)
.

Finally, the alternating signs of (1/µi)N
∏M
j=1,j 	=i µj /(µj − µi) prove property (iv) because,

by (4.1), the denominator of the right-hand side of (4.2) is the normalising constant G(M,N)
and therefore positive.

From Harrison’s formula [9] we obtain the following theorem.

Theorem 4.2. The Laplace transform ψ(M,N) of the cycle time S(N) under steady-state con-
ditions can in the case of pairwise distinct service rates be written as

ψ(M,N)(θ) =
M∑
i=1

Ci,N

(
µi

µi + θ

)N
. (4.3)
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Proof. To apply Harrison’s formula, we have to ensure that µk + θ 	= µl + θ for k 	= l and
θ ∈ [0, 1). Therefore,

ψ(M,N)(θ) = 1

G(M,N − 1)

M∑
i=1

( M∏
j=1
j 	=i

µj

µj − µi

)(
1

µi

)N−1(
µi

µi + θ

)N

=
M∑
i=1

Ci,N

(
µi

µi + θ

)N
.

The Laplace transformψ(M,N) in (4.3) is not a mixture distribution because some coefficients
are negative, but, nevertheless, the nth moment of the cycle time can be expressed as

E(S(N)n) =
( n∏
j=1

(N + j − 1)

) M∑
i=1

Ci,N

(
1

µi

)n
.

Hence, the cycle time for N customers circulating satisfies

E(S(N)) =
M∑
i=1

Ci,NN

(
1

µi

)
(4.4)

and

var(S(N)) = N

M∑
i=1

Ci,N

(
1

µi

)2

+N2
∑
k<l

Ck,NCl,N

(
1

µk
− 1

µl

)2

.

For the cycle with M nodes fixed and N customers, we abbreviate the expectation of the
cycle time and the square root of the variance by

νN := E(S(N)) and σN := √
var(S(N)).

We have now prepared the ground for the proof of Theorem 4.1

Proof of Theorem 4.1. The Fourier transform (FT) FS(N) of S(N) is

FS(N)(x) :=
∫

R

eixy dPS(N) =
M∑
j=1

Cj,N

(
µj

µj − ix

)N
, x ∈ R.

Therefore, the FT FT (N) of the normalised and centred sojourn time T (N) is

FT (N)(x) = exp

(
− ixνN
σN

)
FS(N)

(
x

σN

)

= exp

(
− ixνN
σN

) M∑
j=1

Cj,N

(
µj

µj − ix/σN

)N
, x ∈ R.

We show that

(i) lim
N→∞C1,N

(
exp

(
− ix√

N

νN/N

σN/
√
N

)/(
1 − ix√

N

1

µ1σN/
√
N

))N
= exp

(
−x

2

2

)
,
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(ii) lim
N→∞ exp

(
− ixνN
σN

) M∑
j=2

Cj,N

(
µj

µj − ix/σN

)N
= 0.

To prove (i), it suffices to show that∣∣∣∣
(

exp

(
− ix√

N

νN/N

σN/
√
N

)/(
1 − ix√

N

1

µ1σN/
√
N

))N
−

(
1 − x2

2N

)N ∣∣∣∣
−→ 0 as N → ∞.

For every x ∈ R and sufficiently large N ,∣∣∣∣ exp

(
− ix√

N

νN/N

σN/
√
N

)/(
1 − ix√

N

1

µ1σN/
√
N

)∣∣∣∣ =
(

1 + x2

N

1

µ2
1σ

2
N/N

)−1/2

≤ 1

and ∣∣∣∣1 − x2

2N

∣∣∣∣ ≤ 1.

From |un − vn| ≤ n |u− v| for u, v ∈ C with |u| ≤ 1, |v| ≤ 1, and n ∈ N [10, Lemma 4.13],
we have∣∣∣∣

(
exp

(
− ix√

N

νN/N

σN/
√
N

)(
1 − ix√

N

1

µ1σN/
√
N

)−1)N
−

(
1 − x2

2N

)N ∣∣∣∣
≤ N

∣∣∣∣ exp

(
− ix√

N

νN/N

σN/
√
N

)(
1 − ix√

N

1

µ1σN/
√
N

)−1

−
(

1 − x2

2N

)∣∣∣∣
= N

∣∣∣∣
(

1 − ix√
N

νN/N

σN/
√
N

− x2

2N

(
νN/N

σN/
√
N

)2

+
∞∑
k=3

( −ix√
N

νN/N

σN/
√
N

)k 1

k!
)

×
(

1 − ix√
N

1

µ1σN/
√
N

)−1

− 1 + x2

2N

∣∣∣∣
=

∣∣∣∣ix
√
N

µ1σN

√
N

(
1 − µ1νN

N

)(
1 − ix√

N

1

µ1σN/
√
N

)−1

+ x2

2

(
1 −

(
νN/N

σN/
√
N

)2(
1 − ix√

N

1

µ1σN/
√
N

)−1)

+N

∞∑
k=3

( −ix√
N

νN/N

σN/
√
N

)k 1

k!
(

1 − ix√
N

1

µ1σN/
√
N

)−1∣∣∣∣
−→ 0 as N → ∞.

For the last step, we have used the facts that, by (4.4) and Lemma 4.1(i) and (iii),

lim
N→∞

√
N

(
1 − µ1νN

N

)
= lim
N→∞

√
N

M∑
j=2

Cj,N

(
1 − µ1

µj

)
= 0,

and that, by Lemma 3.1(i) and [10, Lemma 4.14],

lim
N→∞

∣∣∣∣N
∞∑
k=3

( −ix√
N

νN/N

σN/
√
N

)k 1

k!
∣∣∣∣ � lim

N→∞
1√
N

∣∣∣∣ νN/N

σN/
√
N

∣∣∣∣
3 |x|3

3! = 0.
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To prove (ii), note that

∣∣∣∣ exp

(
− ix E(S(N))√

var(S(N))

) M∑
j=2

Cj,N

(
µj

µj − ix/
√

var(S(N))

)N ∣∣∣∣

=
∣∣∣∣
M∑
j=2

Cj,N

(
µj

µj − ix/
√

var(S(N))

)N ∣∣∣∣

≤
M∑
j=2

|Cj,N |
∣∣∣∣ µj

µj − ix/
√

var(S(N))

∣∣∣∣
N

=
M∑
j=2

|Cj,N |
∣∣∣∣ 1√

1 + x2/µ2
j var(S(N))

∣∣∣∣
N

≤
M∑
j=2

|Cj,N | −→ 0 as N → ∞.

5. Weak convergence limits for sojourn times

Theorem 5.1. Consider a cycle ofM nodes withN customers and with rates µ1 < · · · < µM .
For the TC’s sojourn times (S(N)1 , S

(N)
2 , . . . , S

(N)
M ), consider the partly rescaled sequence

S̃(N) =
(
S
(N)
1 − E(S(N)1 )√

var(S(N)1 )

, S
(N)
2 , . . . , S

(N)
M

)
as N → ∞.

The sequence S̃(N) converges for N → ∞ to a random vector which is distributed as

N (0, 1)⊗ exp(µ2 − µ1)⊗ · · · ⊗ exp(µM − µ1).

Proof. We shall compute, for θj ∈ C, j = 1, . . . ,M ,

lim
N→∞ E

(
exp

(
iθ1
S
(N)
1 − E(S(N)1 )√

var(S(N)1 )

) M∏
j=2

exp (iθjS
(N)
j )

)
= exp

(
−θ

2
1

2

) J∏
j=2

µj − µ1

µj − µ1 − iθj
.

Applying Theorem 3.1, we obtain (recall that�tk := {(x1, . . . , xk) ∈ Rk+ | x1 + · · · + xk ≤ t})

E

(
exp

(
iθ1
S
(N)
1 − E(S(N)1 )√

var(S(N)1 )

) M∏
j=2

exp (iθjS
(N)
j )

)

=
∫

R

PT (N)(dt)E

(
exp

(
iθ1
S
(N)
1 − E(S(N)1 )√

var(S(N)1 )

) M∏
j=2

exp (iθjS
(N)
j )

∣∣∣∣ T (N) = t

)
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=
∫

R

PT (N)(dt)E

(
exp

(
iθ1
S
(N)
1 − E(S(N)1 )√

var(S(N)1 )

) M∏
j=2

exp (iθjS
(N)
j )

∣∣∣∣ S(N) = tσN + νN

)

=
∫

R

PT (N)(dt)

×
∫
�
tσN+νN
M−1

exp

(
iθ1
tσN + νN − ∑M

j=2 xj − E(S(N)1 )√
var(S(N)1 )

) M∏
j=2

exp (iθj xj )

× µ1 exp(−µ1(tσN + νN))

M∏
j=2

µj exp (−xj (µj − µ1)) d(x2, . . . , xM)

×
(∫

�
tσN+νN
M−1

µ1 exp(−µ1(tσN + νN))

×
M∏
j=2

µj exp (−xj (µj − µ1)) d(x2, . . . , xM)

)−1

=
∫

R

PT (N)(dt)

×
∫
�
tσN+νN
M−1

exp

(
iθ1
tσN + νN − ∑M

j=2 xj − E(S(N)1 )√
var(S(N)1 )

) M∏
j=2

exp (iθj xj )

×
M∏
j=2

(µj − µ1) exp (−xj (µj − µ1)) d(x2, . . . , xM)

×
(∫

�
tσN+νN
M−1

M∏
j=2

(µj − µ1) exp (−xj (µj − µ1)) d(x2, . . . , xM)

)−1

.

Let (Y2, . . . , YM) denote a vector with nonnegative coordinates which are independent and let
the Yj be exp(µj − µ1) distributed. Then the last expression can be written as

∫
R

PT (N)(dt)
∫

R
M−1+

P(Y2,...,YM) d(x2, . . . , xM)

× 1
�
tσN+νN
M−1

(x2, . . . , xM)(P((Y2, . . . , YM) ∈ �tσN+νN
M−1 ))−1

× exp

(
iθ1
tσN + νN − ∑M

j=2 xj − E(S(N)1 )√
var(S(N)1 )

) M∏
j=2

exp (iθj xj ).

For fixed θj ∈ C, j = 1, . . . ,M , we define the random variables

H(N) = H(N)(θj : j = 1, . . . ,M) : R → C
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by

H(N)(t) = exp

(
iθ1tσN√
var(S(N)1 )

)
exp

(
iθ1(νN − E(S(N)1 ))√

var(S(N)1 )

)

×
∫

R
M−1+

P(Y2,...,YM) d(x2, . . . , xM) 1
�
tσN+νN
M−1

(x2, . . . , xM)

×
(

P((Y2, . . . , YM) ∈ �tσN+νN
M−1 )

)−1

exp

( iθ1
∑M
j=2 xj√

var(S(N)1 )

) M∏
j=2

exp (iθj xj )

and
H = H(θj : j = 1, . . . ,M) : R → C

by

H(t) = exp(iθ1t)

∫
R
M−1+

P(Y2,...,YM) d(x2, . . . , xM)

M∏
j=2

exp (iθj xj ).

By direct inspection we see that the set of points t ∈ R, such that there exists a sequence
(tN ∈ R : N ∈ N) with (tN → t) such that (H(N)(tN ) → H(t)) fails to hold, has under
N(0, 1), probability 0. Here we used the facts that νN − E(S(N)1 ) → 0 and var(S(N)1 ) → ∞
according to the influence of the slowest server.

Applying Theorem 5.5 of [2], we conclude from weak convergence of the cycle time distri-
butions PT (N) toN(0, 1)weak convergence of the sequence of image measures PT (N) H(N)−1

to N(0, 1)H−1.
Finally, we define the bounded continuous function

f : C → C, x →
⎧⎨
⎩
x if |x| ≤ 1,
x

|x| if |x| > 1,

and conclude that∫
C

PT (N) H(N)−1(dx)f (x) →
∫

C

N(0, 1)H−1(dx)f (x) for N → ∞.

But, ∫
C

PT (N) H(N)−1(dx)f (x)

=
∫

R

PT (N)(dt)f (H(N)(t))

=
∫

R

PT (N)(dt)
∫

R
M−1+

P(Y2,...,YM) d(x2, . . . , xM) 1
�
tσN+νN
M−1

(x2, . . . , xM)

× (P((Y2, . . . , YM) ∈ �tσN+νN
M−1 ))−1

× exp

(
iθ1
tσN + νN − ∑M

j=2 xj − E(S(N)1 )√
var(S(N)1 )

) M∏
j=2

exp (iθj xj )
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and∫
C

N(0, 1)H−1(dx)f (x) =
∫

R

N(0, 1)(dt)f (H(t))

=
∫

R

N(0, 1)(dt) exp(iθ1t)

∫
R
M−1+

P(Y2,...,YM) d(x2, . . . , xM)

×
M∏
j=2

exp (iθj xj )

= exp

(
−θ

2
1

2

) J∏
j=2

µj − µ1

µj − µ1 − iθj
.

This completes the proof.
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