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MARKOV’S THEOREM FOR ORTHOGONAL
MATRIX POLYNOMIALS

ANTONIO J. DURAN

ABSTRACT. Markov’s Theorem shows asymptotic behavior of the ratio between the
n-th orthonormal polynomial with respect to a positive measure and the n-th polynomial
of the second kind. In this paper we extend Markov’s Theorem for orthogonal matrix
polynomials.

1. Introduction. A. Markov established in 1895 (see [M]) the following result,
which is now known as Markov’s theorem:

b du(t
woo pa@)  Ja z—1
where p is a probability measure on the finite interval [a, b}, (p,), is the sequence of

orthonormal polynomials with respect to ¢ and (g,), is the corresponding sequence of
polynomials of the second kind, defined by

forz € C\ [a,b],

qn(x) = / Eﬁ%—:fﬂ du(t), n=>0.

The hypothesis 1 having compact support is too restrictive, and actually the determi-
nacy of the measure y is a sufficient condition. Even for some families of indeterminate
measures Markov’s theorem holds (see the recent survey about Markov’s theorem [B]).

The purpose of this paper is to extend Markov’s theorem for orthogonal matrix poly-
nomials.

We consider a N x N positive definite matrix of measures W (for any Borel set 4 C R,
W(A) is a positive semidefinite numerical matrix), having moments of every order, i.e.,
the matrix integral

jR £ dW(s)

exists for any nonnegative integer n.
The matrix inner product defined in the usual way by W in the space of matrix poly-
nomials has associated a sequence of orthonormal matrix polynomials (P,),, satisfying

[ Po(O)dWWOPS(E) = uml, n,m > 0.

P,(¢) is a matrix polynomial of degree #, with a non-singular leading coefficient and is
defined upon a multiplication on the left by a unitary matrix.
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As in the scalar case, the sequence of orthonormal matrix polynomials (P,), satisfies
a three-term recurrence relation

tPu(t) = Aus1Prnt(D) + BaPu()) + A,Pui (), 120, P_y(1) =0,

where 4, are non-singular matrices and B,, are hermitian. Without loss of generality, we
assume Py(¢) = I. (Here and in the rest of this paper, we write § for the null matrix, the
dimension of which can be determined from the context.)

This three term recurrence relation characterizes the orthonormality of a sequence
of matrix polynomials with respect to a positive definite matrix of measures (see, for
instance, [AN] or [DL]). In [D1], [D2] and [DV] a very close relationship between or-
thogonal matrix polynomials and scalar polynomials satisfying a higher order recurrence
relation has been established.

The corresponding matrix polynomials of the second kind are defined by

Py(x) — Pu(®)
0:(x) = [ =22 AW,
We say that the positive definite matrix of measures W is determinate if no other positive
definite matrix of measures has the same moments as those of W, i.e., the positive definite
matrix of measures ¥ is uniquely determined by the moments [ #* dW(¢) (n € N).

To establish Markov’s theorem, we need the following definitions: A, stands for the
set of zeros of the matrix polynomial P,, i.e., the zeros of det(P,). In [DL], it is proved
that these zeros are real and have multiplicity at most N. We finally put

(1. 1) = mNZ()MN, where My = Up>NAn.

It is proved in [DL] that orthogonalizing matrix of measures p for the matrix polynomials
(P,)» can be found as weak accumulation points of a sequence of discrete measures y,
with support precisely A,. Therefore, for a determinate matrix of measures ¥, we have
supp(W) C T.

The main result of this paper is the following matrix extension of Markov’s Theorem.

THEOREM 1.1. Assume that W is determinate. Then

lim P, (2)0,(2) = / e forz€ C\T,

z—1
and the convergence is uniform for z in compact subsets of C \ T.

We will show that in the matrix version of Markov’s theorem, the matrices P, ! and
0, must be multiplied in the order P, ' Q,, otherwise the result could be false.

To prove Markov’s theorem we find a quadrature formula (Section 3) for the inner
product defined by the matrix of measures W in the space of matrix polynomials. The
matrix coefficients, which appear in that quadrature formula, will be given in a closed
expression, and this expression will be the key to establish the matrix version of Markov’s
Theorem (see [SV, and DL] for other versions of the quadrature formula).
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In the proof of this quadrature formula we use a property of the zeros (Section 2) of
the n-th orthonormal matrix polynomial P, which will play a fundamental role in the
whole theory of orthogonal matrix polynomials:

If « is a zero of P,(¢) of multiplicity p, then rank(Pn(a)) = N—p(hencep < N),

and the matrices (Adj(P,,(t)))(p I)(oz) and P;_,(a)4, define two isomorphisms

from the space of right eigenvectors of P,(«) associated to the eigenvalue 0 into

the space of left eigenvectors of P,(cr) associated to the eigenvalue 0. The inverse

mapping of P;_,(a)4, is that defined by the matrix O,().

For a given matrix 4, we denote by Adj(4) the classical adjoint, i.e., the matrix
uniquely defined by the property

AAdj(4) = Adj(4)4 = det(4)].

That the zeros of orthogonal polynomials are simple (in the scalar case) is a well-known
property, which is not true in the matrix case. Precisely, the property we have noted above
will play in the matrix case the same role as that of the non-multiplicity of the zeros in
the scalar case.

To complete this paper, we give a generalization of Markov’s theorem showing the
asymptotic behavior between the sequence of orthonormal matrix polynomials and the
sequence of k-th associated polynomials (Section 5)

2. Zeros. We start with the following lemma which contains the matrix version of
some classical formulae for orthonormal scalar polynomials. The proofs work as in the
scalar case and so are omitted.

LEMMA 2.1. (1) The Christoffel-Darboux formula and some special cases

P (@)AnPu(w) — P(2)A4,Pn—y (W)

2.1 n=1
-1 =W —2)) Pi@Pw), zweC.
k=0
2.2) P;_((D)AnPu(@) — PyDAPy-1(2) =0, zEC.
@3) P, (@AnP,(2) — P,@ALP, (@) = Zl Pi@)Pu(z), z€C.
k=0

(2) Some particular cases of the Green formula:
P 1@ A4nOn(w) — Po(2)4,0n1(W)

2.4 n=
2.4) =[+(w-—2) Z:l Pi(2)Or(w), z,weC.
k=0

25) n1(DA4n0n(2) — Pr(2)A0n-1(2) =1, z€C,
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(3) The Liouville-Ostrogadski formula

2.6) 0u(@)P;_1(2) — Pa(2)Q}_1(2) = 4; .

To prove the remarkable property about the zeros of P, stressed in the introduction,
and the quadrature formula, we need the following lemma:

LEMMA 2.2. Let A(?) be a N X N matrix polynomial and let a be a zero of A(f) of
multiplicity p, i.e., a zero of multiplicity p of the scalar polynomial det(A(t)). We put

L(a,4) = {v € €V : vA(a) = 0}, R(a,A) = {veC": d@a)* = 0}.

If dim(L(a,4)) = dim(R(a,4)) = p, then (Adj(A(t)))(I)(a) =0,forl=0,....p—2
. -1 . -1

and (Ad_] (A(t))) (@) # 0. Moreover rank(Adj (A(t))) (@) =pand

(Adi(10))" @

defines a linear mapping from CV onto L(a, A) which is an isomorphism from R(a, A) into
L(a, A).

PROOF. It follows straightforward from Lemma 2.2 of [DL] that

(Adj(A(t)))(I)(a) =6, forl=0,....p—2.

-1
We now prove that (Adj (A(t))) (a) # 6. Since a is a zero of A(¢) of multiplicity p,

by differentiating the formula Adj (A(t))A(t) = detA(?)] and taking into account what
we have already proved, we obtain that

(2.7) (Adj(A(t)))(p_l)(a)A(a) =0, and
2.8) (Adj(A(t)))(p)(a)A(a) + (Adj (A(t)))(p_l)(a)A'(a) = (det4(®)) ().
It (Adj (A(z)))(p_”(a) = 0, (2.8) gives that
(Adj (A(t)))(p)(a)A(a) = (det4(®)) P (@)1
But this is impossible because A(a) is singular but (det 4(1)) ”'(a)! is non-singular (a is

a zero of multiplicity just p of det(A(t)) ).
The formula (2.7) gives that the matrix

(Adi(40))" @
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defines a linear mapping

(Adi(4))" @y €* — L(a.4)
1

-1
yio v(Adj (A(t))) ().
Forv € R(a,A4), v # 6, (2.8) gives that

. () .
v(Ad_](A(t))> (@A @y # 0.
. . . e-n
So, the linear mapping defined by (Ad_] (A(t))) (a) is injective in R(a, 4). Hence,

rank(Adj(A(t)))(p_l)(a) > dim(R(a,4)) = p.

-1
But (2.7) gives that the rows of (Adj (A(t))) (a) are vectors of L(a, A), hence

rank(Adj(A(t)))(p")(a) < dim(L(a, 4)) = p.

And the proofis finished. n

Some properties of zeros of orthogonal matrix polynomials on the real line have been
established recently in [SV] and [DL] (see also [Z]). We complete here those results by
proving the property we noted in the introduction of this paper.

THEOREM 2.3. If a is a zero of Pu(t) of multiplicity p, then

(1) ais real, p < N, rank(P,(a)) = N — p, and dim(R(a, P,)) = dim(L(a, P,)) = p
(R(a, P,) and L(a, P,) are, respectively, the spaces of right and left eigenvectors
of Py(a) associated to the eigenvalue 0).

(2) The matrix P;,_,(a)A, defines an isomorphism from R(a, P,,) into L(a, P,,). Its in-
verse mapping is the isomorphism defined by the matrix Q,(a).

(3) The matrix (Adj (P,,(t))>(p 1)(a) defines a linear mapping from CN onto L(a, P,)
which is an isomorphism from R(a, P,) into L(a, P,).

@ (Adj(P,,(t)))(p«l)(a)Pn(a) _ P,,(a)(Adj(Pn(t)))("“l)(a) = 6 and
rank (Adj (Pn(t)))(p*l)(a) =p,

(=1
being the p linearly independent rows of(Adj (Pn (t))) (a) a basis of the linear
space of left eigenvectors of P,(a) associated to 0.

PROOF. (1) Itis contained in parts (1) and (2) of Theorem 1.1 in [DL].
(2) First of all, we prove that if v € R(a, P,) then vP}_,(a)A, € L(a, P,). Indeed, if

Py(a)v* = 0, the formula (2.2) gives that vP};_ (a)4,P,(a) = 0, that is, vP:_(a)4, €
L(a, Py).
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For a vector v € R(a, P,), the formula (2.5) gives

2.9 VP! (@A, 00(@) = v,

and so, vP;_,(a)4,—1 # 0. This proves that the mapping is injective. Since the dimension
of R(a, P,) and L(a, P,) is the same, the mapping is automatically an isomorphism.
(2.9) shows that its inverse mapping is just that defined by Q,(a).
(3) and (4) From (1) we have that dim(R(a, P,))) = dim(L(a, P,)) = p. Then (3) and
(4) of Theorem 2.3 are straightforwardly deduced from Lemma 2.2. n
Theorem 2.3 can be extended for perturbations of the orthonormal polynomials. In-
deed, let A be a matrix satisfying that 4,4 is hermitian, and let us consider the polynomial
P,(t) — AP,_1(¢). Then, Theorem 2.3 holds for this polynomial, i.e.:

THEOREM 2.4. Ifais azero of P,(f)— AP,—, (t) of multiplicity p, where A,A = A*A4;,

then

(1) aisreal, p <N, rank(P,(a)—AP,-\(a)) = N—p, and dim(R(a, P,— AP,_,)) =
dim(L(a, P, — AP,_1)) = p.

(2) The matrix P,_,(a)4, defines an isomorphism from R(a,P, — AP,_,) into
L(a, P, — AP,_)). Its inverse mapping is the isomorphism defined by the matrix
On(a) — AQn—1(a). oD

(3) The matrix (Adj (P,,(t) — AP,,_x(t))) (a) defines a linear mapping from CV
onto L(a,P, — AP,_\) which is an isomorphism from R(a,P, — AP,_,) into
L(a, Pn — AP,)).

@ *-D

(Adi(Pu©) ~ 4P,10) )" (@(Pat@) — 4P,1(@)

= (Pa(@) — 4Ps-1(@) (Adi(Pa() — APn_l(t))>(p_l)(a) —0

and o-1)
rank (Adj (P,,(t) — APn_1(t))) (@) =p,

{12V}
being the p linearly independent rows of (Adj (P,,(t) — AP, (t))) (a) a basis
of the linear space of left eigenvectors of P,(a) — AP,—1(a) associated to 0.

By modifying in an appropriate way the formulae showed in Lemma 2.1 (this can be
easily done by using that the matrix 4,4 is hermitian), the proof of Theorem 2.4 exactly
works as that of Theorem 2.3.

3. The quadrature formula revisited. Quadrature formulae have been found re-
cently for orthonormal matrix polynomials by Sinap and Van Assche (see [SV]) and
Duran and Lopez-Rodriguez (see [DL]). Here and using other different approach, we
improve these quadrature formulae by giving a closed expression for the matrix coeffi-
cients which appear in the formula. This expression will be the key to prove the matrix
version of Markov’s Theorem.
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THEOREM 3.1. Let n be a nonnegative integer. We write x,; (k = 1,...,m) for the
different zeros of the matrix polynomial P, ordered in increasing size (hence m < nN)
and Ty for the matrices

|
(det(Pa(0)) “ e

-1
G.1) Tyu= (Adj(P,,(t))>( ) Oning)s k=1,...,m,

where Iy, is the multiplicity of x, .
(1) For any polynomial P with dgt(P) < 2n — 1 the following formula holds

3.2) [Pwyawe = 3" PO
k=1

(2) The matrices I,y are positive semidefinite matrices of rank i, k= 1,...,m.

It is worth noting that the smaller the multiplicity of a zero x, is, the bigger the
singularity of the matrix I', 4 is. For instance, if x,,; is simple, then I', ; has rank one.

PROOF. To prove (1) of Theorem 3.1 we use the following surprising fact:
Although the zeros of P, (i.e., the zeros of det(P,)) can be of multiplicity bigger
than one (at most N) the decomposition

(3.3) P@P'2)=3 Gk ifdgrP <n—1,
k=12 — Xnk

is always possible.
Part (4) of Theorem 2.3 and Lemma 2.2 show the reason for this remarkable property:
indeed, if a is a zero of multiplicity p for P, then

Adj(Pu(@)) = (Adj(P,,(z)))'(a) = (Adj(P,,(t)))(p_z)(a) =0, and
(Adi(P.))" @ #0.

This means that a is a zero of multiplicity at least p— 1 of each entry of Adj (P,,(z)). Hence
a is a zero of multiplicity at least p — 1 of P(z) Adj (P,,(z)) for any matrix polynomial
P, and so, if dgr(P) < n — 1, (i.e., dgr(PAdj(P,)) < nN — 1 < dgr(det(P,))), the
expression (3.3) holds for

P(z) Adj(P.(2))
det(Py(2))

We now prove (1) of Theorem 3.1. Let P be a matrix polynomial of degree less than

or equal to 2n — 1. Since P, is a polynomial with non-singular leading coefficient, we
can write ([G] p. 78)

P(2)P;\(z) =

(3.4 P(1) = C()P(2) + R(2),
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where C(¢) and R(¢) are matrix polynomials with dgr(R) < n — 1.
Then we have

3.5) PP, (1) = C(6) + R()P, \(2),

when ¢ is not a zero of P,. Since dgr(R(t)) < n— 1 we can write

m 1
ROPNO =3 Cux ,
k=1 t—Xpk

where the matrices C,; are given by
1
(Y]
(det(Pa0)) " )

=1
Co = R (Adi(Pa®) ) e

(—1)
Since Py (X (Adj (P,,(t))) " (tax) = 0 (see part (4) of Theorem 2.3), (3.4) gives that

the matrices C, ; can be written in the following way
1

3.6) Coi = :
(det(Pa0)) " cxus)

Ie—
Pl (Adi(Pu0) ) e

Then (3.5) gives

P() = COPA0)+ 3° Gt
k=1 t—Xnk

From (3.6) and part (4) of Theorem 2.3, we have

PO = CoP0 + 3 Gy PO Pilons)
k=1 Xnk

From the definition of the polynomial Q, it follows that
[POaW©) = [ COP,0 W@+ CupOalns).
k=1

But dgr(C) < n, so the orthonormality of P, gives that [ C(£)P,(¢) dW(f) = 6. Hence, we
have

[ OO = 2 Cosutin)

Then, part (1) of Theorem 3.1 follows from the definition of the matrices I',,x and C,
(see (3.1) and (3.6)).

We now prove part (2) of Theorem 3.1:

We proceed in several steps:

STEP 1. The matrices I',x (k = 1, ..., m) are hermitian.
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PROOF. If we prove that the matrix P, !(£)Q,(¢) is hermitian when ¢ € R is not a zero
of P,, Step 1 would follow from the decomposition

P_l(t)Qn(t) - Z l—‘nk

The orthogonality of P, with respect to any other polyn(:nknal of degree less than n gives
™ rogo- [P 00— iy

= [p, @w AWE(PAD) — PO PO

= [ P2 O(Pu) ~ Pu) awe O =T iy

[ OB oy

_Gor) 0.
that is, P, 1 (£)Q,(?) is hermitian when ¢ € R is not a zero of P,,. "

STeEP 2. rank(I ) =, k=1,...,m
=1
PROOF. Theorem 2.3 gives that rank (Adj (P,,(t))) () = I Since the left
=1
eigenvectors of (Adj (P,,(t))) ) (x.x) associated to 0 are left eigenvectors of I',,  asso-
ciated to 0 (see (3.1)), it will be enough to prove that left eigenvectors of I', 4 associated
(e—1)
to 0 are left eigenvectors of (Adj (P,,(t))) ) (s ) associated to 0.
1)
Let u be for which v = u(Adj (P,,(t))) " (tnx) # 6. Part (3) of Theorem 2.3 shows
that v € L(xnx, Py). Then the formula (2.6) gives
V(Qn(xn,k)P*_l(xn,k) - Pn(xn,k)Q:—l(xn,k)) = in(xn,k)P*—-l(xn,k) = VA;I'

Since the matrix 4, is non-singular, we have that vQ,(x,x) # 0, and taking into account
the definition of v and I',, , we obtain ul',; # 0. And Step 2 is proved. =
We take vectors vi, ..., v, satisfying the following properties:
(1) vi is a left eigenvector of the matrix I',; associated to an eigenvalue o; # 0,
i=1,...,k
(2) v,-vj’f = (SiJ, i,j = 1,...,lk.

STeEP3. Fori=1,...,], constants 3; # 0 exist such that
. =1
vi(Adi(Pa®) ) ) = BviPi ).

=1
PROOF. From part (3) of Theorem 2.3, we have that v; (Adj (P,,(t))) ) (xup) €

L(xp , Py). Since the matrix P};_,(x, )4, defines an isomorphism from R(x, 4, P,) into
L(xyx, Pr) (Theorem 2.3 (2)), we have that

I=1)
(3.7) v(Adi(Pa0) )" ) = 1P (G
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for certain u; € R(x,, Py). Since Oy (x,) is the inverse mapping of P;_,(x,4)4», We
have from (3.7) that

. h—=1)
Vi (Ad_] (Pn(t))> (x,,‘k)Qn(xn’k) = u;.
Then, from the definition of the matrix I', 4 (see (3.1)), we deduce that
1

(detPo0) Do)

. . I
Since v;I[',x = a;v;, it is enough to take §; = a,-(det P,,(t))( ")(x,,,k). [
Finally, we prove that v,I', ;v > 0, i.e., the matrix I, is positive semidefinite. In
Step 3, we have proved that v; = Lu;, for certain u; € R(xp, Py), then we deduce that

Bi
Vi € R(x, %, Pp). From the formula

(Adi(Pa0)) " Gnp)Patene) + (Adi(Ps0))" CnsdPhens)

= (detPo(0) ™ 1,
and Step 3, we obtain

(3.8) BviPy 1) AnPh 5n )V} = (det Po(8) ™ in).
Step 3, (3.8), (2.3) and (2.5) give that

UGe—1)
v (Adi(Pan) ) Oulenel¥;

(]

(detPa(®)) ™ (xnp)
— ﬁiViP:_](xn,k)AnQn(xn,k)v;'k

:BiviP:;_l(xn,k)AnP::(xn,k)V?
V(P Gnp)An @nni) — Pr(n i) A3 Ot (60 Vi
Vi(P;_l(xn,k)AnP;.(xn,k) - P;(xn,k)A:P;,_l(xn,k))V?

1
n—1 px * >0

Vi(ijo Pj(xn,k)Pj(xn,k))vi
And the theorem is proved. u

Theorem 3.1 can also be extended for perturbations of the orthonormal polynomi-

als. Indeed, let 4 be a matrix satisfying that 4,4 is hermitian, and let us consider the
polynomial P,(¢) — AP,—1(¢). Then, Theorem 3.1 holds for this polynomial, i.e.:

£ 3
Vil ovi =

THEOREM 3.2. Let n be a nonnegative integer. We write x,; (k = 1,...,m) for the
different zeros of the matrix polynomial P, — AP,_ (where A,A = A*A}) ordered in
increasing size (hence m < nN) and I, for the matrices

1
(det(Ps) — AP1-1(0) ) “500)
(Onleng) — AQn-1(n)), ke =1,...,m,

L—=1)
Lo = (AP0 — 4Ps10)) " )
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where I is the multiplicity of xp 4.
(1) For any polynomial P with dgt(P) < 2n — 2 the following formula holds

(3.9) / P(6)dW(t) = i )
k=1

(2) The matrices I, are positive semidefinite matrices of rank I, fork=1,...,m.

Using Theorem 2.4 instead of Theorem 2.3 the proof of Theorem 3.2 exactly works as
that of Theorem 3.1. It is worth noting that (3.9) can not be extended for dgr(P) < 2n—1
because of

[ Co(Puty — AP,-1(0)) dW(e) = 0
can only be guaranteed when dgr(C) < n — 1.

REMARK 3.3. In the scalar case, the coefficients of the quadrature formula satisfy a
remarkable property called Markov-Stieltjes inequalities:

k=1 ok k
Yoy < [ @) <Y heyy k=1,.m,
=1 a =1

where x,1,...,%,, are the zeros of the orthonormal polynomial p,, and )\, are the
quadrature weights given by

) 1

Ny N

e

This property was conjectured by Chebyshev in 1874, and proved independently by

Markov and Stieltjes ten years later. We present here a counterexample showing that

these Markov-Stieltjes inequalities are no longer true for orthogonal matrix polynomi-

als. The reason is the highly singular character of quadrature weights in the matrix case.
Indeed, let p1, (2, (1,1)n and (p2,,)n be two positive measures and their sequences of

orthonormal polynomials. We define the matrix of measures W by

ur 0
W= .
( 0 ﬂz)
Then it is clear that its sequence of orthonormal matrix polynomials is
_[(pin O
Pn(t)_( O pz’n), nZO.

We assume that the measures p; and p, have the same support [a, ] and that p; , and p;
interlace their zeros. Then an easy computation gives that the coefficients in the matrix
quadrature formula are

)‘ln’Ll 0 _
( 02 0) fork=1,3,---,2n—1,

rn,k:
(0 0 ) fork=2,4,---,2n,
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where Ajx, Aaak, (K = 1,...,n) are the quadrature weights for the measures y;,
respectively. Then, since

is a singular matrix, it is clear that

/'”' dW(x) £ Toy,

because of the non-singularity of ;"' dW(x).

4. Markov’s theorem for orthogonal matrix polynomials. We are now ready to
prove the matrix version of Markov’s theorem

PROOF OF THEOREM 1.1.  First of all, we prove that

dw(s)
—t

lim @0, = [ =

forz € C\ I (see (1.1) for the definition of I").
We consider the sequence of discrete matrices of measures (u,), defined by

Z Xk nk’ IIZO,

where x,; (k = 1,...,m) are the different zeros of the matrix polynomial P, ordered
in increasing size, and I',; are the positive semidefinite matrices defined by (3.1) and
which appear in the quadrature formula (3.2).

From the definition of these matrices (see (3.1)), it follows straightforwardly that

=/%@

z—t’

@.1) m&mwzénk

Z— Xnk

if z is not a zero of P,. Taking into account (4.1), it will be enough to prove that

im [ 450 _ 470

n—00 z—1 z—1

forz € C\T. If not, we find a complex number z € C \ T, an increasing sequence of
nonnegative integers (#,,) and a positive constant C for which

4.2) H / ame _ d“"m(’) “2 >C>0, m>0,

z—t z—t

where we write || - ||2 for the spectral norm of a matrix.

If we proceed as in Section 2 of [DL], taking two increasing sequences (ax)x, (bx)x for
which ay, b, — +00, we can obtain (by using Banach-Alaoglu’s theorem) a subsequence
(Um)m from (n,,)m, and a positive definite matrix of measures v such that for £ > 0

@.3) Jim [* f0du,® = [ 100,
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for any continuous matrix function /" defined in [—ay, b;]. Now it is easy to prove (see
Section 2 of [DL] for more details) that the k-th moment of the matrix of measures v is the
limit of the £-th moment of the matrices of measures p;, . But the quadrature formula (3.2)
gives that the k-th moment of the matrix of measures y;, (k < 21,, — 1) is precisely the
k-th moment of the matrix of measures W. Since W is a determinate matrix of measures,
we conclude that v = W. Then (4.3) gives that for k > 0

. by by
@.4) lim [* fOdu, 0= [ f@ydw.
M= —ay —ay
By taking k and then /,, big enough, from (4.2) and (4.4) we obtain

—a dp, () o dp, ()
@9 3 <o e [

We write Sy for the first moment of the matrices of measures y;, which is the first moment
of the matrix of measures W. Then we have from (4.5) and the definition of the spectral

2

norm that
3 <m0+ [ o]
Sm“sz@rpfmﬂ
<mx(—r e,

But this implies C = 0, and therefore, (4.2) is not possible.

We now prove that the analytic functions which form the entries of the matrix [ gz"—flg
are uniformly bounded in compact sets of C \ . Then, the uniform convergence in com-
pact set of C \ I" will follow from Stieltjes-Vitali’s theorem.

Given a compact K C C \ T, we notice that K N My = {, for N sufficiently big, and
then there exists C > 0 such that

‘Z_t; <C forze Kandt € My.

Then, for n > N and v € CV, the positive definiteness of y, gives that

dﬂ‘n (t) Vd/J'n (t)V* * *
— < —
l / > —t / e—q = C/vdu,,(t)v vSov',
and now it is easy to finish. ]

It is worth to note that the order in which the polynomials P, ! and 0, appear multi-
plied in the matrix version of Markov’s theorem, i.e., P, !(z)Q,(2), is essential to guar-
entee the validity of this result. Indeed, let W be a positive definite matrix of measures
and (P,),, (Or)x its orthonormal matrix polynomials and polynomials of the second kind,
respectively. Let us consider a non-singular matrix C, and the positive definite matrix of
measures defined by R = CWC*. It is clear that (P,C™"), and (Q,C*) are, respectively,
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the sequence of orthonormal matrix polynomials and the sequence of polynomials of the
second kind for R. Hence, if Markov’s theorem held for Q,(z)P; ! (z), we would have

dw(e)
—t

lim Q,(2)C*CP,, ()= C/ ipi(tt)

lim 0,@)P; () = [ =

c,

which, in general, is clearly false.

Markov’s theorem can be extended for perturbations of the orthonormal polynomi-
als: Indeed, let 4 be a matrix satisfying that 4,4 is hermitian, and let us consider the
polynomial P,(f) — AP,_,(t). We write A, 4 for the set of zeros of the matrix polynomial
P, — AP,_,, and

Iy =0Nw>oMy4, where My = U;>nAna.
Then

THEOREM 4.1.  Assume that W is determinate and that A,A = A*A}, for n > 0. Then

. aw() )
lim (Pa(@) = 4P1@) " (Qn0) —40s1@) = [ == forz€C\T,
and the convergence is uniform for z in compact subsets of C \ I'4.
Using Theorem 3.2 instead of Theorem 3.1 the proof of Theorem 4.1 exactly works

as that of Theorem 1.1.

5. The k-th associated polynomials. For £ > 1, the k-th associated polynomials
(P, are defined by the formula

(5.1 PH(x) = / —'ﬂ%—l)ﬁ&dW(t)Pz_l(t), n>0.

The orthogonality of the polynomials (P,), shows that the degree of P is just n.
Associated polynomials already appear in Stieltjes” fundamental work [S]. (See the
survey [V] for more details).
These k-th associated polynomials satisfy the following two recurrence formulae

(5.2) xPY(x) = Ay PY, () + B PRI + A5 PP (), m >0,
and
(5.3) xPB) = PF oy + PROB;_ + PET 04,

with initial condition 4o = I, P*] (x) = 6 and P)(x) = 4; . Indeed, we have

i) = [t =D gy o

- &= 0Pl Jrnpr (@),
x—1t
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but also p p
xpii) = [ LoD =Pk gy )

ff Prot®) = Pu® e — Py ().
x—1

Formulae (5.2) and (5.3) now follow from the three term recurrence formula for (P,),
and the orthogonality of these polynomials.

From the formula (5.3) and the three term recurrence formula for (P,), one obtains
the following quasi Christoffel-Darboux formula

THEOREM 5.1.  The following formulae are valid:
(=37 P (0Pe-1(0) = Pax) — Pa(0).
k=1

and

3= PPy (6) = P

PROOF. Indeed, it is enough to write

Py(x) — Py(t) _ &
——(x—:r = I;Ak,np —1(2),

and compute the matrix coefficients 4y , by using the orthonormality of (P,),. n

The following generalization of Markov’s Theorem is a consequence of Theorem 1.1,
the formula (5.3) and the three term recurrence formula for (P,), (see [V] for the scalar
version):

THEOREM 5.2. Assume that W is determinate. Then for k > 1
L Pr_ (1)
k
lim P\ @PY, () = / AW~ forz € C\T,

and the convergence is uniform for z in compact subsets of C \ T.

PROOF. It follows in a straightforward manner proceeding by induction on k& and
using the formula (5.3). =
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