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Abstract: Advancements in high content image analysis have led to 
an increase in the adoption of these techniques in basic science and 
clinical research. High-throughput approaches to imaging and image 
analysis require minimal user interventions, circumventing the often 
prohibitively time-consuming and unreliable standard manual analy-
sis. In this study, we demonstrate how high content imaging (HCI) 
techniques, in combination with high content analysis (HCA), can be 
paired with more traditional manual analysis to quantify both micro- 
and macro-level features of biopsied tissue sections. High-resolution, 
full-color images of stained tissue were acquired and stitched together 
to reconstruct the entire tissue section, which enabled analyses that 
required accurate identification of a given region’s location within 
the tissue section. A custom region of interest grid was generated 
that followed the curvature of the tissue. The composite images were 
used in two separate analyses: tissue layer thickness as a macro-level 
approach, and nuclei density as a micro-level approach. Ultimately, 
the flexibility of the HCI and HCA methodologies used in this study 
allowed for complex analysis of tissue that would not have been oth-
erwise feasible.

Keywords: high content analysis, analytical imaging, automated anal-
ysis, microscopy, tissue microanalysis

Introduction
In recent years, advancements in computing power and 

analytical algorithms have led to significant developments 
in scientific research [1,2]. Microscopy and analytical imag-
ing have greatly benefited from these innovative approaches, 
leading to breakthroughs pertaining to cellular, molecular, 
and genomic biology [2–5]. There are several different terms 
used when referring to modern analytical imaging approaches 
of biological systems. High content screening (HCS) is a term 
often used to describe the use of an automated imaging system 
and large data sets to screen drugs or other biological analytes 
and to assess their endpoint effects on cellular populations 
[6,7]. For smaller data sets (often less than 100,000 data points), 
the preferred terminology is high content imaging (HCI) [7]. 
High content analysis (HCA) is used to describe automated 
analytical software used to process images or data acquired 
via HCS or HCI [7]. Depending on the system or application of 
interest, HCA systems can autonomously quantify pre-defined 
biological endpoints of interest that include fixed samples, cell 
suspensions, cell cultures, microplates, or histopathological 
biopsies [3,5]. These new and evolving microscopy techniques 
have become widespread and are being integrated into research 
as a key aspect of data acquisition and analysis [6,7]. Addition-
ally, due to the ability to process large amounts of data rap-
idly, HCA techniques are growing in popularity in diagnostic 
and clinical institutions, such as hospitals and pharmaceutical 
companies [8–10].

HCA allows analysis of samples with minimal or no user 
intervention, while still allowing for additional manual analy-
sis if necessary [6,7]. Standardizing the analytical process with 
automated HCA-based methods improves robustness, valid-
ity, and reproducibility of sample analysis while minimiz-
ing observer bias [8,11]. Additionally, this frees up time for 
researchers or clinicians to process more samples and collect data 
in less time than standard manual observation and analysis [7].

The development of real-time HCA-based approaches to 
analyze diagnostic and histopathological tissue samples, such 
as biopsies for cancer, autoimmune diseases, and traumatic or 
chronic wounds, could significantly improve patient care [3,5]. 
Analytical imaging is extremely important when consider-
ing a pathologist’s role in evaluating tissue samples to assist 
clinicians in potential patient diagnoses [12]. Frequently, in a 
clinical setting, a biopsy specimen is benign and has common 
simple characteristics or patterns that can easily be analyzed [8]. 
Therefore, pathologists often spend more time sifting through 
benign specimens rather than focusing on samples with com-
plex pathologies that require more intensive analysis [8]. Cur-
rently, there is need for effective and economical approaches to 
analyze samples to relieve this time burden for pathologists and 
researchers. Moreover, repetitive measurement tasks are espe-
cially at risk for reliable and reproducible analysis of samples. 
This is due to inherent variability between the same and differ-
ent individuals that perform the analysis over time (intra- and 
inter-rater reliability) [13–15].

The burden of labor-intensive manual analysis and the 
potential for inter- and intra-rater variability highlights the 
importance of developing automated quantitative image analy-
sis methodologies. Although all data collected must be taken 
into context of sample collection, processing, and imaging, the 
overall HCA process streamlines analytical imaging and pro-
vides a more quantitative assessment. Currently, many HCA 
approaches utilize commercial-based systems that are only 
compatible with proprietary HCI or HCS imaging systems. 
These setups can be a large financial commitment, making it 
difficult for researchers that only perform occasional analysis 
of large data sets to benefit from such an approach. This is less 
of a problem for core imaging facilities, but these core facilities 
often have an overburdened staff.

Providing accurate high-throughput analytics will allow 
clinicians, pathologists, and researchers to standardize quan-
tification of discrete attributes of samples, such as assessing an 
inflammatory infiltrate by calculating cell numbers or mea-
suring tissue thickness to determine the level of fibrosis of a 
wound. These are characteristics that offer significant amounts 
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of information about the status of a tissue and provide assess-
ment of potential prognostic features. Approaches that can 
efficiently analyze large tissue specimens with minimal user 
intervention, when compared to traditional analyses for pre-
defined macro- and micro-cell characteristics, will make tissue 
analytics more reliable and economical. For example, analysis 
of wound healing in skin is often hindered when associated 
with sustained levels of inflammation [16]. Therefore, an HCA-
based approach could allow pathologists to assess the status of 
different layers of a superficial wound, such as a diabetic ulcer, 
as it heals [17]. Throughout the healing process the layers of skin 
(keratin, epidermis, dermis, and subcutaneous) tend to fluctu-
ate in thickness due to fibrosis, migration of cells, and infiltra-
tion of edematous fluid [18,19].

The clinical benefit of an effective HCA-based approach 
could help define future treatment for patients with chronic or 
traumatic wounds. HCA will improve the reproducibility and 
statistical rigor of data regarding biological specimens from 
both in vitro and in vivo studies while enabling processing of 
multiple samples simultaneously [20,21]. For instance, the size 
or density of an inflammatory infiltrate within a wound could 
be more precisely defined and compared across multiple sam-
ples. Therefore, there is a need for a cost-effective HCA-based 
approach, compatible across multiple imaging platforms, that 
can analyze an image of an entire large tissue specimen. Addi-
tionally, it would be advantageous for this method to be able to 
preserve high-resolution characteristics of cell-based features 
after digital magnification without reimaging at different mag-
nifications to analyze specific features, while also remaining 
compatible with a variety of staining methods to provide a 
holistic perspective of the sample.

In this study, we present a customized method for a HCI 
automated approach that uses iterative machine-assisted 
capture of multiple high-resolution images of a single tissue 
section, which are then stitched together to form a single high-
resolution image. This method permits the user to program 
image analysis software to create regions of interest (ROIs) that 
maintain the curved contours typically found in biological 
specimens. Discrete image features based on parameters such 
as size and shape can be analyzed. Moreover, the use of histo-
logical staining can further maximize the specificity of image 
analysis by providing an additional layer of image differentia-
tion based on color intensity. This automated approach allows 
analysis of macrostructures from the reconstructed image for 
analysis of features such as the morphology and thickness of 
skin layers within a wound. Additionally, the method provides 
the capability to evaluate critical microstructures such as indi-
vidual nuclei within a cell or tissue from the reconstructed 
image without loss of resolution. This approach can be used 
with sections from virtually any type of tissue imaged using a 
wide array of methods.

Methods
Animal use, surgery, and tissue harvest. Experiments 

were approved by the University of Kansas Medical Cen-
ter (KUMC) Institutional Animal Care and Use Committee 
(IACUC #2016-2319). Hodge et al. previously described ani-
mal handling, surgical, and tissue harvesting methods [22]. 
Two female 4-month-old miniature Yucatan pigs (Auxvasse, 

MO) were acclimated for 14 days in an AAALAC-accredited 
facility with ad libitum access to food and water. Under gen-
eral anesthesia, a custom biopsy punch was used in conjunc-
tion with a 3D-printed acrylonitrile butadiene styrene (ABS) 
guide to create a series of 1cm3 wounds on both the left and 
right sides of the animal’s back (8 per side, 16 total). Harvested 
biopsies were roughly bisected. One half of the excised tissue 
block was preserved in 10% neutral buffered formalin (NBF), 
and the other half was preserved in RNAlater® (Sigma-Aldrich, 
St. Louis, MO).

Histological processing. Tissue placed in 10% NBF was 
fixed for a minimum of one week prior to being washed with 
phosphate buffered saline (PBS) and placed in 70% ethanol for 
a minimum of 24 hours. Samples were sent to Charles River 
Laboratories (Wilmington, MA) for serial sectioning (10 μm 
thickness) and staining using in-house protocols. Every third 
serial section was stained in a repeating pattern of hematoxylin 
and eosin (H&E), Masson’s Trichrome (MT), and Brown and 
Brenn (BB).

Image acquisition and reconstruction. The end goal of the 
image acquisition and reconstruction process was to generate 
a composite image of the entire tissue section suitable for gross 
tissue measurements while providing sufficient resolution to 
facilitate segmented, cell feature-based automated quantifica-
tion. This allows for both gross histological measurements and 
fine cell feature quantification using the same image set.

A Nikon Eclipse Ti-automated imaging system equipped 
with a Nikon DS-Fi3 camera and NIS-Elements HCA imaging 
software (Nikon Instruments Inc., Melville, NY) was used to 
acquire full-color, 8-bit, RGB images for the entirety of each 
tissue section at 200× total magnification. Images were saved 
as *.ND2 files. Approximately 375 and 650 individual images 
were acquired for the two tissue sections used in this paper. 
The complete image sets were precisely stitched together based 
on the (x, y) coordinates of each individual image using NIS-
Elements software, resulting in reconstruction of the complete 
tissue section (Figures 1A, 1B). The reconstructed images were 
6.5 GB and 11.5 GB, although file sizes can easily reach >30 GB 
as dimensions of the tissue section increase. File sizes >4 GB 
restricted the available file formats in which the images could 
be saved; reconstructed sections were saved as LIM ND2 files. 
This imaging and reconstruction approach resulted in an image 
resolution of 0.17 μm/px.

ROI boundary creation and image segmentation. The 
image analysis approach in this paper subdivides each sec-
tion into multiple, distinct ROIs as a function of tissue layer. 
Furthermore, ROI creation seeks to accurately capture and 
maintain the irregular contours of the tissue while excluding 
negative space outside the tissue boundaries. Adobe Illustra-
tor (Adobe, San Jose, CA) was used for ROI boundary creation 
because of its precision controls for vector-based linework, 
which was then used in NIS-Elements.

To create the ROIs for a reconstructed section, the ND2 
files were opened in NIS-Elements and scaled down for export 
as TIFF files (4 GB maximum file size). The relative percent size 
reduction of the TIFF was recorded for future reference. The 
TIFF file was opened in Adobe Illustrator, centered on the art-
board of equal size, and locked. On a separate layer, the upper 
contour of the keratin, epidermal and dermal layers, and the 
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upper and lower contours of the subcutaneous layer were traced 
using the Pen tool. Similarly, the right and left contours of the 
tissue section were traced on their own layer, and then cut using 
the Scissors tool to create layer-specific boundaries. In aggre-
gate, these contours collectively defined the upper, lower, left, 
and right boundaries of each tissue layer (Figures 1A, 1B). The 
adjacent tissue sections, stained with MT and BB, were used as 
visual references, when needed, to best determine where the 
tissue layer boundaries should be placed.

Using the Blend tool, the leftmost control points on the 
upper and lower boundaries of the dermis were selected and 
the blend parameters were set to create a horizontal midline 
(Object > Blend > Blend Options… > Spacing > Specified 
Steps = 1). Similarly, using the Blend tool, the topmost control 
points of the left and right tissue layer contours were selected, 
and the Blend parameters were set to create a smooth transi-
tion across 10 “columns” or divisions of approximately equal 
width midline (Object > Blend > Blend Options… > Spacing 
> Specified Steps = 9). The blend containing the column divi-
sions and the dermis midline were both selected, and the Blend 
spline was replaced with the midline (Object > Blend > Replace 
Spline) so the column divisions more closely approximated the 
general curvature of the tissue section. The same general pro-
cess was repeated to create 10 columns for the subcutaneous 

layer. Using the Blend tool, the left-
most control points for the upper and 
lower boundaries of the dermis were 
selected, and the Blend parameters 
were set to create a smooth transi-
tion across 5 “rows” or divisions of 
approximately equal height for both 
the dermis and subcutaneous lay-
ers. The column and row grids were 
overlaid on the tissue layer boundar-
ies to create the completed ROI grid 
for the tissue section (Figures 1C, 
1D). The image of the tissue layer was 
hidden leaving only the black lines of 
the ROI grid visible, and the grid was 
exported as a TIFF file.

In NIS-Elements, the ROI grid 
and ND2 file for the paired full-size 
tissue section were both opened, and 
the ROI grid was scaled up to match 
the document size of the tissue sec-
tion. The ROI editor was opened in 
the file containing the ROI grid, and 
the auto-detect tool was used to iden-
tify the regions. The ROI set was saved 
and then loaded in the file containing 
the stained tissue section.

Tissue thickness measurements. 
Thickness of the tissue layers can vary 
considerably across the width of the 
sample, particularly in wounded tis-
sue, which makes single-point sam-
pling of a given layer inaccurate. To 
offset this variability, a maximum of 
10 thickness measurements per layer 

per tissue section were collected (Figure 2). These 10 measures 
correspond to one thickness measurement per column, which 
pairs efficiently with the previously established ROI grid. Dis-
tance measurements could also be applied to other specific 
ROIs or wound features if desired. Layer thickness measure-
ments were not collected using automated processes. For each 
column of ROIs in a tissue layer, the midpoints of the topmost 
ROI and the bottommost ROI were connected, and a straight 
line connecting the ends of the midpoints was measured and 
recorded.

Automated cell feature counting. The previously recon-
structed images of H&E-stained tissue that were overlaid with 
the ROI grid were scaled down in size to prevent the software 
from crashing during analysis. Resolution of the images used 
for analysis was 0.51 μm/px. A custom, automated image 
analysis scheme was developed in NIS-Elements software that 
allowed the number of nuclei in all ROIs for each tissue layer 
to be quantified. Although all images were acquired using 
brightfield microscopy, individual RGB channel color data were 
used extensively during the analysis process to better filter or 
identify cell nuclei, since each channel had different degrees of 
color contrast between specific cell features. Analysis param-
eters were designed to be specific for each tissue layer due to the 
distinct staining patterns as follows:

Figure 1:  ROI boundary creation and image segmentation. (A, B) Reconstructed tissue sections from 200× 
total magnification images where (A) is control tissue and (B) is injured tissue after 9 days of recovery. These two 
tissue sections are overlaid with black, dotted lines indicating the tissue layer boundaries. These dotted lines are 
used to create the completed ROI grid. (C, D) The ROI column and row blends (black, solid lines) overlaid with 
the dotted line tissue layer boundaries create the complete set of ROI boundaries. (A–D) Modified images from 
Hodge et al. [22].
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•	 Keratin layer images were analyzed using the green channel 
from the full-color images. Images were pre-processed using 
auto contrast and soothing commands prior to being sub-
jected to an over/under threshold that was further refined by 
filling holes, eroding, and filtering based on width.

•	 Epidermal layer images were analyzed using data from the 
red and green channels, and nuclei were identified by having 
specific positive characteristics in both channels. In the red 
channel, images were pre-processed using local contrast and 
soothing commands prior to being subjected to a dark spot 

Figure 2:  Tissue layer thickness measures. (A, F) Reconstructed tissue sections from 200× total magnification images with colored, dashed lines indicating where 
measurements took place wherein (A) is control tissue and (F) is injured tissue after 9 days of recovery. The color and location of each linear measurement indicated 
on the figure correspond to the same color-coding of the scatterplots; however, due to the size of the image and the relative thinness of the keratin and epidermis 
tissue layers, a single magenta line was used to represent the separate thickness measure for both layers. The thickness of each tissue layer for control and injured 
tissue sections are shown in scatterplots: keratin (B, G; black open circles), epidermis (C, H; magenta open squares), dermis (D, I; turquoise open triangles), and 
subcutaneous (E, J; purple open diamonds). In the injured tissue, not all layers were present at all sample locations, and the keratin layer and epidermis have only 5 
of 10 possible measurements, although the dermis and subcutaneous layers do have all 10 measurements. (A, F) Image sets used to provide visual context. Images 
from Hodge et al. [22].
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detection threshold with settings for diameter and contrast. 
This was further refined using a thickening command. In 
the green channel, images were subject to smoothing and 
auto-contrast commands prior to being subjected to an over/
under threshold that was refined using dilated and filter-on-
area commands.

•	 Dermal layer images were analyzed using data from red, 
green, and blue channels. Nuclei were identified by hav-
ing specific positive characteristics in the red and green 
channels while having specific negative characteristics in 
the blue channel. In the blue channel, images were pre-
processed using a detect peaks command and then sub-
jected to an over/under threshold that was refined by 
dilating and eroding the threshold binary to close minor 
holes, and then filtered based on circularity. In the green 
channel, images were not pre-processed but were subjected 
to a dark spot detection threshold with settings for diam-
eter and contrast. This was further refined using erode 
and filter-on-area commands. In the red channel, images 
were pre-processed using auto contrast and soothing com-
mands, prior to being subjected to an over/under threshold 
that was further refined by filling holes, eroding, and filter-
ing based on elongation.

•	 Subcutaneous layer images were analyzed using data from 
the red channel. Images were not pre-processed but were 
subjected to a dark spot detection threshold with settings 
for diameter and contrast, which was further refined using 
erode and filter based on elongation commands.

Using the parameters described above, the macro was run 
to quantify cell nuclei per ROI in addition to calculating the 
area of each ROI.

Results
Tissue layer thickness measurements. In Figure 2, the 

thickness of the keratin (Figures 2B, 2G), epidermis (Figures 
2C, 2H), dermis (Figures 2D, 2I) and subcutaneous (Figures 
2E, 2J) layers are displayed in the control and wounded tis-
sues. Non-injured tissue displayed less variation in thickness 
across each tissue layer than injured. In the injured tissue, not 
all layers were present at all sample locations, and as a result 
the keratin layer and epidermis thickness measurements have 
5 data points out of the possible maximum of 10. This did not 
impact measurement acquisition. Variation in thickness data 
points is inherent to the intrinsic variability of layer thickness 
(especially wounded sample) across the tissue specimen, not 
as a result of the methodology. Additional histological stains 

are seen in Figure 3 to demonstrate 
the capacity to utilize the thick-
ness quantification across multiple 
staining modalities. Supplementary 
stains, such as MT (Figures 3A, 3B) 
can be used to aid in the identifica-
tion of tissue layers and/or regions 
based on collagen (blue) and keratin 
(red) staining, whereas BB (Figures 
3C, 3D) helps identify regions popu-
lated by gram positive (purple) and 
gram negative (red/pink) bacteria.

ROI area, nuclei counts, and 
density. Data output from the macro 
included the number and area of the 
counted objects, area of the ROI, 
and the area fraction of the counted 
objects within the ROI. Several 
other parameters can added to the 
data output in an experiment-spe-
cific fashion. Descriptive statistics 
for the ROIs are shown in Tables 1 
and 2 for control and injured tissue, 
respectively. The number of counted 
objects and ROI area were used to 
calculate the density of the counted 
objects for each ROI.

In Figure 4, results of the auto-
mated nuclei quantification are 
displayed as densities to control 
for variation in ROI size. ROIs for 
both injured and control tissue cell 
densities followed the same general 
trends. Cell densities from lowest 
to highest were found in the kera-
tin, subcutaneous, epidermis, and 

Figure 3:  ROI boundary creation and image segmentation of MT and BB. (A–D) Reconstructed tissue sections 
from 200× total magnification images: (A, C) control tissue and (B, D) injured tissue after 9 days of recovery. Images 
are overlaid with black, dotted lines indicating the tissue layer boundaries. These dotted lines were used to create 
the completed ROI grid. The ROI column and row blends (black, solid lines) overlaid with the dotted line tissue layer 
boundaries create the complete set of ROI boundaries for (A, B) MT and (C, D) BB stained samples. (A–D) Modified 
images from Hodge et al. [22].
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dermis tissue layers, although the average density and spread of 
cell densities for control and injured tissue differed. The average 
density ± standard error of the means (S.E.M.) are reported in 
Table 3 for both control and injured tissues. Table 4 gives exam-
ples of many of the commands used in the macro for nuclei 
counting, along with example settings and very broad potential 
uses. Table 4 further elaborates on the “positive” and “negative” 
characteristics used in this methodology. The exact settings are 
dependent on the operator and staining modality/intensity and, 
thus, Table 4 provides generalized parameters that can be used 
to perform quantification of objects such as cell nuclei.

Discussion
HCA is part of a growing field of analytical imaging that 

uses fully or semi-automated systems to assess image features. 
Imaging software provides an approach to quantitative analyti-
cal imaging that has the potential to benefit both researchers 
and clinicians. With the capabilities of high-resolution imaging 
growing, it is important to develop methods that are accessible 
and provide quantifiable data from the dense amount of infor-
mation provided by imaging and histopathological analysis 
techniques. We present a potential combination of methods for 
improving ways users can extrapolate information from tissue 
specimens and decrease the inherent bias of current manual 
approaches in the study of diseases.

One of the many benefits of this methodology is that it 
can be used with essentially any image. This includes macro-
scopic tissue images down to electron microscopy images, and 
everything in between. After multiple high-resolution images 
are acquired, a single image is developed by reconstructing the 
individual images via stitching. The user can then determine 
specific image features of interest for analysis. Once the image 
feature is determined, customizable ROIs of any shape and size 
can be created. If the target of interest is a micro-level feature 
like nuclei, as performed in this study, then automated counting 
can be applied based on the color, shape, or size of the image 
feature.

Differentiation of image features based on color is maxi-
mized by utilizing staining or labeling methods to enhance 
features and to remove background noise. Additionally, shape 
and size for image feature differentiation can be used to further 
qualify components of the image and increase the specificity of 
feature quantification. A unique feature of this method is its 
ability to work effectively with non-uniform shapes and tissue 
samples, which can often provide problems for other HCA sys-
tems that rely on rigid gridding and geometrical shapes.

As shown in this study, one can count nuclei, but if spe-
cific cell populations are of interest, then a different stain or 
counterstain can be applied to enhance specificity of the nuclear 
quantification. The ability to use this methodology with mul-
tiple staining/labeling techniques, or even without staining/
labeling, allows for customization of a variety of image features. 
If a macro-level feature is of interest, such as tissue thickness or 
quantification of tumor size, then an automated ROI approach 
or manual analysis of the tissue can be performed.

Sometimes manual analysis of certain image features is 
ideal. This method enhances the ability of users to perform 
manual analysis of image features by going from low optical to 
higher digital magnification with the same image, where image 
resolution is only limited by the processing power of the com-
puters used for analysis.

Moreover, this method can be used to validate accuracy and 
reliability of manual measurements of image features to assess 
inter- and intra-rater reliability. It is important to recognize that 
there are many inherent biases during image analysis. Biases can 
be dependent on tissue collection, processing, mounting, stain-
ing, imaging software, or user. Therefore, a more autonomous 
approach to the processing and analysis of images can help pre-
vent bias and improve the rigor of the data collected.

This method can also work in tandem with machine-based 
learning programs to enhance a data set or to validate the accu-
racy and reproducibility of machine-based learning programs, 
such as CellProfiler™. The discrete data generated by character-
izing the custom ROIs (Tables 1–3) can aid in construction of 

Table 1:  ROI descriptive statistics: control tissue.

CONTROL TISSUE Keratin Epidermis Dermis Subcutaneous

Number of ROIs 10 10 50 50

Average Area (μm2) 21168 57248 385177 281751

St. Dev. 6774 13607 109232 41443

S.E.M. 2142 4303 15447 5860

Minimum Area (μm2) 8210 32836 211044 202005

Maximum Area (μm2) 30929 77215 602751 405888

Table 2:  ROI descriptive stats: wounded tissue.

INJURED TISSUE Keratin Epidermis Dermis Subcutaneous

Number of ROIs 5 5 50 50

Average Area (μm2) 130180 395599 705708 474365

St. Dev. 102597 300702 246138 183254

S.E.M. 45883 134478 34809 25916

Minimum Area (μm2) 41729 44377 19017 201035

Maximum Area (μm2) 276629 873955 1167425 855840
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Figure 4:  Quantification of nuclear density as a function of ROI. (A–H) Scatterplots displaying the density of quantified nuclei/10,000 μm2 for all ROIs in each 
of the 4 tissue layers: keratin, epidermis, dermis, and subcutaneous layers, respectively for control (A–D) and injured (E–H) tissue. Quantified nuclei are represented 
in the images by blue dots. (I–N) Representative images highlighting the tissue layers in control and injured tissue. (I, L) Showing the relatively low nuclear density 
observed in the keratin layer and the typical density in the epidermis. (J, M) Contrasting the stark difference in the density of the dermis in control versus injured 
tissue. (K, N) Displaying the density ROIs for the subcutaneous layer.

https://doi.org/10.1017/S155192952200044X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S155192952200044X


2022 March • www.microscopy-today.com�     37

Image Acquisition and Analysis

machine-based learning programs. One important difference 
between our method and a machine-based learning program is 
that the exact qualifying parameters utilized and how they are 
being generated is known. In machine-based learning there is 
less awareness of the dynamic algorithms being used to quan-
tify image features. For certain applications, machine-based 
learning programs are likely more efficient, such as more in-
depth analysis of complex systems. However, reproducibility of 
machine-based learning programs can often be subjective and 
contain inherent biases from the operator.

Lastly, the method in this study provides a financial advantage. 
As previously stated, this approach can be paired with almost any 
imaging system or analysis software that a laboratory may currently 
have without the need to purchase new equipment or software. 
Therefore, the financial burden that plagues many HCA systems, 
that may come as part of compatible HCI or HCS systems, can be 
bypassed to permit greater access to the wealth of data provided 
by image analytics. The measurement of tissue layer thickness was 
limited only by the presence/absence of tissue layers in the images. 

The quantification of nuclear density, as a function of ROI, was 
mildly limited by stability of the analysis software when handling 
large file sizes and the processing power of the computer.

In summary, this methods study demonstrated a new 
analytical imaging technique that involves a combination of 
HCI and the reconstruction of images to generate a single high-
resolution image. This newly generated image can be custom-
ized by segmenting the image into ROIs. Notably, this method 
works well with non-uniform and organic contours of biologi-
cal specimens, such as that from a clinical biopsy, which is often 
problematic for other HCA methods that rely on rigid geom-
etry methods. A wound healing model was used to demonstrate 
some of the common features of this method. Nuclei counts and 
tissue thickness measurements were chosen to demonstrate the 
micro- and macro-capabilities of this method. Additionally, we 
discuss how the automated features limit the inherent biases 
and errors that often plague quantification of image features, 
especially those that require repetitive analysis. Moreover, the 
method can be used across various platforms in tandem with 

Table 3:  Average cell density in ROIs.

(Avg ± S.E.M.) Keratin Epidermis Dermis Subcutaneous

Control Tissue 6.468 ± 2.079 93.78 ± 6.392 10.39 ± 0.4213 1.938 ± 0.1750

Injured Tissue 14.17 ± 9.135 46.42 ± 11.69 43.23 ± 3.610 7.661 ± 0.482

Table 4:  Example of macro commands for subject identification.

Analysis Parameter Setting Example(s) Potential use(s)

Dark Spot Detection
• �Identifying general location of nuclei and/or other cell and 

tissue features
• Diameter Min = 6.5 μm

• Contrast Min level = 10

Detect Peaks
• �Broadly identifying areas to use as masks for future steps• Threshold Range = 20–255

• Size Range = n/a

(Color) Threshold

• Single-channel use Range = 0–117, red channel

• Multichannel use Range = 36–101, green channel

Range = 28–255, blue channel

Operators Add • �Perform calculation

Subject • �Combine mask and/or feature areas
And

Or

Having

Filter on Elongation Min = 1, Max = 6.4 • �Inclusion criteria

Filter on Circularity Min = 0, Max = 0.7 • Exclusion criteria
Filter on Width Min = 19, Max = ∞
Filter on FilArea Min = 5, Max = ∞

Smooth Kernel setting, count = 1 • �Shape refinement for masks and/or features

Dilate Grow by 1.2 μm
Erode Shrink by 0.17 μm

Thicken Count = 1

Morpho Separate Objects Kernel setting, count = 1 • Subdivide merged areas

Fill Holes N/A • �Closes holes trapped within an existing area
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other HCA methods, including machine-based learning, to 
improve data rigor and reproducibility. Ultimately, this method 
can aid both clinical and academic researchers by providing a 
more economical approach to image analysis.
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