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Abstract We show that some of the properties of log canonical centres of a log canonical pair also
hold for certain subvarieties that are close to being a log canonical centre. As a consequence, we obtain
that, in working with deformations of pairs where all the coefficients of the boundary divisor are bigger
than 1

2 , embedded points never appear on the boundary divisor.

Keywords: log canonical centre; semi-normality; deformation of pairs

2010 Mathematics subject classification: Primary 14J15; 14J17; 14E30; 14C20

The philosophy of Shokurov [20] stresses the importance of understanding the log canon-
ical (lc) centres of an lc pair (X, ∆) (see Definition 1). After the initial work of [9], a
systematic study was started in [2]. For extensions, surveys and comprehensive treat-
ments see [3,6]. The following are two of the principal results of [2,3,6].

• Any union of log canonical centres is semi-normal (see Definition 10).

• Any intersection of log canonical centres is also a union of log canonical centres.

The aim of this note is to extend these results to certain subvarieties of an lc pair (X, ∆)
that are close to being a log canonical centre. To state our results, we need a definition.
(See [5,17] for basic concepts and results relating to the minimal model program (MMP).
As in the above papers, we also work over a field of characteristic 0.)

Definition 1. Let (X, ∆) be lc and let Z ⊂ X be an irreducible subvariety. Following
Shokurov and Ambro, the minimal log discrepancy of Z is the infimum of the numbers
1 + a(E, X, ∆) as E runs through all divisors over X whose centre is Z [1]. (Here,
a(E, X, ∆) denotes the discrepancy of E with respect to (X, ∆) (see [17, 2.25]).) The
minimal log discrepancy is denoted by mld(Z, X, ∆).

An irreducible subvariety Z ⊂ X is called a log centre of (X, ∆) if mld(Z, X, ∆) < 1.
If Z ⊂ X is a divisor, then Z is a log centre if and only if it is an irreducible component
of ∆, and then its coefficient is 1 − mld(Z, X, ∆).

A log canonical centre is a log centre whose minimal log discrepancy equals 0.

Our first aim is to prove the following. (See Definition 10 for semi-normality.)
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Theorem 2. Let (X, ∆) be an lc pair and let Zi ⊂ X be log centres for i = 1, . . . , m.

(1) If mld(Zi, X, ∆) < 1
6 for every i, then Z1 ∪ · · · ∪ Zm is semi-normal.

(2) If
∑m

i=1 mld(Zi, X, ∆) < 1, then every irreducible component of Z1 ∩ · · · ∩ Zm is a
log centre with minimal log discrepancy less than or equal to

∑m
i=1 mld(Zi, X, ∆).

A result of this type is not entirely surprising. By Shokurov’s conjecture on the bound-
edness of complements (see [20, § 5] or [19, Chapter 4]), if (X,

∑
aiDi) is lc and the ai

are close enough to 1, then there exists another lc pair (X, ∆′ +
∑

Di) where the Di

all appear with coefficient 1. Thus, the Di are log canonical centres of (X, ∆′ +
∑

Di);
hence, their union is semi-normal and Du Bois [16]. In particular, there should exist a
function ε(n) > 0 such that the union of the Di with ai > 1 − ε(dimX) is semi-normal
and Du Bois. The function ε(n) is not known, but it must converge to 0 at least doubly
exponentially. (See [12, § 8] for the conjectured optimal value of ε(n) and for examples.)

Thus, it is somewhat unexpected that, at least for semi-normality, the bound in The-
orem 2 (1) is independent of the dimension.

Note that we do not assert that these Zi are log canonical centres of some other lc pair
(X, ∆′); this is actually not true. In particular, unlike log canonical centres, the Zi are
not in general Du Bois (see Example 5 (5)).

As Example 5 (1)–(3) show, the value 1
6 is optimal. There is, however, one important

special case when it can be improved to 1
2 . The precise statement is given in Theorem 11;

here, we mention a consequence that was the main reason of this project. The result
implies that if we consider the moduli of lc pairs (X, ∆), where all the coefficients in
∆ are greater than 1

2 , then we do not have to worry about embedded points on ∆.
(Examples of Hassett show that embedded points do appear when the coefficients in ∆
are less than or equal to 1

2 . See [14, § 6] for an overview and the forthcoming [15] for
details.)

Corollary 3. Let (X, ∆ =
∑

i∈IbiBi) be lc. Let f : X → C be a morphism to a
smooth curve such that (X, Xc + ∆) is lc for every fibre Xc := f−1(c). Let J ⊂ I be any
subset such that bj > 1

2 for every j ∈ J , and set BJ :=
⋃

j∈JBj .
Then, BJ → C is flat with reduced fibres.

The extension of these results to the semi-log-canonical case requires additional con-
siderations; these are treated in [15, Chapter 7].

The proof of Theorem 2 uses the following recently established result of Birkar [4] and
Hacon and Xu [8]. For dimX � 4, it also follows from earlier results of Shokurov [21].

Theorem 4. Let g : X → S be a projective, birational morphism and let ∆′, ∆′′

be effective Q-divisors on X such that (X, ∆′ + ∆′′) is divisorially log terminal (dlt),
Q-factorial and KX + ∆′ + ∆′′ ∼Q,g 0. The (X, ∆′′)-MMP with scaling over S then
terminates with a Q-factorial minimal model.

One of the difficulties in [2, 6] comes from making the proof independent of MMP
assumptions. The proof in [8] uses several delicate properties of log canonical centres,
including some of the theorems of [2, 6]. Thus, although the statement of Theorem 2
sharpens several of the theorems of [2,6] on lc centres, it does not give a new proof.
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Example 5. The following examples show that the numerical conditions of Theorem 2
are sharp.

(1) (A2, 5
6 (x2 = y3)) is lc, the curve (x2 = y3) is a log centre with mld = 1

6 , but it is not
semi-normal.

(2) Consider (A3, 11
12 (z − x2 − y3) + 11

12 (z + x2 + y3)). One can check that this is lc. The
irreducible components of the boundary are smooth, but their intersection is a cuspidal
curve, hence not semi-normal. It is, again, a log centre with mld = 1

6 .

(3) The image of C2
uv by the map x = u, y = v3, z = v2, t = uv is a divisor D1 ⊂ X :=

(xy − zt) ⊂ C4, and C2 → D1 is an isomorphism outside the origin. Note that the zero
set of (y2 − z3) is D1 + 2(y = z = 0). Let D2, D3 be two general members of the family
of planes in the linear system |(y = z = 0)|. We claim that (X, 5

6D1 + 5
6D2 + 5

6D3) is lc.
Here, D1 is a log centre with mld = 1

6 , but semi-normality fails in codimension 3 on X.
In order to check the claim, blow up the ideal (x, z). On C2

uv this corresponds to
blowing up the ideal (u, v2).

On one of the charts we have the coordinates x1 := x/z, y, z, and the birational
transform D′

1 of D1 is given by (y2 = z3). On the other chart we have the coordinates
x, z1 := z/x, t, and D′

1 is given by (z1x
3 = t2). Thus, we see that (B(x,z)X, 5

6D′
1)

is lc. The linear system |(y = z = 0)| becomes base-point free on the blow-up; hence,
(B(x,z)X, 5

6D′
1 + 5

6D′
2 + 5

6D′
3) is lc and so is (X, 5

6D1 + 5
6D2 + 5

6D3).

(4) Assume that (X,
∑

i∈IaiDi) has a simple normal crossing and that ai � 1 for every
i. Let J ⊂ I be a subset such that aj > 0, for every j ∈ J , and

∑
j∈Jaj > |J | − 1.

Every irreducible component of
⋂

j∈JDj is then a log centre of (X,
∑

i∈IaiDi) with
mld =

∑
j∈J(1 − aj) = |J | −

∑
j∈Jaj . In particular, Di is a log centre of (X,

∑
i∈IaiDi)

with mld = 1 − ai. Thus, Theorem 2 (2) is sharp. By [17, § 2.3], every log centre of
(X,

∑
i∈IaiDi) arises in this way.

(5) Let X be a smooth variety and let D ⊂ X be a reduced divisor. Then, D is Du Bois
if and only if (X, D) is lc. (See [16,18] for much stronger results.) In particular, D :=
(x2 + y3 + z7 = 0) ⊂ A3 is a log centre of the lc pair (A3, 41

42D) with mld = 1
42 , but D is

not Du Bois and it cannot be an lc centre of any lc pair (X, ∆). On the other hand, D is
normal, hence semi-normal.

Log centres and birational maps

Let g : (Y,∆Y ) → (X, ∆X) be a proper birational morphism between lc pairs (with
∆X , ∆Y not necessarily effective) such that KY +∆Y ∼Q g∗(KX +∆X) and g∗∆Y = ∆X .

If Z ⊂ Y is a log centre of (Y,∆Y ), then g(Z) is also a log centre of (X, ∆X) with the
same mld. Moreover, every log centre of (X, ∆X) is the image of a log centre of (Y,∆Y ).

Thus, for any (X, ∆X), we can use a log resolution g : (Y,∆Y ) → (X, ∆X) to reduce the
computation of log centres to the simple normal crossing case considered in Example 5 (4).

This implies that an lc pair (X, ∆) has only finitely many log centres, and the union of
all log centres of codimension greater than or equal to 2 is the smallest closed subscheme
W ⊂ X such that (X \ W, ∆|X\W ) is canonical.
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Proof of the divisorial case of Theorem 2. We prove Theorem 2 in the special
case when (X, ∆′) is dlt for some ∆′ and the Zi =: Di are Q-Cartier divisors.

Since (X, ∆′) is dlt, X is Cohen–Macaulay and so is
∑

Di [17, 5.25]. In particular,
∑

Di satisfies Serre’s condition S2. An S2-scheme is semi-normal if and only if it is
semi-normal at its codimension 1 points. By localization at codimension 1 points, we are
reduced to the case when dim X = 2.

Then, X has a quotient singularity at every point of
∑

Di, and Reid’s covering
method [10, 20.3] reduces the claim to the smooth case. It is now an elementary exercise
to see that if (A2,

∑
aiDi) is lc and ai > 5

6 , then
∑

Di has only ordinary nodes, hence is
semi-normal.

We next prove Theorem 2 (2), assuming that m = 2 and Zi =: Di are Q-Cartier
divisors. Every irreducible component of D1 ∩ D2 then has codimension 2; thus, it is
again enough to check the smooth surface case. The exceptional divisor of the blow-up
of x ∈ D1 ∩ D2 shows that x is a log centre with mld � (1 − a1) + (1 − a2). �

Any argument along these lines breaks down completely if we only assume that
(X,

∑
aiDi) is lc. In general, the Di are not S2, not even if ai = 1. Thus, semi-normality

at codimension 1 points does not imply semi-normality.
Instead, we choose a suitable dlt model (Y,∆Y ) of (X, ∆), use the proof of the divisorial

case of Theorem 2 on it, and then descend semi-normally from Y to X. The next two
lemmas construct (Y,∆Y ).

Lemma 6. Let (X, ∆) be lc. There then exists a projective, birational morphism
g : (Y,∆Y ) → (X, ∆) such that

(1) (Y,∆Y ) is dlt, Q-factorial (and ∆Y is effective);

(2) KY + ∆Y ∼Q g∗(KX + ∆); and

(3) for every log centre Z ⊂ X of (X, ∆) there exists a divisor DZ ⊂ Y such that
g(DZ) = Z and DZ appears in ∆Y with coefficient 1 − mld(Z, X, ∆).

Proof. This is well known. Under suitable MMP assumptions, a proof is given in [10,
17.10]. One can remove the MMP assumptions as follows.

A method of Hacon (see [16, 3.1]) constructs a model satisfying (1) and (2). Since
there are only finitely many log centres, it is enough to add the divisors DZ one at a
time. This is explained in [13, 37]. A simplified proof can be found in [7, § 4]. �

Lemma 7. Let g : Y → X be a projective, birational morphism and let ∆1, ∆2

be effective Q-divisors on Y . Assume that (Y,∆1 + ∆2) is dlt, Q-factorial and that
KY + ∆1 + ∆2 ∼Q,g 0. By Theorem 4, a suitable (Y,∆2)-MMP over X terminates with
a Q-factorial minimal model gm : (Y m, ∆m

2 ) → X. Then,

(1) −∆m
1 is gm-nef,

(2) g(∆1) = gm(∆m
1 ) and

(3) Supp(gm)−1(gm(∆m
1 )) = Supp ∆m

1 .
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Proof. Since KY + ∆1 + ∆2∼Q,g0, we see that KY m + ∆m
1 + ∆m

2 ∼Q,gm0. Thus,
−∆m

1 ∼Q,gmKY m + ∆m
2 is gm-nef. Since gm has connected fibres and ∆m

1 is effective,
every fibre of gm is either contained in Supp ∆m

1 or is disjoint from it. This proves (3).
In order to establish (2), we prove by induction that, at every intermediate step

gi : (Y i, ∆i
2) → X of the MMP, we have that g(∆1) = gi(∆i

1). This is clear for Y 0 := Y .
As we go from i to i + 1, the image gi(∆i

1) is unchanged if Y i ��� Y i+1 is a flip. Thus,
we need to show that gi+1(∆i+1

1 ) = gi(∆i
1) if πi : Y i → Y i+1 is a divisorial contraction

with exceptional divisor Ei. Let F i ⊂ Ei be a general fibre of Ei → X. It is clear that

gi+1(∆i+1
1 ) ⊂ gi(∆i

1),

and equality fails only if Ei is a component of ∆i
1 but no other component of ∆i

1 intersects
F i. Since πi contracts a (KY i + ∆i

2)-negative extremal ray, −∆i
1∼Q,giKY i + ∆i

2 shows
that ∆i

1 is πi-nef. However, an exceptional divisor has negative intersection with some
contracted curve, which is a contradiction. �

Proof of Theorem 2 (1). Set εi := mld(Zi, X, ∆). As in Lemma 6, let g : (Y,∆Y ) →
(X, ∆) be a Q-factorial dlt model and let Di ⊂ Y be divisors such that a(Di, X, ∆) =
−1 + εi and g(Di) = Zi. Set D :=

∑m
i=1Di; then g(D) = Z.

Pick 1 > c � 0 such that 1 − εi � c for every i and write ∆Y = cD + ∆2, where
∆2 is effective. (It may have common components with D.) Apply Lemma 7 to get a
Q-factorial model gm : Y m → X such that

(1) (Y m, cDm + ∆m
2 ) is lc,

(2) (Y m, ∆m
2 ) is dlt,

(3) KY m + cDm + ∆m
2 ∼Q,gm 0,

(4) −Dm is gm-nef and

(5) SuppDm = Supp(gm)−1(Z), and hence gm(Dm) = Z.

If εi < 1
6 for every i, then we can assume that c > 5

6 . As we noted in the proof of the
divisorial case of Theorem 2, in this case Dm is semi-normal and Lemma 8 shows that
gm

∗ ODm = OZ . Thus, Z is semi-normal by Lemma 13. �

Lemma 8. Let Y , X be normal varieties and let g : Y → X be a proper morphism
such that g∗OY = OX . Let D be a reduced divisor on Y and let ∆′′ be an effective
Q-divisor on Y . Fix some 0 < c � 1. Assume that

(1) (Y, cD + ∆′′) is lc,

(2) (Y,∆′′) is dlt,

(3) KY + cD + ∆′′ ∼Q,g 0 and

(4) −D is g-nef (and hence D = g−1(g(D))).

Then g∗OD = Og(D).
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Proof. By pushing forward the exact sequence

0 → OY (−D) → OY → OD → 0,

we obtain that
OX = g∗OY → g∗OD → R1g∗OX(−D).

Note that
−D ∼Q,g KY + ∆′′ + (1 − c)(−D),

and the right-hand side is of the form K + ∆ + (g − nef). Let W ⊂ Y be an lc centre
of (Y,∆′′). Then W is not contained in D, since then (Y, cD + ∆′′) would not be lc
along W . In particular, D is disjoint from the general fibre of W → X by (4). Thus, from
Theorem 9 we conclude that none of the associated primes of R1g∗OY (−D) is contained
in g(D). On the other hand, g∗OD is supported on g(D); hence, g∗OD → R1g∗OY (−D)
is the zero map.

This implies that OX → g∗OD is surjective. This map factors through Og(D); hence,
g∗OD = Og(D). �

A curious property of log centres

Assume that (X, ∆) is klt and let Z ⊂ X be a union of arbitrary log centres. As in
the proof of Theorem 2 (1) we construct (Y, cD + ∆′′), which is klt. Thus, as we apply
Lemma 8, the higher direct images Rig∗OY and Rig∗OY (−D) are 0 for i > 0. Thus, D is
a reduced Cohen–Macaulay scheme D such that

g∗OD = OZ and Rig∗OD = 0 for i > 0.

Moreover, D is a divisor on a Q-factorial klt pair.
This looks like a very strong property for a reduced scheme Z, but so far I have been

unable to derive any useful consequences from it. In fact, I do not know how to prove
that not every reduced scheme Z admits such a morphism g : D → Z.

We have used the following form of [2, 3.2, 7.4] and [6, 2.52].

Theorem 9. Let g : Y → X be a projective morphism and let M be a line bundle
on Y . Assume that M∼Q,gKY + L + ∆, where (Y,∆) is dlt and, for every log canonical
centre Z ⊂ Y , the restriction of L to the general fibre of Z → X is semi-ample.

Every associated prime of Rig∗M is then the image of a log canonical centre of (Y,∆).

Proof of Theorem 2 (2). By induction on m, it is enough to prove Theorem 2 (2)
for the intersection of two log centres.

Let g : (Y,∆Y ) → (X, ∆) be a Q-factorial dlt model and let D1, D2 ⊂ Y be divisors
such that a(Di, X, ∆) = −1 + mld(Zi, X, ∆) and g(Di) = Zi. Set D := D1 + D2. Pick
any c > 0 such that ∆Y = cD + ∆2, where ∆2 is effective, and apply Lemma 7. Thus,
we get a Q-factorial model gm : Y m → X such that

(1) KY m + cDm + ∆m
2 ∼Q,gm 0 and

(2) SuppDm = Supp(gm)−1(Z1 ∪ Z2).

https://doi.org/10.1017/S0013091513000801 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000801


Semi-normal log centres 197

By (2), every irreducible component Vj ⊂ Z1 ∩ Z2 is dominated by an irreducible com-
ponent of Wj ⊂ Dm

1 ∩ Dm
2 . By the proof of the divisorial case of Theorem 2, each Wj is

a log centre of (Y m, cDm + ∆m
2 ) with mld � mld(Z1, X, ∆) + mld(Z2, X, ∆). Thus, Vj is

a log centre of (X, ∆) with the same minimal log discrepancy. �

Definition 10. Let X be a reduced scheme and let U ⊂ X be an open subscheme.
We say that X is semi-normal relative to U if every finite, universal homeomorphism
π : X ′ → X that is an isomorphism over U is an isomorphism.

If this holds with U = ∅, then X is called semi-normal. For more details, see [11, § I.7.2].
If X satisfies Serre’s condition S2, then semi-normality depends only on the codimen-

sion 1 points of X. That is, X is semi-normal relative to U if and only if there exists
a closed subset Z ⊂ X of codimension greater than or equal to 2 such that X \ Z is
semi-normal relative to U .

With this definition, we can state the theorem behind Corollary 3 as follows.

Theorem 11. Let (X, S + ∆) be an lc pair, where S is a reduced Q-Cartier divisor.
Let Zi ⊂ X be log centres of (X, ∆) for i = 1, . . . , m.

If mld(Zi, X, ∆) < 1
2 for every i, then S∪Z1∪· · ·∪Zm is semi-normal relative to X \S.

Proof. By passing to a cyclic cover and using Lemma 12, we may assume that S is
Cartier. Note that none of the Zi is contained in S.

We next closely follow the proof of Theorem 2 (1). Let g : (Y, SY + ∆Y ) → (X, S + ∆)
be a Q-factorial dlt model and let Di ⊂ Y be divisors such that a(Di, X, ∆) = −1 +
mld(Zi, X, ∆) and g(Di) = Zi. Pick c > 1

2 such that 1 − mld(Zi, X, ∆) � c for every i.
Set D := SY +

∑
i Di and write ∆Y = cD + ∆2, where ∆2 is effective.

Apply Lemma 7 to get a Q-factorial model gm : Y m → X such that

(1) (Y m, cDm + ∆m
2 ) is lc,

(2) (Y m, ∆m
2 ) is dlt,

(3) KY m + cDm + ∆m
2 ∼Q,gm 0,

(4) −Dm is gm-nef and

(5) gm(Dm) = S ∪ Z1 ∪ · · · ∪ Zm.

Using Lemmas 8 and 13 we see that it is enough to prove that Dm is semi-normal relative
to Y m \ Sm

Y .
Since Y m is dlt, it is Cohen–Macaulay; hence, Dm is S2. As we noted in Definition 10,

it is sufficient to check semi-normality at the codimension 2 points of Y m. As in the
proof of the divisorial case of Theorem 2, this reduces to the smooth surface case. We
see that if F is a smooth surface, (F, S + cD) is lc and c > 1

2 , then, at every point of
S ∩ D, D is smooth and intersects S transversally. Thus, S + D is semi-normal at all
points of S ∩ D. �

Again, note that the bound 1
2 is sharp; (A2, (x = 0) + 1

2 (x + y = 0) + 1
2 (x − y = 0)) is

lc, but its boundary is not semi-normal at the origin.
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Proof of Corollary 3. None of the irreducible components of ∆ is contained in a
fibre of f ; hence, f : BJ → C is flat. The main point is to show that its fibres are reduced.

If bj > 1
2 , then the corresponding divisor Bj is a log centre and mld(Bj , X, ∆) =

1 − bj < 1
2 . Thus, by Theorem 11, Xc + BJ is semi-normal relative to X \ Xc for every

c ∈ C. By Lemma 14, this implies that Xc ∩ BJ is reduced. �

We have used three easy properties of semi-normal schemes.

Lemma 12. Let g : Y → X be a finite morphism of normal schemes. Let Z ⊂ X

be a closed, reduced subscheme and let U ⊂ X be an open subscheme. If red g−1(Z) is
semi-normal relative to g−1U , then Z is semi-normal relative to U .

Proof. We may assume that X, Y are irreducible and affine. Let π : Z ′ → Z be a
finite, universal homeomorphism that is an isomorphism over Z ∩U . Pick φ ∈ OZ′ . Since
red g−1(Z) is semi-normal relative to g−1U , the pullback φ ◦ g is a regular function on
red g−1(Z). We can lift it to a regular function ΦX on X. Since Y is normal,

ΦY :=
1

deg X/Y
trX/Y ΦX

is regular on Y and ΦY |Z = φ. Thus, Z is semi-normal relative to U . �

Lemma 13. Let g : Y → X be a proper morphism of reduced schemes such that
g∗OY = OX . Let U ⊂ X be an open subscheme. If Y is semi-normal relative to g−1U ,
then X is semi-normal relative to U .

Proof. Let π : X ′ → X be a finite, universal homeomorphism that is an isomorphism
over U . Set Y ′ := red(Y ×X X ′) with projection πY : Y ′ → Y . Then, πY is a finite, uni-
versal homeomorphism that is an isomorphism over g−1U . Thus, πY is an isomorphism,
so we can factor g as Y → X ′ → X. This implies that π∗OX′ ⊂ g∗OY = OX ; hence, π is
an isomorphism. �

Lemma 14. Let X be semi-normal relative to U . Let X1, X2 ⊂ X be closed, reduced
subschemes such that X = X1 ∪ X2. Then, OX1∩X2 has no nilpotent elements whose
support is in X \ U .

Proof. Let I ⊂ OX1∩X2 be the ideal sheaf of nilpotent elements whose support is in
X \ U , and let r(X1 ∩ X2) ⊂ X1 ∩ X2 be the corresponding subscheme.

Let ri : OXi → OX1∩X2 and r̄i : OXi → Or(X1∩X2) denote the restriction maps. Then,
OX sits in an exact sequence

0 → OX → OX1 + OX2

(r1,−r2)−−−−−→ OX1∩X2 → 0.

The similar sequence

0 → A → OX1 + OX2

(r̄1,−r̄2)−−−−−→ Or(X1∩X2) → 0

defines a coherent sheaf of OX -algebras A, and SpecX A → X is a finite, universal
homeomorphism π : X ′ → X that is an isomorphism over U . Since X is semi-normal
relative to U , A = OX ; hence, X1 ∩ X2 = r(X1 ∩ X2). �
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