ON THE NUMBER OF SOLUTIONS OF SOME GENERAL
TYPES OF EQUATIONS IN A FINITE FIELD

OLIN B. FAIRCLOTH

1. Introduction. The conditional equation f(xi,...,x;) = 0, where f is
a polynomial in the «x’s with coefficients in a finite field F(p"), is connected with
many well-known developments in number theory and algebra, such as: Waring’s
problem, the arithmetical theory of quadratic forms, the Riemann hypothesis
for function fields, Fermat's Last Theorem, cyclotomy, and the theory of con-
gruences in commutative rings.

In this paper we shall investigate the number of distinct solutions, N, of equa-
tions of the type

(1.1) cx™ + o™ ..+ cx™ =,

s > 2, where the ¢’s are given elements of a finite field F(p"), ¢1...¢, # 0,
p is an odd prime, and p" — 1 = gm, for each 7. If ¢ # 0, we shall for con-
venience consider the equation

(1'2) gu,m.«l—n + L. + Vemetre _ 1,
4

where g is a multiplicative generator of F(p") aside from zero and

£1 — ghmitri

. .
Let (ry,...,rs) denote the number of distinct sets of ¥'s (y¢=0,1,...,q:— 1)
that satisfy (1.2); thus (71, ..., 7s) m1...m,is the number of non-zero solutions

of (1.1).

If a, is a primitive 7, root of unity and ind a is defined such that gi"d® = ¢
for any non-zero a in F(p"), consider the generalized Jacobi-Cauchy cyclotomic
sum

[
(1.3) Yy, .o u) = [T e ind o
@r+...+a3,=1 i=1
where the a’s range over the non-zero elements of F(p"). Vandiver [7, p. 148]
in a recent paper gave the following expression for the number of non-zero
solutions of (1.1):

$ 3
(14) (71, ey rs)nmi = Z ‘/’(uly Ceey u,)‘I-Il af“""',
where each #, ranges independently over the set 0,1,...,m; — 1.

2. Additive decomposition formulae for (ry,...,7,). In order to apply
these sums to the aforementioned equation, we shall first consider degenerate
cases. If #; = 0 (mod m,) for each 7, then
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vO,...,00= > 1.

ai+...+a.=1
Our problem reduces to counting the sets of a’s for which a; + ...+ a; = 1.
This number is easily obtained by induction and we have
LemMA 2.1. If u; = 0 (mod m,) for each i, then
¥(O,...,0) = {("—1)" = (= 1)°}/p"
This result was found independently by Whiteman [9].
Suppose #; =0 (mod m;) and u; 2 0 (mod m;); we then have
s us ind as
¢(0,u2,...,u3)= Z Hai
ar+...+a,s=1 i=2

In the above sum a,, . . ., a, range independently over all the non-zero elements
of F(p") except those for which as + ...+ a; = 1; thus ¢ (0, us, ..., us) =
— ¢(us, ..., us). By continually applying this result we obtain

LEMMA 2.2. Ifu; =0 (mod m;), 1 =1,...,t t <s, and u; # 0 (mod m;),
then

'P(O! ey 0’ Upply -« oy us) = (— l)t‘p(ut+1! e e ey us)'
As our last degenerate case suppose
[Ta =1, uy # 0 (mod my).
i=1
Under this assumption (1.3) may be written

(21) kl/(ul, ey us) = E H a; ui ind ai/al.

a1+...+a,=1 i=2

Leta;, = — bja;, 7 > 1; the right-hand side of (2.1) becomes
ﬁ aiui ind bealux ind (—1)'
a1 (1=bs—...—bs)=1 i=2
In the above sum b, . . ., b; range independently over the non-zero elements of
F(p™) except those for which 1 — b, — ... — b; = 0. Thus we have
LemMa 2.3. If

ITe* =1, u, # 0 (mod m),

i=1
then

Y, ooy ug) = = Ylu, ..o, u)ay™ P,

Lemma 2.1 and Lemma 2.2 enable us to write the right-hand side of (1.4) as
sums of Y's where none of the u's are zero. Let

(2.2) &(ry,...,r) = E kb(ul""rut)l;llai—ui”,

Uryeens

where each u; ranges independently over the set 1,...,m; — 1. From Lemma
2.3 we have, in the case t > 2,
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12
(23) &(ry, ..., r) = Z ¢(u1, L. ’ut)liT1 o u
t
= 3 Y(ug ..y a0 O] a7,

i=1

where in the first sum each %, ranges over the set 1, ..., m; — 1 such that
12
H ai“‘ # 1,
i=1
and in the second sum each u; ranges over the set 1,...,m; — 1 such that

11
H a:“ = 1.
i=1
If Fis an arbitrary function of the &’s then denote by

(2.4) S FGu,...,b)

i) distinct sets of b’s taken ¢ at a time. If we expand
the right-hand side of (1.4) and reduce the degenerate terms by Lemmas 2.1

and 2.2, we have

the sum of the F’s of the <

THEOREM 2.1.
(o) [Ime= 1@ = 1" = (= VP + 2 (= 17" S 8, 10),
where ®(ry, . .., 7r,) is defined by (2.3).

Theorem 2.1 enables us in special cases to find the exact values of

(ry, ... ,rs)gm,
in terms of p, #, and m’s explicitly. As an example, suppose m; = ... = m, = m,
n even and p¥* + 1 = 0 (mod m). If u, # 0 (mod m) for any 7 and
Vie=y+ ... Fuyup, ..., %),
then
(2.5) Vo= p"Yro¥es. . Vv s

where % is the number of j’s for which u; + ...+ %, =0 (mod m), j <t
(For proof see [1, p. 265].) If s+ ...+ u; =0 (mod m), we have from
Lemmas 2.2 and 2.3,

Vi1, = Vi = — L

If wuy~+...+u;=0 (mod m), Mitchell [5, p. 177] proved ¢, , = p*".
Among the first ¢ — 2 elements in the right-hand side of (2.5), 2k have the
value — 1 and the remaining have the value p¥*; thus

phncD w1+ ...+ u, # 0 (mod m),
Yio=1_ pinD, w1+ ...+ u, = 0 (mod m).
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As the #'s range independently over the set 1,2,...,m — 1, we have, by an
easy induction, #; + ... + #, 2 0 (mod m) for (m — 1{(m — 1)! — (— 1)}}/m
setsof u's,and #; + ...+ %, = 0 (mod m) for (m — V){(m — 1)1 — (— 1)} /m
setsof #'s. Thusifr; = ... =r; = 0 (mod m),

B(ry, ..., 1) =" P (m — Df{m —1)" = (- 1)’
—p((m— 1)+ (= D)} /m.

If we substitute this value in Theorem 2.1 and reduce the resulting sum, we

obtain
(2.6) N=@" = 10/p"+ {(mp" = p" — 1)*"
+ (m = 1) (= p*" = 1)} /mp".
In the abovelformula N denotes the number of non-zero solutions in F(p")
(n even and p** 4+ 1 = 0 (mod m)) of
. Fxs =1

We shall now obtain another additive decomposition formula for (ry, .. ., 7;).
Suppose for any ¢t < k& > 2,

—1 1

t — J
(2'7) (rlv ceey rt)Ii—Ilm‘ = P(t_l)n - Z § (71, ey rj)nmi + q’(rl) sy f;).

J=

This is obviously true for £ = 2. If we solve for ®(ry,...,r,) in (2.7) and sub-
stitute in Theorem 2.1, s = k& + 1, we have
k+1

(71, e e ey rk+1)tI=-Il = {(pn - 1)k+1 - (— 1)k+1}/P”
k k+1 t t 7
+ 62(' 1)kti-t S (= p P 4 Z}? (ry, ..., r,)g m + ®(r1, ... resa).

For any ¢t > j we note that the term (74, ..., ;) will be contained in the re-
maining £ + 1 — j sets taken { — j at a time; thus the coefficient of

J
(rl,...,r,)nm,

: kl_,k+1—j)
2 (- (:_- :

=1 J
which can be reduced to minus one. The constant terms, when collected, are
n_ )L q)EH k [ B+1 o
(P ) Pﬂ ( ) _ ; (__ 1)k+1 t 't' P(l 1) ,

which can be reduced, in a similar manner, to $**. Thus we have established by
induction

is
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THEOREM 2.2. If s >

s—1 s t
(ry, ..., S)Hm = p(s_l)" Zl S (ry, . . .,r,)q m;+ ®(ry, ..., 7)),
= t i=
where ® is deﬁned mn (2.3).
If ¢ # 0 in equation (1.1),
8 s t
= 121 S (ﬁ;---:rt)qmi;
= t i=

thus we immediately obtain from Theorem 2.2 the

COROLLARY. Ny =p " 4 @(ry, ..., 7,).
Weil [8, p. 502] has a more complicated expression for N in terms of
characters.

If u; = 0 (mod m,) for any 1,

in(s—1) ui 1
P ’ glai # ’

[$(us, ..., us)| =
pén(s—‘l), : ui o q.

(For proof see [1, p. 263].) From the Corollary we then obtain
IN, — p " < pan(s—1)<fll (m; — 1) — Ks) + pintDE
where K, is the number of sets of u'slf_or which
[Tam =1
i=1

This limit is better than that given by Hua and Vandiver [2, p. 99] or Weil
[8, p. 502]. Whiteman [9, p. 378] found that

K=Y (- 1>S“S”“———+<— 1) = 1),
t=2 ,...,m,
where [my, ..., m,] is the least common multiple of m,, ..., m,.

We can again give the exact values of N, in certain special cases.

3. Linear relations involving (7, . . ., 7). If in relation (1.4) we let 7, range
over theset0,1,...,m; — 1 (z=1,...,¢t), we have for ¢t < s,

$
IR CHAN § £
4

(3.1) Tiyveees Te
s 12
= Z gb(ul, e ey u,) H a,—u‘r‘ E H af"”'.
..... i=t+1 Tie.o Ty d=1
We see that each term equals zero unless u; = 0 for each 7 (¢ = 1,...,¢); thus

the right-hand side of (3.1) becomes

[Mm > ¢(0 0wt ws) [T e,

i=1 Ut+a,.ee, i=1t+1
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¥(0,...,0,%.41,...,u,) can be reduced by Lemma 2.2 if u; % 0 for some <.
If we add and subtract ¢ (#,41,...,%s), %31 = ... = u, =0, we obtain

> JCTRRRY n)igﬂmi ={@" = 1) = (= 1)*}/P"

— (S DU = DT = (S DT (= DD W) [ a7

where each #, ranges independently over the set 0, 1, ..., m; — 1; thus we have,
in view of (1.4),

THEOREM 3.1.
2 (.. .,rs)il'tIJrlmi =@ -7 -0 = (= DY/

+ ('_ 1)t(7t+1y s ey rs) H m s,
=1

where for t=1,...,1 (¢ <), each r; ranges independently over the set 0,1, ...,
mi - 1.

4, On equation (1.1) with ¢ = 0. In this section we shall investigate the
number of distinct non-zero solutions of equation (1.1) with ¢ = 0. With a
slight modification of the function defined in (1.3) we can establish relations
analogous to those given in Theorem 2.1 and Theorem 2.2 for this case. Owing
to the special character of this problem we are able to find by elementary me-
thods a recursion formula that expresses the number of solutions of (1.1) in
terms of the number of solutions of equations containing fewer terms. The
methods employed here first appeared in a paper by Hua and Vandiver
[4, p. 486].

If the m’s in (1.1) are grouped into % sets which are prime each to each, we
have an equation of the form

Sy Sk
(4.1) El C], 'ixl, im:.i + . + z; Ck, ixk,imhi —_ 0.
Let m; be the least common multiple of m; ; for each jand 2 = 1,...,s;; thus

(mum,;) = 1, h = t. Also impose the condition that m; = m,  for each j less
than k. Denote by N, the number of non-zero solutions of

4.2) Zlcl,ixt, Tei e+ Zl Ck,ixk,imhi = 0.
Also denote by H, and G, the number of distinct non-gero solutions of
(4.3) h= Z CoiXei "t =0
=1
and
(44) g:=C,1+ 22 Ct,ixz,im"‘ _ 0'
respectively.
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Since m, = m,1(t < k) we can transform (4.4) into (4.3) by multiplying
through by x,:™¢ thus there are (p" — 1) distinct solutions of (4.3) for each
solution of (4.4). For each solution of (4.3) we obtain a solution of (4.4) by
dividing through by the same quantity, hence we have

LemMmaA 4.1. If H, and G, are the number of distinct non-zero solutions of (4.3)
and (4.4) respectively and my1 =0 (mod m, ) (1 =2,...,5,), then

H,= (p" - 1)G.

Let M = my...my, k> 2; since (m;, M) = 1, it is known that there exist
numbers a and b such that

4.5) amy + BM = 1, @p"—1) =1

Since (a, p" — 1) = 1, we can determine y, ; in F(p"), such that

a
X1,1 = Y11,
amy /my, i .
X1,¢= YLy, > 1,
—bM /me, s .
X1 = Yo Y11 fmes t > 1, for any .

If we substitute the above relations in (4.1) and reduce by (4.5), we have

31 kst
(4.6) (s + B m) + 5 F e =0
P

=2 =1
For the
(pn _ 1)8,+...+sg - N2.k

values of y, ; (¢ > 1) for which
k
> h,#0,
=2

and the
"= 1" =G

values of y;,; (¢ > 1) for which g; # 0, there exists a unique y: ;. For the N, ;
values of v, ; (¢ > 1) for which

k
E ht = 01
=2

and the G; values of y1 ; (¢ > 1) for which g; = 0, there are p” — 1 values of
y1.1. Consequently we have

Nie= {@" = )"+ — N H@ = 1D = Gi} + (0" — 1)N,,Gh
In view of Lemma 4.1 we write
Nl.k = p-n(pn — 1)sl+...+xg

+ Q" = D" = PELY{@ = D = SN P 1),
We obtain by induction,
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TuroreM 4.1. If N1 and H, denote the number of distinct non-zero solutions
i F(p*) of (4.1) and (4.3) respectively, if m, is the least common multiple of m,
with (mym,) = 1t #Z r), and if m, = m,, (t < k), then

ps (p = 1H — 1) — p"H,}.

This recursion formula has a distinct advantage in that H, is the number of
solutions of an equation whose coefficients are in the original equation. It en-
ables us to give the exact values of the number of solutions in a great variety
of special cases; we shall give two of these here.

Let N be the number of distinct non-zero solutions in F(p") of

k St
Z 2 Xy =0,

=1 i=1

Nl,k _ P—n(i)n _ 1)s,+...+sk +

where niseven, p¥* + 1 = 0 (modm,) (¢t = 1,...,k),and (m, m,) = 1 (¢ = 7).
Then we have, by (2.6),

= ("= D{@"— )" m,+ @"m, — p" — 1)
+ (mt - 1)(_ Pkn - 1)3‘}/7”11)"

in Theorem 4.1.

In order to apply this theorem to a second special case we shall first find the
number of solutions of

(47) xlc,m _ xzhm =0
in F(p"), where (¢1,¢2) =1 and p" — 1 =0 (mod c¢ym) for each 7. Since
(c1, €2) = 1, there exist integers ¢ and b such that ac; + bc, = 1, where
(a, p* — 1) = 1. We can determine y; and y, such that x; = y,*and xs = y2y:72;
if we substitute these values in (4.7), we then have

"=y

For the p” — 1 distinct values of v, there are m values of y;. Thus if H is the
number of distinct non-zero solutions of (4.7), then

(4.8) H= (" — )m.

If N denotes the number of distinct non-zero solutions in F(p") of

k
Z (“«‘i,l'“m'~ - xi,2m‘) =0,

i=1
with (a,m,, am,; = 1 (r # £), then from Theorem 4.1 and (4.8) we obtain

N= @1/ - D"+ (= D"~ 1)(1/15")51 @" — 1 — priey).

This method is extremely useful in investigating trinomial equations of the
type (1.1) with ¢ = 0. We can give explicit formulae for the number of non-zero
solutions in the case (m1, mam;) = 1 and in general reduce the exponents, except
in the case where one exponent is divisible by the other two.
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