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1. Introduction. The conditional equation f(xi, . . . , x9) = 0, where / is 
a polynomial in the x's with coefficients in a finite field F(pn), is connected with 
many well-known developments in number theory and algebra, such as: Waring's 
problem, the arithmetical theory of quadratic forms, the Riemann hypothesis 
for function fields, Fermat's Last Theorem, cyclotomy, and the theory of con­
gruences in commutative rings. 

In this paper we shall investigate the number of distinct solutions, NS1 of equa­
tions of the type 

(1.1) clXl
mi + c2x2

m' + . . . + csxs
m' = c, 

s > 2, where the c's are given elements of a finite field F(pn), c\. . . c8 ^ 0, 
p is an odd prime, and pn — 1 = g^w* for each i. If c ^ 0, we shall for con­
venience consider the equation 

(1.2) gVimi+r> + . . . + gv'm'+r' = 1, 

where g is a multiplicative generator of F(pn) aside from zero and 

c "" g 

Let (r i , . . . , rs) denote the number of distinct sets of y's (y< = 0, 1, . . . , qt — 1) 
that satisfy (1.2); thus (rh . . . , rs) mi. . . ms is the number of non-zero solutions 
of (1.1). 

If ai is a primitive mt root of unity and ind a is defined such that ginda = a 
for any non-zero a in F(pn), consider the generalized Jacobi-Cauchy cyclotomic 
sum 

(1.3) Hui « . ) - £ rïaj""nd',\ 

where the a's range over the non-zero elements of F(pn). Vandiver [7, p. 148] 
in a recent paper gave the following expression for the number of non-zero 
solutions of (1.1): 

(1.4) <ru...,r9)f[mt= £ *(«i, . . . , « . ) ft *|-m. 
i = l Mi M, i - 1 

where each ut ranges independently over the set 0, 1, . . . , w< — 1. 

2. Additive decomposition formulae for (ru . . . , r,). In order to apply 
these sums to the aforementioned equation, we shall first consider degenerate 
cases. If ut = 0 (mod mt) for each i, then 
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* ( 0 , . . . f 0 ) = Z I-

Our problem reduces to counting the sets of a's for which a\ + . . . + as = 1. 
This number is easily obtained by induction and we have 

LEMMA 2.1. If ut = 0 (mod mt) for each i, then 

*(o,...,o) = \(pn-iy- (-m/p\ 
This result was found independently by Whiteman [9]. 

Suppose U\ = 0 (mod nti) and ^ s ^ 0 (mod ms); we then have 
* Ui ind a» 

a i + . . . + a , = l i=2 

In the above sum a2, . . . , as range independently over all the non-zero elements 
of F(pn) except those for which a2 + . . . + as = 1; thus ^(0, u2l . . . , w5) = 
— yf/(u2, . . . , us). By continually applying this result we obtain 

LEMMA 2.2. / / ux = 0 (mod ra*), i = 1, . . . , / , / < s, arcd ws ^ 0 (mod ras), 

^(0, . . . , 0, ut+u . . . , «,) = ( - 1) V(«i+i, • • • , u8). 

As our last degenerate case suppose 
s 

PJa/*'* = 1» us ^ 0 (mod w s) . 

Under this assumption (1.3) may be written 

(2.1) Hui «.)= S rïa,"'ind"*'. 
a i + . . . + a . = l i = 2 

Let at = — bidi, i > 1; the right-hand side of (2.1) becomes 

Z T T wi ind 6< Wi ind ( - 1 ) 11 â  ai 
a i ( l - 6 a - . . . - & » ) = l i=2 

In the above sum b2, . . . , bs range independently over the non-zero elements of 
F(pn) except those for which 1 — b2 — . . . — ft, = 0. Thus we have 

LEMMA 2.3. If 

f i a»w< = 1» ws ̂  0 (mod m8), 
i=i 

then 
lK«i, . . . , «O = - *(*2, • • • , ̂ ,)aiWl ind (_1). 

Lemma 2.1 and Lemma 2.2 enable us to write the right-hand side of (1.4) as 
sums of ̂ 's where none of the u's are zero. Let 

(2.2) *(r l f . . . , r,) - £ *(«i « , ) l i a r , 
Wi wt i=l 

where each ut ranges independently over the set 1, . . . , mt — 1. From Lemma 
2.3 we have, in the case t > 2, 
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(2.3) *(n rt) = £ *(«, ut)U «*""'" 
1=1 

- E *(«*•• •,«.)ai" , i nd<_1)ri ««""'''. 
where in the first sum each ut ranges over the set 1, . . . , mt — 1 such that 

rt « "' * i. 
i=l 

and in the second sum each ut ranges over the set 1, . . . , mt — 1 such that 

ri ««"' = i. 
i=i 

If F is an arbitrary function of the Vs then denote by 

(2.4) S F(h bt) 

the sum of the F's of the f J distinct sets of b's taken / at a time. If we expand 

the right-hand side of (1.4) and reduce the degenerate terms by Lemmas 2.1 
and 2.2, we have 

THEOREM 2.1. 

(n, . . . , rs) ri tu* = {(pn - îy - (- m/pn + z (- D - 1 s *(n,.. . , rt\ i = i «=1 « 

î^ere $(ri, . . . , rt) is defined by (2.3). 

Theorem 2.1 enables us in special cases to find the exact values of 
s 

(ru • . . ,rs)Yl mi 
*=i 

in terms of p, n, and ra's explicitly. As an example, suppose m\ — . . . = ms = m, 
n even and p^n + 1 = 0 (mod m). If ut ^ 0 (mod m) for any i and 

ts.t = lK«i + • • • + ujf uj+u . . . , ut), 

then 
(2.5) ^ i , j = pknrf/i,2^2,z . . . ^«- i , i , 

where k is the number of fs for which ^i + . . . + Uj = 0 (mod tn), j < t. 
(For proof see [1, p. 265].) If U\ + . . . + Uj = 0 (mod m), we have from 
Lemmas 2.2 and 2.3, 

fj-i.j = ^ + i = - 1. 
If « i + . . . + «, ?É 0 (mod ra), Mitchell [5, p. 177] proved i/v-M = £*». 
Among the first t — 2 elements in the right-hand side of (2.5), 2k have the 
value — 1 and the remaining have the value p^n; thus 

f phn{t-l\ ut + . . . + ut^ 0 (mod m), 

**.' = 1 _ pW*-*\ Ul + . . . + Ut = o (mod m). 
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As the u's range independently over the set 1, 2, . . . , m — 1, we have, by an 
easy induction, U\ + . . . + utj£ 0 (modw) for {m — l{(m — I)1 — (— l) '}/m 
sets of u'Sj and Wi + . . . + #* = 0 (mod w) for (ra — l){(ra — l ) ' - 1 — (— l) ' - 1}/ra 
sets of w's. Thus if ri = . . . = rs = 0 (mod m), 

* (n , . . . , ft) = £M ' -1 }(m — l){(m — 1)* — (— l ) f 

- ^ ( ( m - l J ^ + C - l ) 1 ) } / ! » . 

If we substitute this value in Theorem 2.1 and reduce the resulting sum, we 
obtain 

(2.6) N = (pn - 1 )'//>" + {(w^*" - p** - l ) s + 1 

+ (m-l)(-p*n-l)s+1}/mpn. 

In the above formula iV denotes the number of non-zero solutions in F(pn) 
(n even and p%n + 1 = 0 (mod m)) of 

*im + . . . + xs
m = 1. 

We shall now obtain another additive decomposition formula for (ri, . . . , r8). 
Suppose for any / < k > 2, 

(2.7) (n r,) I l » , = ^ ( (-1)n - E S (n, . . . , r , ) r i » ( + * ( n r ,) . 

This is obviously true for k = 2. If we solve for 3>(ri, . . . , rt) in (2.7) and sub­
stitute in Theorem 2.1, 5 = k + 1, we have 

jt+i 

(ri, - . . , r*+1) FI = { ( * " - D*+1 - (~ D*+1l IP* 
* fc+1 * * j 

+ Z ( - D*+ 1- ' S { - /»(<-1>n + Z S (rt r,) IT tnt) + Hn fw-i). 

For any / > j we note that the term (ri, . . . , rs) will be contained in the re­
maining k + 1 — j sets taken £ — j at a time; thus the coefficient of 

is 

t <-«•»-{'T-V) 
which can be reduced to minus one. The constant terms, when collected, are 

(pn - 1)*+1 - ( - 1)*+1 

, - g <- ir-^'V"*. 
which can be reduced, in a similar manner, to pkn. Thus we have established by 
induction 
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THEOREM 2.2. If s > 2, 

(ri, • • • , r , ) n f*t = ^(S"1)W " I S K • • • , r O l l m, + *(n , . . . , r,), 

wfere $ is defined in (2.3). 

If c 9^ 0 in equation (1.1), 
s s t 

Ns = I S K • • • »r*)n w,; 
thus we immediately obtain from Theorem 2.2 the 

COROLLARY. NS = p(s~1)n + $(n , . . . , rs). 

Weil [8, p. 502] has a more complicated expression for Ns in terms of 
characters. 

If ut ^ 0 (mod mt) for any i, 

\P > 1 1 «< ^ It 
«=i 

èw(s-2), J! « "' = 1-
IlK î, • . . , w,)| = 1 

(For proof see [1, p. 263].) From the Corollary we then obtain 

\N, - pu-i)n\ < ^ - " ( n (»< - 1 ) - # . ) + / > w s _ 2 x 
where i£s is the number of sets of w's for which 

I T *<"' = 1. 
i = l 

This limit is better than that given by Hua and Vandiver [2, p. 99] or Weil 
[8, p. 502]. Whiteman [9, p. 378] found that 

K.-±(- D-« s Zx'"mLy + <- D ^ * - D. 
t=2 t [Ml, • • • , Mt\ 

where [mi, . . . , mt] is the least common multiple of mi, . . . , mt. 
We can again give the exact values of Ns in certain special cases. 

3. Linear relations involving (r1} . . . , rs). If in relation (1.4) we let rt range 
over the set 0, 1, . . . , m{ — 1 (i = 1, . . . , / ) , we have for t < s, 

_ s 

IL (rh•••.on«'( 
(3.1) n r' i=1 

= z *(«, «.Iliads ri*«-"•'•. 
Mi tt« ï = « + l fi ft 1=1 

We see that each term equals zero unless u t = 0 for each i (i = 1, . . . , t) ; thus 
the right-hand side of (3.1) becomes 

I\Mt Z <K0,. . . ,0,^+ 1 , . . . ,^)fl ar*"'. 
i=l ut + i u, i = H - l 
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^(0, . . . , 0, ut+i, • . . , us) can be reduced by Lemma 2.2 if ut ^ 0 for some i. 
If we add and subtract \l/(ut+i, . . . , us), ut+i = . . . = us = 0, we obtain 

E (n,..., r.) n «, =.{(p- - DS - (- m/p" 
Ti,...,Tt i=t+l 

- ( - i ) ' { ( / - i ) s - ! - ( - i ) s - ' } / ^ + ( - i ) ' E ^ ( « < + i . - - - . « 5 ) n «r"ri, 
z=H-l 

where each ut ranges independently over the set 0, 1, . . . , rat- — 1 ; thus we have, 
in view of (1.4), 

THEOREM 3.1. 

Z (ri , . . . ,r f)ri««= (pn-iy-'{(pn-iy-(-iy}/pn 

Ti Tt i=t+l 
S 

+ ( - î y ^ H - i , . . . , r.) n »»i» 

where for i = 1, . . . , / (J < 5), eac& r* ranges independently over the set 0, I, ... , 
ntt — 1. 

4. On equation (1.1) with c = 0. In this section we shall investigate the 
number of distinct non-zero solutions of equation (1.1) with c = 0. With a 
slight modification of the function defined in (1.3) we can establish relations 
analogous to those given in Theorem 2.1 and Theorem 2.2 for this case. Owing 
to the special character of this problem we are able to find by elementary me­
thods a recursion formula that expresses the number of solutions of (1.1) in 
terms of the number of solutions of equations containing fewer terms. The 
methods employed here first appeared in a paper by Hua and Vandiver 
[4, p. 486]. 

If the ra's in (1.1) are grouped into k sets which are prime each to each, we 
have an equation of the form 

Si Sfc 

(4.1 ) z ex. «*i. r •' + . . . + £ ct, 0t. ,»*• ' = 0. 
Let ntj be the least common multiple of mjti for each j and i = 1, . . . , s ;; thus 
(mh,mt) = 1, h 7̂  /. Also impose the condition that mô = mh\ for each j less 
than k. Denote by Ntj]c the number of non-zero solutions of 

(4.2) £ c,.0t,r-' + . . . + E ct.ix*.*"*-1 = 0. 
i=i i= i 

Also denote by Ht and Gt the number of distinct non-zero solutions of 

(4.3) ht=
 yEct,ixt,l

mt,i = 0 
z = l 

and 

(4.4) gt=ct.i+ JtcuiXur-' = 0, 
1 = 2 

respectively. 
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Since mt = mtii(t < k) we can transform (4.4) into (4.3) by multiplying 
through by xt,i

mt; thus there are (pn — 1) distinct solutions of (4.3) for each 
solution of (4.4). For each solution of (4.3) we obtain a solution of (4.4) by 
dividing through by the same quantity, hence we have 

LEMMA 4.1. If Ht and Gt are the number of distinct non-zero solutions of (4.3) 
and (4.4) respectively and mtt\ = 0 (mod mtti) (i — 2, . . . , st), then 

Ht = (p* - l)Gt. 

Let M = m2. . . mk1 k > 2; since (mi, M) = 1, it is known that there exist 
numbers a and b such that 

(4.5) ami + bM = 1, (a, pn - 1) = 1. 

Since (a, pn — 1) = 1, we can determine ytti, in F(pn), such that 

* i . i = yi,ia, 

#1,* = yi,iyi,i i ^ > l , 

*«.* = y*.<yi.r61f/w<''» * > 1» for any i. 

If we substitute the above relations in (4.1) and reduce by (4.5), we have 

(4.6) yiAci.i + £ c^y^r'') + l f c^y^r'* = 0. 
\ 1=2 / t=2 1=1 

For the 

(Pn - 1 ) - + - + " - N2tk 

values of ytti (t > 1) for which 

Z *i * 0, 
* = 2 

and the 
(p« _ D».-I _ G l 

values of y\%i (i > 1) for which gi F^ 0, there exists a unique yi^. For the i\r2t* 
values oî ytii (t > 1) for which 

* = 2 

and the Gi values of yiti (i > 1) for which gi = 0, there are pn — 1 values of 
^ i i . Consequently we have 

Ni.t ={(pn- 1 ) " + - + M - #,.*}{(£" - l ) — 1 - Gi} + (pn - W^Gu 

In view of Lemma 4.1 we write 

Ni.k = p - ( f " - l ) s ' + - + " 

+ {(Pn ~ D " - P'HtWip" - l ) " + - + " - pnN,,k}/pn{pn - 1). 

We obtain by induction, 
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THEOREM 4.1. If Nitk and IIt denote the number of distinct non-zero solutions 
in F(pn) of (4.1) and (4.3) respectively, if mt is the least common multiple of mti 

with (mumr) = 1(/ ^ r), and if mt = miX (t < k), then 

Ni,k = P~n{pn - l ) " + - + » + - - t ^ f f l {{Pn - 1)" - pnHt). 
p (p — 1) t=1 

This recursion formula has a distinct advantage in that Ht is the number of 
solutions of an equation whose coefficients are in the original equation. It en­
ables us to give the exact values of the number of solutions in a great variety 
of special cases; we shall give two of these here. 

Let N be the number of distinct non-zero solutions in F(pn) of 
Jc st 

EE*.."'= o, 
where n is even, p%n + 1 = 0 (mod mt) (t = 1, . . . , k), and (mtl mr) = 1 (t ^ r). 
Then we have, by (2.6), 

Ht = (Pn - \){{pn - iyt-1mt + (p*nmt - p** - l)st 

+ (mt- i ) ( - £ * - 1)"}/Wrf>» 

in Theorem 4.1. 
In order to apply this theorem to a second special case we shall first find the 

number of solutions of 

(4.7) x / 1 " - x2
c*m = 0 

in F(pn)j where (ci, c2) = 1 and pn — 1 = 0 (mod Cim) for each i. Since 
(eu c2) = 1, there exist integers a and b such that ac\ + bc2 = 1, where 
(a, pn — 1) = 1. We can determine y± and y2 such that x± = j i a and x2 = 3>2;yi~6; 
if we substitute these values in (4.7), we then have 

7ÏI Cain 

yi = y2 . 

For the pn — 1 distinct values of y2 there are m values of y±. Thus if H is the 
number of distinct non-zero solutions of (4.7), then 

(4.8) H= (pn - l)w. 

If N denotes the number of distinct non-zero solutions in F(pn) of 

with (armr, atmt) = 1 (r 5^ t), then from Theorem 4.1 and (4.8) we obtain 

N = (l/pn)(jT - l)u + ( - 1) V - l)(l/£") EI (*>" - 1 - P'm,). 

This method is extremely useful in investigating trinomial equations of the 
type (1.1) with c = 0. We can give explicit formulae for the number of non-zero 
solutions in the case (mu m2m^) — 1 and in general reduce the exponents, except 
in the case where one exponent is divisible by the other two. 
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