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MARKOV'S THEOREM FOR ORTHOGONAL 
MATRIX POLYNOMIALS 

ANTONIO J. DURAN 

ABSTRACT. Markov's Theorem shows asymptotic behavior of the ratio between the 
tt-th orthonormal polynomial with respect to a positive measure and the n-th polynomial 
of the second kind. In this paper we extend Markov's Theorem for orthogonal matrix 
polynomials. 

1. Introduction. A. Markov established in 1895 (see [M]) the following result, 
which is now known as Markov's theorem: 

w^oo pn(z) Ja Z — t 

where \i is a probability measure on the finite interval [a, b], (pn)n is the sequence of 
orthonormal polynomials with respect to JJ, and (qn)n is the corresponding sequence of 
polynomials of the second kind, defined by 

, x [Pn{x)-Pn(f) 
<M*) = / d[i(t\ n>0. 

The hypothesis \i having compact support is too restrictive, and actually the determi-
nacy of the measure /x is a sufficient condition. Even for some families of indeterminate 
measures Markov's theorem holds (see the recent survey about Markov's theorem [B]). 

The purpose of this paper is to extend Markov's theorem for orthogonal matrix poly­
nomials. 

We consider aNxN positive definite matrix of measures W (for any Borel set A C R9 

W(A) is a positive semidefinite numerical matrix), having moments of every order, i.e., 
the matrix integral 

JRfdW(t) 

exists for any nonnegative integer n. 
The matrix inner product defined in the usual way by W in the space of matrix poly­

nomials has associated a sequence of orthonormal matrix polynomials (Pn)n, satisfying 

jPn(t)dW(t)P*m{f) = 6^1, n,m > 0. 

Pn{t) is a matrix polynomial of degree n, with a non-singular leading coefficient and is 
defined upon a multiplication on the left by a unitary matrix. 
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As in the scalar case, the sequence of orthonormal matrix polynomials (Pn)n satisfies 
a three-term recurrence relation 

tPn{t) = An+lPn+l(t) + BnPn{t) +A*nPn_x{t\ n > 0, P_K0 - 0, 

where An are non-singular matrices and#„ are hermitian. Without loss of generality, we 
assume Po(t) — /. (Here and in the rest of this paper, we write 9 for the null matrix, the 
dimension of which can be determined from the context.) 

This three term recurrence relation characterizes the orthonormality of a sequence 
of matrix polynomials with respect to a positive definite matrix of measures (see, for 
instance, [AN] or [DL]). In [Dl], [D2] and [DV] a very close relationship between or­
thogonal matrix polynomials and scalar polynomials satisfying a higher order recurrence 
relation has been established. 

The corresponding matrix polynomials of the second kind are defined by 

J x — t 

We say that the positive definite matrix of measures W is determinate if no other positive 
definite matrix of measures has the same moments as those of W, i.e., the positive definite 
matrix of measures W is uniquely determined by the moments J f dW(f) (n £ N). 

To establish Markov's theorem, we need the following definitions: An stands for the 
set of zeros of the matrix polynomial P„, i.e., the zeros of det(P„). In [DL], it is proved 
that these zeros are real and have multiplicity at most N. We finally put 

(1.1) r = rw>oA/jv, where MN = U„>ATAW . 

It is proved in [DL] that orthogonalizing matrix of measures fi for the matrix polynomials 
(Pn)n can be found as weak accumulation points of a sequence of discrete measures [in 

with support precisely A„. Therefore, for a determinate matrix of measures W, we have 
supp(JF) C T. 

The main result of this paper is the following matrix extension of Markov's Theorem. 

THEOREM 1.1. Assume that W is determinate. Then 

lim P-\z)Qn{z) = f ^ for z £ C \ T, 
n—KX> J z — t 

and the convergence is uniform for z in compact subsets ofC \ T. 

We will show that in the matrix version of Markov's theorem, the matrices P~x and 
Qn must be multiplied in the order P~xQn, otherwise the result could be false. 

To prove Markov's theorem we find a quadrature formula (Section 3) for the inner 
product defined by the matrix of measures W in the space of matrix polynomials. The 
matrix coefficients, which appear in that quadrature formula, will be given in a closed 
expression, and this expression will be the key to establish the matrix version of Markov's 
Theorem (see [SV, and DL] for other versions of the quadrature formula). 
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In the proof of this quadrature formula we use a property of the zeros (Section 2) of 
the n-th orthonormal matrix polynomial Pn which will play a fundamental role in the 
whole theory of orthogonal matrix polynomials: 

If a is a zero of Pn{i) of multiplicity p, then rank(P/2(a)) = N—p (hence/? < N), 

and the matrices (Adj(Pw(0)) (<*) and P*_{(a)An define two isomorphisms 
from the space of right eigenvectors of Pn(a) associated to the eigenvalue 0 into 
the space of left eigenvectors of Pn(a) associated to the eigenvalue 0. The inverse 
mapping of P*n_x(ct)An is that defined by the matrix Qn(a). 

For a given matrix A, we denote by Adj(̂ 4) the classical adjoint, i.e., the matrix 
uniquely defined by the property 

A Adj(A) = Adj(A)A = dQt(A)L 

That the zeros of orthogonal polynomials are simple (in the scalar case) is a well-known 
property, which is not true in the matrix case. Precisely, the property we have noted above 
will play in the matrix case the same role as that of the non-multiplicity of the zeros in 
the scalar case. 

To complete this paper, we give a generalization of Markov's theorem showing the 
asymptotic behavior between the sequence of orthonormal matrix polynomials and the 
sequence of &-th associated polynomials (Section 5) 

2. Zeros. We start with the following lemma which contains the matrix version of 
some classical formulae for orthonormal scalar polynomials. The proofs work as in the 
scalar case and so are omitted. 

LEMMA 2.1. (1) The Christojfel-Darbouxformula and some special cases 

P:_{(z)AnPn(w) - P^AlP^iw) 

(2.1) 
= (w-zY£Pi(z)Pk(w), z,weC. 

k=0 

(2.2) P*_i(zMnPn(z)-n(zKPnMz) = 0, z € C. 
n-l 

(2.3) P*n_x(z)AnP'n(z) - ^ ^ _ , ( z ) = E PtWkiz), z e C 
k=0 

(2) Some particular cases of the Green formula: 

P*n_x(z)AnQn(W) - Pl{z)A*nQ„^{w) 

(2.4) »-J . 
= l + (w-z)J:P*k(z)Qk(w), z , w e C . 

(2.5) PU(z)AnQn(z)--P*n(z)A*nQn^) = I, z € C . 
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(3) The Liouville-Ostrogadski formula 

(2- 6) Qn(z)K-^) - Pn(z)QU{z) = A~{. 

To prove the remarkable property about the zeros of P„ stressed in the introduction, 
and the quadrature formula, we need the following lemma: 

LEMMA 2.2. Let A(t) be a N x N matrix polynomial and let a be a zero ofA(t) of 
multiplicity p, i.e., a zero of multiplicity p of the scalar polynomial dtt(A{t)\. We put 

L(a,A) = {vECN : vA(a) = 0}, R(a,A) = {veCN: A(a)v* = 0}. 

Ifdim(L(a,A)) = dim(fl(M)) = p, then (Adj(^(0)) (a) = 0, for l = 0 , . . . , / ? - 2 

and (Adj(A(t)) j (a) ^ 0. Moreover rankf Adj(A(t))] (a) = p and 

(Ad)(A(tj)Y~l\a) 

defines a linear mappingfrom CN onto L(a,A) which is an isomorphism from R(a,A) into 

L(a9A\ 

PROOF. It follows straightforward from Lemma 2.2 of [DL] that 

( A d j ( ^ ( 0 ) ) % = 0, for/ = <>,...,/>-2. 

We now prove that (Ad)(A(ff)) (a) ^ 0. Since a is a zero of A(t) of multiplicity p, 

by differentiating the formula Adj(v4(f));4(0 = det^(/)/ and taking into account what 
we have already proved, we obtain that 

(2.7) (Adj(^(0)) (a)A(a) = 0, and 

(2.8) (Adj(A(t))Y\a)A(a) + (Adj(^(0))^~ V M ' ( < 0 = (tetA{t)f\a)L 

If (Adj(A(t))) (a) = 0, (2.8) gives that 

(Ad)(A(t))y\a)A(a) = (dei A{i)f\a)L 

But this is impossible because A(a) is singular but (det^4(0) (a)I is non-singular (a is 
a zero of multiplicity just/? of det(v4(0)). 

The formula (2.7) gives that the matrix 

[Adj(A(t))Y~l\a) 
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defines a linear mapping 

v^v[Adj(A(t))Y']\a). 

For v G R(a,A), v ^ 9, (2.8) gives that 

v[Adi(A(t))Y~l\a)A\ay ? 9. 

So, the linear mapping defined by (Adj(^4(Y))) (a) is injective in R(a,A). Hence, 

rank(Adj (^(0)) (a) > dim(R(a9 A)) = p. 

But (2.7) gives that the rows of (Adj(^4(/)) j (a) are vectors of L(a,A), hence 

rank(Adj(>4(0)) (a) < dim(L(a,AJ) = p. 

And the proof is finished. • 
Some properties of zeros of orthogonal matrix polynomials on the real line have been 

established recently in [SV] and [DL] (see also [Z]). We complete here those results by 
proving the property we noted in the introduction of this paper. 

THEOREM 2.3. If a is a zero ofPn(t) of multiplicity p, then 
(1) a is realp < N, rank(Pw(tf)) = N—p, andd\m(R(a,Pn)) = dim(Z(a, P„)) = p 

(R(a, Pn) and L(a, Pn) are, respectively, the spaces of right and left eigenvectors 
ofPn(a) associated to the eigenvalue 0). 

(2) The matrix P*_{(a)An defines an isomorphism from R(a,Pn) into L(a,Pn). Its in­
verse mapping is the isomorphism defined by the matrix Qn(a). 

(3) The matrix ( Adj (P«(0) ) (a) defines a linear mapping from CN onto L(a, Pn) 
which is an isomorphism from R(a,Pn) into L(a,Pn). 

(4) (Adj(Pn(t))y^l\a)Pn(a) = P„(a)(Adj(Pw(0))^ V ) = 9 and 

(P-\) 
rank(Adj(Pw(0)) " (a) = p 

being thep linearly independent rows oj ( Adj \Pn (i)\) {a) a basis of the linear 

space of left eigenvectors ofPn(a) associated to 0. 

PROOF. (1) It is contained in parts (1) and (2) of Theorem 1.1 in [DL]. 
(2) First of all, we prove that if v G R(a,Pn) then vP*n_x{a)An G L(a9Pn). Indeed, if 

P„(a)v* = 0, the formula (2.2) gives that vP*n_x(a)AnPn(a) = 9, that is, vP*n_{(a)An G 
L(a,P„). 
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For a vector v e R(a,Pn), the formula (2.5) gives 

(2.9) vPU(a)AnQn(a) = v, 

and so, vP*_{(a)An-\ ^ 6. This proves that the mapping is injective. Since the dimension 
of R(a,Pn) and L(a,Pn) is the same, the mapping is automatically an isomorphism. 

(2.9) shows that its inverse mapping is just that defined by Qn(a). 
(3) and (4) From (1) we have that dim(R(a,Pnf) = dim(l(a,Pw)) = p. Then (3) and 

(4) of Theorem 2.3 are straightforwardly deduced from Lemma 2.2. • 
Theorem 2.3 can be extended for perturbations of the orthonormal polynomials. In­

deed, let A be a matrix satisfying that AnA is hermitian, and let us consider the polynomial 
Pn(i) — AP„-\(t). Then, Theorem 2.3 holds for this polynomial, i.e.: 

THEOREM 2.4. If a is a zero ofPn(i)-APn-\ (i) of multiplicity p, where AnA = A*A*n, 
then 

(1) a is real, p < N, xavk{Pn(a)-APn^x(af) = N-p, anddim(R(a,Pn-APn^f) = 

dim(L(a,Pn-APn-l))=p. 
(2) The matrix P*n_x(a)An defines an isomorphism from R(a,Pn — APn-\) into 

L(a, Pn — AP„-\). Its inverse mapping is the isomorphism defined by the matrix 
Qn(a)-AQn-i(a). 

(3) The matrix (Ad)(Pn(t) — APn-\(tfj) (a) defines a linear mapping from CN 

onto L(a,Pn — AP„-\) which is an isomorphism from R(a,Pn — APn-\) into 
L(a9Pn-APn-i). 

(4) 

(hd](Pn{f) - APn-xWJf' l\a)(PH(a) -APn-X(aj) 

= (Pn(a) - APn^{aj) (Adj(PB(0 - APH-l(t)))^
l\a) = 6 

and 

va^Adj(Pn(t)-APn^(t))Y~l\a) =p, 

being thep linearly independent rows of (Adj (Pn (t) — AP„- \ (if) ) (a) a basis 

of the linear space of left eigenvectors ofPn(a) — APn-\(a) associated to 0. 

By modifying in an appropriate way the formulae showed in Lemma 2.1 (this can be 
easily done by using that the matrix AnA is hermitian), the proof of Theorem 2.4 exactly 
works as that of Theorem 2.3. 

3. The quadrature formula revisited. Quadrature formulae have been found re­
cently for orthonormal matrix polynomials by Sinap and Van Assche (see [SV]) and 
Duran and Lopez-Rodriguez (see [DL]). Here and using other different approach, we 
improve these quadrature formulae by giving a closed expression for the matrix coeffi­
cients which appear in the formula. This expression will be the key to prove the matrix 
version of Markov's Theorem. 
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THEOREM 3.1. Let n be a nonnegative integer. We write xn^ (k = 1 , . . . , m)for the 
different zeros of the matrix polynomial Pn ordered in increasing size (hence m < nN) 
and Tn^for the matrices 

( 3 . 1) TnJt = - ^ ( A d j ( P w ( 0 ) ) * (Xn,k)Qn(Xn,kl k=l,...,m, 

(det(P„(0)j (xnJt) 

where 4 is the multiplicity ofxn^ 
(1) For any polynomial Pwith dgr(P) < In — 1 the following formula holds 

/

m 
P(t)dW(t) = J2P(x^)Tn,k. 

k=\ 

(2) The matrices Tn^ are positive semidefinite matrices of rank /*, k = 1, . . . , m. 

It is worth noting that the smaller the multiplicity of a zero xnjc is, the bigger the 
singularity of the matrix T^ is. For instance, if xn^ is simple, then T„jt has rank one. 

PROOF. TO prove (1) of Theorem 3.1 we use the following surprising fact: 
Although the zeros of Pn {i.e., the zeros of det(P„)) can be of multiplicity bigger 

than one (at most N) the decomposition 

m C L. 

(3.3) P ( z ) p - ' ( 2 ) = £ _ ^ _ i f d g r / > < n - l , 
k=\ z ~ xn,k 

is always possible. 
Part (4) of Theorem 2.3 and Lemma 2.2 show the reason for this remarkable property: 

indeed, if a is a zero of multiplicity p for Pn then 

M](Pn(aj) = (Adj(Pw(0))/(a) = • • • = (Adj(P„(0))^ 2 \a) = 0, and 

[Ad}(Pn(t)))
(P~l\a)^0. 

This means that a is a zero of multiplicity at least p— 1 of each entry of Adj (Pn(z)). Hence 
a is a zero of multiplicity at least p — 1 of P(z) Adj (Pn(z)) for any matrix polynomial 
P, and so, if dgr(P) < n - 1, (i.e., dgr(PAdj(P„)) < nN - \ < dgr(det(P„))), the 
expression (3.3) holds for 

det(P„(z)) 

We now prove (1) of Theorem 3.1. Let P be a matrix polynomial of degree less than 
or equal to In — 1. Since Pn is a polynomial with non-singular leading coefficient, we 
can write ([G] p. 78) 

(3.4) P(t) = C(t)Pn(t) + R(t)9 
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where C{t) and R(t) are matrix polynomials with dgr(R) <n—\. 
Then we have 

(3.5) P{i)P-\i) = C{t) + R{t)P-\i), 

when t is not a zero of Pn. Since dgr(#(/)) < n — 1 we can write 

m 1 

R{f)P-\t)=YJCnK , 
k=\ l~~ xn,k 

where the matrices Cn^ are given by 

1 / , N\(4-i) 
Cn>k = 7 ^ R(xn,k)[Ad)(Pn(t))) (Xnjt). 

(det(P„(0)) (*„,*) 

Since />„(*„,*) (Adj (Pw(0) J (*„,*) = 0 (see part (4) of Theorem 2.3), (3.4) gives that 
the matrices Cn^ can be written in the following way 

(3- 6) CnJi = L ^ P ^ A d j ^ C O ) ) ^ 1 W ) -
(det(/>„(0)) (*„,*) 

Then (3.5) gives 
m p (f\ 

P(t) = C(t)Pn(t) + ̂ C„K " w 

k=\ ' t — Xnjc 

From (3.6) and part (4) of Theorem 2.3, we have 

m = c(t)Pn(t) + 1 cn/n{i)~Pn{XnJi). 
k=\ t — Xnfi 

From the definition of the polynomial Qn it follows that 

fp{i)dW{i) = f C(t)Pn{t)dW{t) + £ C^fiafoj). 
J J k=\ 

But dgr(Q < n, so the orthonormality of Pn gives that J C(i)Pn(i) dW(i) = 0. Hence, we 
have 

Then, part (1) of Theorem 3.1 follows from the definition of the matrices Yn^ and Cn^ 
(see (3.1) and (3.6)). 

We now prove part (2) of Theorem 3.1: 
We proceed in several steps: 

STEP 1. The matrices Tn^k (k = 1, . . . , m) are hermitian. 
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PROOF. If we prove that the matrix P~x (t)Qn (t) is hermitian when t G R is not a zero 
of Pn, Step 1 would follow from the decomposition 

m 1 

P^(t)Q„(t) = Y:rn,k- . 
k=\ l ~ xn,k 

The orthogonality of Pn with respect to any other polynomial of degree less than n gives 
that 

Pn\t)Qn{t) = JP-\t)Pn{t)~PM dW(x) J t — x 

= fPn\i)Pn{t] ~ Pn{x) dw(*){m - K(x))(KTl(t) 
J I X 

= fp-\t)(pn(t) - pn(X)) dw(X)K(t)~p"(x\p;rl(t) 
J I X 

= jdw(x)p*"{tYP*"{x\p:r\t) 
J t ~~ X 

= Q:(t)(p:r\t\ 
that is, P~x(t)Qn(i) is hermitian when t E R is not a zero of Pn. • 

STEP 2. rsmk(rnk) = 4, k = 1 , . . . , m. 

PROOF. Theorem 2.3 gives that rankfM^\Pn{t))\ (xn>k) = lk. Since the left 

eigenvectors of (Adj (Pn(t))) (xn^) associated to 0 are left eigenvectors of Yn^ asso­
ciated to 0 (see (3.1)), it will be enough to prove that left eigenvectors of T„jt associated 

to 0 are left eigenvectors of (Adj(P„(0) J (xnjd associated to 0. 

Let u be for which v = u( Ad)[Pn(t))) {xn,k) ^ 0. Part (3) of Theorem 2.3 shows 

that v € L(xnjt9Pn). Then the formula (2.6) gives 

v(Qn(xn,k)P*_l(xnik) ~ Pn(XnJc)Qn-AXnjS) = vQn(xn,k)P*n-l(xn,k) = vA~l. 

Since the matrix A~x is non-singular, we have that vQn(xn>k) ^ 0, and taking into account 
the definition of v and Tn^, we obtain uTnk ^ 0. And Step 2 is proved. • 

We take vectors v i , . . . , v^ satisfying the following properties: 
(1) v/ is a left eigenvector of the matrix Tnik associated to an eigenvalue at ^ 0, 

(2) v/v* = Sij9iJ= 1,...,&. 

STEP 3. For i = 1, . . . , 4, constants /?/ ^ 0 exist such that 

( / \\V"-iy) 
PROOF. From part (3) of Theorem 2.3, we have that v,-( Adj(P„(0) ) (xn,k) £ 

L(x„yk,Pn)> Since the matrix Pn_x(xn^)An defines an isomorphism from R(xn^Pn) into 
L(xnj„ Pn) (Theorem 2.3 (2)), we have that 

(3.7) v ^ A d j ^ ) ) ) (xn,k) = UiPZ^jdAn, 
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for certain ut E R{xn^Pn)- Since Qn{xn,k) is the inverse mapping of P*n_x{xnjk)Any we 
have from (3.7) that 

( ( \\{lk~l) 

Vi (̂ Adj [Pn(t)) J (Xn,k)Qn(Xn,k) = Ut. 
Then, from the definition of the matrix Tn^ (see (3.1)), we deduce that 

1 
v*r„j (/*), 

(detP„(0)UW) 

Since ViTn^ = cciVi9 it is enough to take /?,- = a;(detP„(f)) * (*«,*;)• • 
Finally, we prove that v/I^v* > 0, i.e., the matrix r„^ is positive semidefinite. In 

Step 3, we have proved that v, = -̂w„ for certain ut E R(xnk,Pn), then we deduce that 
Pi ' 

v/ E R(xnk,Pn)> From the formula 

(Adj(Pw(0))(4)(^)Pn(xw>,) + (Adj(Pw(0)) ( 4 _ 1 )(xw , ,)^(^) 

- (detP„(0) ( / f t )(^)/, 

and Step 3, we obtain 

(3. 8) fcViPUix^MnP'niXnM = (det/^of'W)-

Step 3, (3.8), (2.3) and (2.5) give that 

V;(Adj(/>„(x„,*))) Qn(x„jtX 
v/r^v* 

(detPB(0)UW) 
= PiViP*n-\(

Xn,kMnQn(Xn,k)v* 

fcViP^iXn^nP'niXn^V* 

= v/^.^vM.ftM -p:(^M:a-i(^))v; 

= v/(E;-0
1/7fe,^(^))v* > 0 ' 

And the theorem is proved. • 
Theorem 3.1 can also be extended for perturbations of the orthonormal polynomi­

als. Indeed, let A be a matrix satisfying that AnA is hermitian, and let us consider the 
polynomial Pn{t) — APn-\(t). Then, Theorem 3.1 holds for this polynomial, i.e.: 

THEOREM 3.2. Let n be a nonnegative integer. We write xn^ (k = 1 , . . . , m)for the 
different zeros of the matrix polynomial Pn — APn-\ (where AnA = A*A^J ordered in 
increasing size (hence m < nN) and T^ for the matrices 

r»jt = - ^ (Adj(Pn(t)-APn^(t))fk l\x„,k) 

(det(P„(0-^P„-i(0)) (*njt) 

' {Qn(xn,k) ~ AQ„-i(xnJi))9 k=l9...9m9 
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where 4 is the multiplicity ofxn^. 
(1) For any polynomial P with dgr(P) <2n — 2 the following formula holds 

/

m 

P(f)dW(t)=Y,P(Xn*)Tn*-

(2) The matrices Tn^ are positive semidefinite matrices of rank 4, for k — 1 , . . . , m. 

Using Theorem 2.4 instead of Theorem 2.3 the proof of Theorem 3.2 exactly works as 
that of Theorem 3.1. It is worth noting that (3.9) can not be extended for dgr(F) < In — 1 
because of 

/C(t)(Pn(t) - APn^(t)) dW(f) = 9 

can only be guaranteed when dgr(Q < n — 1. 

REMARK 3.3. In the scalar case, the coefficients of the quadrature formula satisfy a 
remarkable property called Markov-Stieltjes inequalities: 

E Kj < [ ",k dfi(x) < J2 Kj, k=l,...,n, 
j=\ Ja j=\ 

where x„,i,... ,x„,w are the zeros of the orthonormal polynomial pn, and Xn^ are the 
quadrature weights given by 

This property was conjectured by Chebyshev in 1874, and proved independently by 
Markov and Stieltjes ten years later. We present here a counterexample showing that 
these Markov-Stieltjes inequalities are no longer true for orthogonal matrix polynomi­
als. The reason is the highly singular character of quadrature weights in the matrix case. 

Indeed, let fi\, p,2, ip\,n)n and (p2,n)n be two positive measures and their sequences of 
orthonormal polynomials. We define the matrix of measures Why 

W 10 vi)' 

Then it is clear that its sequence of orthonormal matrix polynomials is 

We assume that the measures fi\ and ^2 have the same support [a, b] and that/?i5„ and/?2,« 
interlace their zeros. Then an easy computation gives that the coefficients in the matrix 
quadrature formula are 

Fn,k — 
(Al,"cT 0) for*=l,3,-.,2«-l, 
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where AijW>*, ^2,n,k, (k = 1,...,w) are the quadrature weights for the measures fi\, ^2 
respectively. Then, since 

ln>l-[ 0 0)9 

is a singular matrix, it is clear that 

I*™ dW(x) it rntU 
Ja 

because of the non-singularity of J^1"1 dW(x). 

4. Markov's theorem for orthogonal matrix polynomials. We are now ready to 
prove the matrix version of Markov's theorem 

PROOF OF THEOREM 1.1. First of all, we prove that 

dW(t) 
z-t «—xx> J Z — \ 

for z e C \ T (see (1.1) for the definition of T). 
We consider the sequence of discrete matrices of measures (//„)« defined by 

m 
V>n = YjKkTnJc, n>09 

k=\ 

where xHik (k = 1, . . . , m) are the different zeros of the matrix polynomial Pn ordered 
in increasing size, and Tnk are the positive semidefinite matrices defined by (3.1) and 
which appear in the quadrature formula (3.2). 

From the definition of these matrices (see (3.1)), it follows straightforwardly that 

(4. i) tfwm = t rv-V = / ^ , 
t=l Z-Xnjk J Z-t 

if z is not a zero of P„. Taking into account (4.1), it will be enough to prove that 

dn„{t) r dW(t) 
n—>oo J z — t J 

for z e C \ T. If not, we find a complex number z G C \ T, an increasing sequence of 
nonnegative integers (nm)m and a positive constant C for which 

( 4 .2) U^m.f^aMl >c>0, m>0, 
\\J z—t J z — t\\2 

where we write || • H2 for the spectral norm of a matrix. 
If we proceed as in Section 2 of [DL], taking two increasing sequences (a*)jb Q>k)k f° r 

which ak, bk —> +00, we can obtain (by using Banach-Alaoglu's theorem) a subsequence 
(lm)m from (nm)m, and a positive definite matrix of measures v such that for k > 0 

(4.3) lim fh f(t) dvim (t) = [bk fit) dvit\ 
m—>oo J—ak J—cik 
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for any continuous matrix function/ defined in [—ak, b^\. Now it is easy to prove (see 
Section 2 of [DL] for more details) that the £-th moment of the matrix of measures v is the 
limit of the &-th moment of the matrices of measures \i\m. But the quadrature formula (3.2) 
gives that the £-th moment of the matrix of measures /x/m (k < 2lm — 1) is precisely the 
A>th moment of the matrix of measures W. Since Wis a determinate matrix of measures, 
we conclude that v — W. Then (4.3) gives that for k > 0 

(4.4) lim tk f(t) dmm (0 = /*' f{t) dWit). 

By taking k and then lm big enough, from (4.2) and (4.4) we obtain 

(4.5) C-< 
2 ~ 

r-ak dinjt) + r+oo dfiim(t) 
J-oo z — t Jbk Z — t 

We write So for the first moment of the matrices of measures /i/m which is the first moment 
of the matrix of measures W. Then we have from (4.5) and the definition of the spectral 
norm that 

C <r ( l 

1 
<*k\ 

< maxf^ 
\\z-ak\ 

1 < max( 7 
V \z - ak\ 

1 \ II r—ak r+oo || 

]7=^|)||/-oo d^ + k ^ W 
1 \ II r II 

\z-bk\)\\m ||2 

1 T T / r 0 • 
\z - bk\) \U 

But this implies C — 0, and therefore, (4.2) is not possible. 
We now prove that the analytic functions which form the entries of the matrix J -^p-

are uniformly bounded in compact sets of C \ T. Then, the uniform convergence in com­
pact set of C \ T will follow from Stieltjes-Vitali's theorem. 

Given a compact i C c C \ T , w e notice that K n MN = 0, for N sufficiently big, and 
then there exists O 0 such that 

1 
<C for ze K and te MN. 

\z-t\ 

Then, for n > N and v G C^, the positive definiteness of fin gives that 

<*lin(t) J r vdiin(i)v* I r OfWJ = f 
I J z-t I J 

< 
\z — t\ 

CJvdlIn(ty =VS0V\ 

and now it is easy to finish. • 
It is worth to note that the order in which the polynomials P~x and Qn appear multi­

plied in the matrix version of Markov's theorem, i.e., P~l(z)Qn(z), is essential to guar-
entee the validity of this result. Indeed, let Wbca positive definite matrix of measures 
and (Pn)n, (Qn)n its orthonormal matrix polynomials and polynomials of the second kind, 
respectively. Let us consider a non-singular matrix C, and the positive definite matrix of 
measures defined by R — CWC*. It is clear that (PnC~l)n and (QnC*) are, respectively, 
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the sequence of orthonormal matrix polynomials and the sequence of polynomials of the 
second kind for R. Hence, if Markov's theorem held for Qn(z)P~{(z), we would have 

n J 

dW{i)t 

z — t 

\xmQn{z)CCP-n\z) = C[ ^ C \ 
n J Z — t 

which, in general, is clearly false. 
Markov's theorem can be extended for perturbations of the orthonormal polynomi­

als: Indeed, let A be a matrix satisfying that AnA is hermitian, and let us consider the 
polynomial Pn(t) — APn-\(t). We write Anj for the set of zeros of the matrix polynomial 
Pn-APn-Uand 

FA = rw>oMjv^, where MNA = U„>#AM. 

Then 

THEOREM 4.1. Assume that Wis determinate and thatAnA = A*A*for n>0. Then 

lim(Pn(z)-APH- l(z)y\QH(z)-AQH-i(zj)= f ^ ^ forzeC\T, 

and the convergence is uniform for z in compact subsets ofC \ FA. 

Using Theorem 3.2 instead of Theorem 3.1 the proof of Theorem 4.1 exactly works 
as that of Theorem 1.1. 

5. The £-th associated polynomials. For k > 1, the A;-th associated polynomials 
(PW)n are defined by the formula 

(5.1) pM(jc) = fP"*k<d-p>*k® dW(i)Pl_x{t\ n > 0. 
J x t 

The orthogonality of the polynomials (Pn)n shows that the degree of P\f] is just n. 
Associated polynomials already appear in Stieltjes' fundamental work [S]. (See the 

survey [V] for more details). 
These A:-th associated polynomials satisfy the following two recurrence formulae 

(5.2) xPf{x) = An+k+lpW{(x) + Bn+kPf(x) +^+ , i f2 1(*) , n > 0, 

and 

(5.3) xP»\x) = I*£l](x)Al + Pf](x)BU + / ^ l 1 VM*-i 

with initial condition A0 = /, P^\(x) = 0 andFf](x) = A~[l. Indeed, we have 

~ XP„+k(x) - tP„+k(t) 
xP»\x)= rx^x)-tr"+k(l,dw(t)PU(t) 

J X t 

(x - i)Pn+k{t) 

x — t J x — t 

https://doi.org/10.4153/CJM-1996-062-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-062-4


1194 A. J. DURAN 

but also 
xPm{x) = f Pn,k(x)-Pn+k(t) dwit)tP*ki{t) 

J X t 

J x — t 

Formulae (5.2) and (5.3) now follow from the three term recurrence formula for (Pn)n 
and the orthogonality of these polynomials. 

From the formula (5.3) and the three term recurrence formula for (Pn)n one obtains 
the following quasi Christoffel-Darboux formula 

THEOREM 5.1. The following formulae are valid: 

(x-i)J2 Ff_k<ix)Pk^(t) = P„(x) - P„(t). 

and 

PROOF. Indeed, it is enough to write 

Pn(x)-Pn(t) _» 

{x — t) k=i 

and compute the matrix coefficients Aki„ by using the orthonormality of (Pn)n • • 
The following generalization of Markov's Theorem is a consequence of Theorem 1.1, 

the formula (5.3) and the three term recurrence formula for (Pn)n (see [V] for the scalar 
version): 

THEOREM 5.2. Assume that W is determinate. Then for k> I 

\imQP-l(z)P^k(z) = J dW(fy^- forzeC\T, 

and the convergence is uniform for z in compact subsets ofC \ T. 

PROOF. It follows in a straightforward manner proceeding by induction on k and 
using the formula (5.3). • 
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