
Appendix D

The parton model

D.1 Elastic electron scattering from nucleons

In the 1950s, experiments on elastic scattering of electrons from nucleon targets at rest in
the laboratory revealed the electric charge distribution in protons and neutrons, clearly
establishing the size of the nucleons.

The differential cross-section for the elastic scattering of electrons at high energies
from a Dirac particle of mass M and charge e may be calculated in QED. To leading order
in the fine-structure constant α = e2/4π, and neglecting the electron’s mass compared
with its energy, the differential cross-section for scattering from an unpolarised Dirac
particle, initially at rest in the laboratory frame, in which the scattered electron emerges at
an angle θ with respect to its incident direction, is

dσ

d�
= α2

4E2 sin4(θ/2)

(
E ′

E

) [
cos2(θ/2) + Q2

2M2
sin2(θ/2)

]
, (D.1)

where

(E, p) = initial electron energy-momentum four-vector,

(E ′, p′) = final electron energy-momentum four-vector,

qμ = (E − E ′, p − p′) = energy-momentum transfer,

Q2 = −qμqμ = (p − p′)2 − (E − E ′)2.

(See, for example, Gross, 1993, p. 294.)
Note that Q2 is Lorentz invariant. For elastic scattering at a given energy, the angle θ

determines, through energy and momentum conservation, all other quantities in the
expression. For example,

Q2 = 4E E ′ sin2(θ/2), (D.2)

where the energy E′ is given by

M(E − E ′) − 2E E ′ sin2(θ/2) = 0 (D.3)

(Problem D.1).
Taking M to be the proton mass, the formula (D.1) does not fit the experimental data

and, indeed, since the proton has an anomalous magnetic moment ≈ 1.79(eh/2M), we
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would not expect a fit. More generally, the elastic scattering from an unpolarised
‘extended’ proton is of the form

dσ

d�
= α2

4E2 sin4(θ/2)

(
E ′

E

) [{
f 2
1 (Q2) + Q2

4M2
f 2
2 (Q2)

}
cos2 (θ/2)

+ Q2

2M2
{ f1(Q2) + f2(Q2)}2 sin2(θ/2)

]
. (D.4)

The form of this expression is essentially determined given the proton has spin 1/2 and
no electric dipole moment. f1(Q2) is called the Dirac form factor of the proton, and
f2(Q2) is the form factor associated with the anomalous magnetic moment. At
Q = 0, f1(0) = 1 and f2(0) ≈ 1.79 (corresponding to the anomalous moment). The
electric and magnetic form factors

G E (Q2) = f1(Q2) − Q2

4M2
f2 (Q2), (D.5)

G M (Q2) = f1(Q2) + f2(Q2), (D.6)

can be interpreted in the non-relativistic limit as Fourier transforms of the electric charge
and magnetic moment distributions in the proton (Problem D.2). It is from their
experimental determination that the size of the proton is inferred. Both f1(Q2) and f2(Q2)
fall off rapidly as Q2 increases (Fig. D.1). Similar form factors can be defined, and
determined experimentally, for the neutron (using scattering data from deuterium targets).
The analysis is consistent with the quark model. Since the electric charge is carried by the
quarks, the charge and magnetic moment distribution should trace the distributions of
quark charge and quark magnetic moment.

D.2 Inelastic electron scattering from nucleons: the parton model

The early elastic scattering experiments were performed at electron energies ≤ 500 MeV.
Scattering at higher energies has thrown more light on the behaviour of quarks in
nucleons, and revealed properties that will continue to be crucial for pursuing particle
physics at the even higher energies of the future. Except where Q2 is small, inelastic
scattering, which involves hadron production, becomes the dominant mode at higher
energies. In the case of inelastic scattering, θ and E ′ are independent variables. In general,
there are many other independent variables that describe the final hadronic system, but the
very important differential cross-section d2σ/dE ′d�, called the inclusive cross-section,
includes all the possible final hadronic states.

At the electron–proton collider HERA at Hamburg a beam of 30 GeV electrons meets a
beam of 820 GeV protons head on. Many features of the ensuing electron–proton
collisions are described by the parton model. which was introduced by Feynman in 1969.

In the parton model each proton in the beam is regarded as a system of sub-particles,
called partons. These are quarks, antiquarks and gluons. Quarks and antiquarks are the
partons that carry electric charge. The proton’s energy and momentum Pμ is envisaged as
being distributed over the different parton types i with certain probability distributions.
The mean number of partons of type i in the proton carrying energy and momentum in the
range x Pμ, (x + dx)Pμ, 0 < x < 1, is written pi (x)dx . Here the label i covers all types
of quarks, antiquarks and gluons (u, ū, d, d̄, s, s̄, etc.). Scaling both energy and momentum
by the same factor ensures that all the partons have the velocity of the proton. Any
transverse momentum a parton may have is neglected. Thus, in the model, each proton in
the HERA beam is regarded as a sub-beam of partons. The consequences of the model for
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Figure D.1 This figure shows the measured magnetic dipole form factor of the
proton. The data are quite well represented by the simple expression

GM(Q2) = μp

[
1

1 + Q2/β2

]2

with μp = 2.79, β = 0.84 GeV. This curve is shown.

For Q2 < 3 GeV2, GE = (Q2)GM(Q2)/μP but for Q2 > 5 GeV2 only GM(Q2)
can be measured with accuracy (see Coward et al., 1968).

the inclusive cross-section can be most easily demonstrated in the rest frame of the proton.
In this frame, a parton with energy–momentum fraction x will behave like a particle of
mass xM at rest. For Q2 < M2

w the dominant scattering will be electromagnetic scattering
from the charged partons: the spin 1/2 quarks and antiquarks. For the elastic scattering
from a parton of type i with effective mass xM we have

d2σ i

dE ′d�
= (x M)E

E ′ δ{(E ′ − E)(x M) + 2E E ′ sin2(θ/2)}
(

dσ i

d�

)
elastic

, (D.7)
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where (dσ i/d�)elastic is of the form given by (D.4), but with M replaced by (xM), and α2

by q2
i α2 where q2

i = (1/3)2 or (2/3)2 depending on the type of parton. On integrating over
E ′, the δ-function in (D.7) picks out the energy for elastic scattering through an angle θ , as
required by the condition (D.3) with (xM) in place of M.
(Note that δ(aE ′ − b) = (E ′/b)δ(E ′ − b/a), a > 0)). If we define

ν = E − E ′

then
d2σ i

dE ′ d�
= (x M)E

E ′ δ{(x M)ν − Q2/2}
(

dσ i

d�

)
elastic

. (D.8)

Averaging over a large number of collisions, and assuming that the partons scatter
incoherently, the inclusive cross-section in the parton model is

d2σ

dE ′ d�
=

∫
(x M)E

E ′ δ{(x M)ν − Q2/2}
(∑

i

pi (x)

(
dσ i

d�

)
elastic

)
dx

= x

ν

E

E ′
∑

i

pi (x)

(
dσ i

d�

)
elastic

, (D.9)

where

x = Q2/2Mν, (D.10)

and the sum is over all types of charged partons. Finally, inserting explicitly the general
elastic scattering formula (D.4)

d2σ

dE ′d�
= α2

2M E2 sin4(θ/2)

[
M

2ν
F2(x, Q2) cos2(θ/2) + F1(x, Q2) sin2(θ/2)

]
(D.11)

where

F2(x, Q2) = x
∑

i

pi (x)q2
i

{(
f i
1

)2 + ν

2Mx

(
f i
2

)2
}

, (D.12)

F1(x, Q2) = 1

2

∑
i

pi (x)q2
i

{(
f i
1

) + (
f i
2

)}2
(D.13)

(using (D.10), Q2/4x2 M2 = ν/2Mx).
In fact the form (D.11) for the inclusive cross-section, in terms of two structure

functions F1(x, Q2) and F2(x, Q2), is quite general, and does not depend on the model we
have introduced.

The wavelength h/Q is a measure of the scale on which the structure of the proton is
explored in an electron scattering experiment. For low Q, such that h/Q is large compared
with the size of the proton, we can anticipate that the electron is scattered coherently from
the proton as a whole. It is at high Q that the parton model becomes interesting. For Q2 > a
few GeV2, incoherent parton scattering seems to dominate, and the quarks and antiquarks
in the proton apparently behave almost like free elementary particles: their anomalous
moments can be neglected and we can set f i

2 = 0. Then from (D.12) and (D.13)

F2(x, Q2) = 2x F1(x, Q2). (D.14)

This, the Callen–Gross relation, is well satisfied experimentally.
If the charged partons are structureless Dirac particles, f i

1 = 1 for all Q2, so that

F2(x, Q2) = x
∑

i

pi (x)q2
i = F2(x), (D.15)

F1(x, Q2) = 1

2

∑
i

pi (x)q2
i = F1(x), (D.16)

https://doi.org/10.1017/9781009401685.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401685.029


242 Appendix D: The parton model

Figure D.2 An illustration of a muon neutrino converting to a muon on scattering
from a d quark in a nuclean. The illustration indicates three ‘valence quarks’. In
fact there is additional scattering from quark–antiquark pairs that are generated by
the gluon field.

and both F2 and F1 depend only on the dimensionless parameter x = Q2/2Mν. This is
Bjorken scaling.

F2(x, Q2) is illustrated in Fig. 17.3 over a wide range of values of Q2 and x. It can be
seen that the naı̈ve parton model is not strictly correct, but that the Q2 dependence is weak
compared with that of the elastic form factor of the proton (Fig. D.1). It is usual to rewrite
(D.12) as

F2(x, Q2) = x
∑

i

pi (x, Q2)q2
i , (D.17)

associating the Q2 dependence with the parton distribution itself rather than with the
parton form factor. (See the discussion of the Altarelli–Parisi equations of QCD in Section
17.3.)

To determine the individual parton distributions pi (x, Q2) introduced in equation
(D.17) requires more information than is contained in the proton structure functions alone.
The neutron has been investigated using deuteron targets, and, using the isospin symmetry
between the neutron and proton (u ↔ d, ū ↔ d̄), the neutron data give further
independent information. The weak interaction between quarks and leptons is described in
Chapter 14. Neutrino and antineutrino inclusive cross-sections on proton and deuteron
targets (Fig. D.2) give a further four independent relationships, so that, neglecting the
contributions of heavier quarks, the individual u, d, s, ū, d̄, s̄ parton distributions can be
estimated. In this approximation, (D.17) becomes

F2(x) ≈ 4

9
[xu(x) + xū(x)] + 1

9
[xd(x) + xd̄(x) + xs(x) + xs̄(x)], (D.18)

where u(x) = pu(x), etc.
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Figure D.3 Curve 1 is of x(u(x) − ū(x)) (see equation (D.18)). u(x) − ū(x) is
called the valence u quark distribution function. Curve 2 is x(d(x) − d̄(x)), (d(x) −
d̄(x)), the valence d quark distribution function.

Curve 3 illustrates the sea quark distribution. Neglecting the generation of cc̄,
bb̄ and tt̄ pairs, curve 3 is of x(ū(x) + d̄(x) + s̄(x)).

Figure D.3 shows acceptable sets of parton distributions for the proton at Q2 = 5 GeV2

and at Q2 = 104 GeV2. With the present precision of the data these curves can be taken
only as a fair indication of their forms. They have been constructed to satisfy the condition
that the total parton charge is equal to e:

∑
i

∫ 1

0

qi pi (x) dx = 1,

but it is important to note that the charged partons carry only about one half of the total
proton momentum:

∑
i

∫
xpi (x) dx ≈ 1/2.

The remainder is presumably carried by the electrically neutral gluons.
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D.3 Hadronic states

The basic idea of the naı̈ve parton model is that at high Q2 an electron scatters from a free
elementary quark or antiquark, and the scattering process is completed before the recoiling
quark has time to interact with its environment of quarks, antiquarks and gluons. Thus in
the calculation of the inclusive cross-section the final hadronic states do not appear.

In the model, at large Q2 both the electron and the struck quark are deflected through
large angles. Figure 1.10 shows an example of an event from the ZEUS detector at HERA.
The transverse momentum of the scattered electron is balanced by a jet of hadrons that can
be associated with the recoiling quark. Another jet, the ‘proton remnant’ jet is confined to
small angles with respect to the proton beam. Events like these give further strong support
to the parton model.

The ‘deep inelastic’ scattering data, when interpreted within the parton model, require
the nucleon to have some ū and d̄ content, and also to contain ss̄ quark-antiquark pairs
(Fig. D.3). How is this to be reconciled with the simple quark model of nucleons at rest
that we used in Chapter 1? A quark of the ‘three quark’ model of a nucleon, often called a
constituent quark, is to be regarded as an elementary quark dressed with the strong
interaction field, which will itself induce fluctuating quark–antiquark pairs. The quarks in
the parton model are to be regarded as more like elementary quarks.

In quantum field theory, it is a non-trivial matter to make a Lorentz transformation on
the internal wave function of a complex interacting system like a nucleon. The quark and
gluon content of a proton are frame dependent. Because of time dilation, the time scale of
the internal dynamics of the nucleon becomes long in a frame in which its momentum is
large, and in this frame the parton distribution will be fixed over the time of interaction
with an electron in a deep inelastic scattering experiment. The parton distributions in the
model are taken to represent the distributions in this ‘infinite momentum’ frame.

Problems

D.1 Verify equations (D.2) and (D.3).

D.2 In quantum mechanics, the differential cross-section for the elastic scattering of an
electron with energy E � me from a fixed electrostatic potential φ (r ) is given in
Born approximation, and neglecting the effects of electron spin, by

dσ

d�
=

(
E

2π

)2 (
e
∫

φ (r ) eiq·rd3x
)2

,

where q is the difference between the initial and final wave vectors of the electron.

a. Show that q = |q| = 2E sin (θ/2), where θ is the scattering angle.

b. Poisson’s equation relates the potential φ (r ) to the charge density ρ(r ) by ∇2φ =
−ρ. Noting that ∇2eiq·r = −q2eiq·r, and integrating by parts, show that

dσ

d�
=

(
E

2π

)2 1

q4

(
e
∫

ρ (r ) eiq·rd3x
)2

.

Thus a measured cross-section can be used to infer the Fourier transform of the charge
distribution, as this simple example illustrates.

D.3 Taking Q2 and ν as independent variables instead of E′ and θ , show that

d2σ

dE ′d�
= 1

2π

d2σ

dE ′ d(cos θ )
= E E ′

π

d2σ

dQ2dν
.
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