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PRODUCTS OF REFLECTIONS IN AN 
AFFINE MOUFANG PLANE 

K. MARTIN GOTZKY 

Let 31 be a Moufang plane. By specializing one line co, the line at infinity, we 
obtain an affine Moufang plane 2L. The group generated by the shears of 9L is 
called the equiaffine group. Veblen [9, § 52] asked whether every equiaffinity is a 
product of two affine reflections. He gave a proof which will work in an affine 
Pappian plane, using the following two properties. 

Property 1. If an equiaffinity fixes two distinct proper points of 3L, it fixes every 
point collinear with them. 

Property 2. Let e be an equiaffinity and P a point such that ppe2peZ is a 
triangle. Then the lines PePe2 and PPeZ are parallel. 

Without using these properties, it will be proved that the answer to Veblen's 
question is " y e s " if and only if the Moufang plane 21 is Pappian. 

1. Axial affinities. Let §L be an affine Moufang plane. A collineation fixing 
co (while possibly permuting its points) is called an affinity (or an affine 
collineation). An axis of a collineation means a line whose points are all fixed. 
We call an affinity of 2L axial if it is a homology or elation whose centre lies 
on co. Thus if the axis is an ordinary line, the axial affinity is a strain or shear 
according as it is a homology or elation; it is a translation if its axis is co. An 
affinity is called a dilatation if it is a homology with axis co or a translation. We 
shall find it convenient to use "shear" both for ordinary shears and for trans
lations. 

Let B be a pencil of lines (concurrent or parallel). Let U^ denote any group 
of affinities generated by axial affinities whose axes belong to B. Any axial 
affinity in UB will be called a generator if its axis belongs to B. We call UB a 
B-group if, for each pair of distinct points P and Q whose joining line PQ does 
not belong to B, UB has a generator a that transforms P into Q (that is, 
pa = Q)-

We shall find it convenient to use the same symbol B for the pencil and its 
centre (which is on co if B is a pencil of parallels). Thus, for any other point P , 
the line PB is the member of B that passes through P. 

Generally we will denote lines by lower case Greek letters, points by capital 
Latin letters, and axial affinities by lower case Latin letters. Occasionally we 
use the symbol || for parallel. 
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We investigate the following two statements. 

1.1. THEOREM OF THE THREE AXIAL AFFINITIES. Letah a2j a3 be any generators 
of UB. For any proper point P ^B, let 0 denote the line PB. If Pa^a^ = P and 

(1.11) (3 ^ (3ai ^ j3ai(l2 ^ ig«i«2«3 = p t 

then a4 = a±a2az is an axial affinity and ft is its axis. 

1.2. DESARGUES' (B, OJ)-THEOREM. Let AxA2AzB and BxB2BzB be non-
degenerate quadrangles such that 

(1.21) each line AtB coincides with BtB and 
(1.22) AiA^WBiPi+ifori = 1,2. 

Then AZA1\\BZB1. 

1.3. THEOREM. Let MB be a B-group. Then 1.1 holds for MB if and only if 1.2 
holds for B. 

Proof. First, suppose that 1.2 holds for B\ let UB be a J3-group and let the 
assumptions of 1.1 be satisfied. Let B\ be a point on 0 distinct from B\ further
more, let 

Ax = P , A2 = A2
a* = Af*\ and Bz = B2

a* = Bx
a^a\ 

Then either the assumptions of 1.2 are satisfied or each of the triplets A i, A2, Az 
and J5i, B2, Bz is collinear. Thus either from 1.2 or trivially, ^4i^43||^i^3. Since 

A± = P = P«l«2«3 = Az*3, 

we have 

Bx = Bzaz = B!aia*aK 

Hence /3 is an axis of a\a2az. This proves 1.1. 
Secondly, let UB be a group satisfying 1.1. Suppose that B and 

Au Bi (i = 1, 2, 3) satisfy the assumptions of 1.2. Then there exist generators 
#i, CL2I az of UB with 

Ax = Azaz = A2
a*a* = Aia^as and Bza* = B2

a*a* = Bx
a^a\ 

Put jô = A\B. Then (1.11) holds true since the quadrangle A\A2AzB is non-
degenerate. Since Ai*1*2** = A U 1.1 implies that /3 is an axis of a4 = a\a2az. 
Thus we have £ i = J3ia* and Bz

a* = Bu and therefore BzB^AzAx. This 
completes the proof of Theorem 1.3. 

Our next goal is the following. 

1.4. THEOREM. §IW is a Desarguesian plane if and only if 
(1.41) for each B there exists a B-group MB and 
(1.42) 1.1 holds for all B without (1.11). 

Consider the following lemma. 
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1.5. LEMMA. Let a\ and a2 be generators of MB, let f3 £ B, and let P be a proper 
point on 0 distinct from B. Suppose that 

paia2 = p an(l fial(i2 = ^ 

Then /3 is an axis of a\a2. 

Proof. If Pai = Pa2~l = P, then j3 is an axis of a\a2. Thus we may assume 
that Pai — Pa2~1 ?£ p . Then a\ and a2 have the same centre. Hence a\a2 is 
axial with the fixed points P and B. Thus $ = PI? is an axis of a\a2 unless 
OÙ £ B. Thus we may assume that w Ç 5 . 

Assume now that (3 is not an axis of a\a2. Then since ($ is a fixed line, it must 
be a trace of a\a2. Since ai, a2, and a\a2 have the same centre (which is B since 
oo Ç J3), /3 is also a trace of a± and a2. Thus ai, a2, and therefore also ai&2, are 
shears with centre B. Moreover, P is a fixed point of a±a2. Hence /5 is an axis of 
aia2, contrary to the assumption. This proves the lemma. 

Proof of Theorem 1.4. First suppose that for each P , 1.1 holds and a P-group 
exists. Then 1.3 yields 1.2 for every B. Hence 2L is Desarguesian [8, § 3.2, 
Satz 27]. 

Secondly, let 3IW be Desarguesian. Then (1.41) holds and 1.3 yields 1.1 for 
each P-group UB- We next show in three steps that 1.1 holds for each P-group 
without (1.11). 

(a) 1.1 remains valid if (1.11) is replaced by 

(1.12) /3 ^ /3ai j*. /5aifl2 = pw* = p. 

We use the notation of 1.1, replacing (1.11) by (1.12). Let a be the strain 
with the axis f3ai which maps Pflifl2 into P . Let Q be any point on /3 distinct 
from B. We have 

PPai\\QQai and p«ip«i«2||(2«i<2aia2; 

furthermore, j3ai is an axis of a and (3aia2 = 13. Hence Pa^a^a = P implies 
Qaia2a _ Q Thus @ is an axis of a\a2a. Since a\a2a% = (a±a2a) • (a - 1a3) , we have 
pa-ia3 = p a n ( j pa-ias = ^ Thus, by 1.5, j8 is an axis of a"1^. Since 0 is also an 
axis of a±a2a, it must be an axis of a±a2a^. This proves (a). 

(b) 1.1 remains valid if (1.11) is replaced by 

(1 .13) £ = 0«1 = 0«i«2 = /3«i«2a3 = £# 

We use once more the notation of 1.1, but replacing (1.11) by (1.13). Then 
(1.13) implies that /3ai = /3a2 = /3a3 = p. Hence /3 is a trace or axis of each a*. 
Since 

(1.14) a\a2a% = a2(a2~
1a1a2)ad = a3(a3~"1aia3) (a3~1a2a3), 

we may assume without loss of generality that /3 is either an axis of a\ or a trace 
of ai, a2, and a3. 

First, let 0 be an axis of ai. Then Pa2(Z3 = P and /3a2a3 = 0; hence, by 1.5, 0 is 
an axis of a2a3. Thus j3 is an axis of aia2a3. 
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Secondly, let /3 be a trace of ah a2) and a3. Then a\a2a% is axial and keeps 
P , /3, and B fixed. Moreover, if co G 5 , then 5 is the centre of ax, a2, and a3, and 
therefore also of aia2a3, all of which are then shears. Thus 0 is an axis of aia2a3. 
This proves (b). 

(c) 1.1 holds without (1.11). If /3fli = $a> = /3a* = 0, then (1.13) holds and 
therefore 1.1 holds by (b). Suppose that (1.13) is false. On account of (1.14), 
we may assume that 0 ^ fia\ If /3aia2 = /3aifl3 = /3ai, we would have 
p = paia2a3 __ paia3 _. ^ Since aia2a3 = aia3(a3

_1a2a3), we may even assume 
that 0 5* 0ai 5* /3aifl2. Thus (c) follows from 1.1, (a), and (b). 

This proves that 1.1 holds without (1.11) for each J3-group UB. Since on 
account of (1.41) each group UB is contained in a ^-group UB, 1.1 holds without 
(1.11) for each group Uz?. This completes the proof of 1.4. 

We next investigate the following statement. 

1.6. EXISTENCE OF THE THIRD AXIAL AFFINITY. Let MB be maximal with respect 
to B. Let a\ and a2 be generators of U#. Then for each /3 £ B there exists a generator 
#3 of MB such that fi is an axis of a± — a\a2a%. 

1.7. THEOREM. 2L is Desarguesian if and only if 
(1.71) 1.6 holds for each maximal IX B and 
(1.72) each maximal group 11 B is a B-group. 

Proof. First, let 2L be Desarguesian and let UB be maximal. Let a± and a2 be 
generators of 1XB and let 0 6 B. Further, let P be a proper point on /3 distinct 
from B. Since 2IW is Desarguesian, (1.72) holds, and some generator a3 of IX B 

will satisfy Pai«2«3 — p . By 1.4, 0 is an axis of axa2az. This proves (1.71). 
Secondly, assume that (1.71) and (1.72) hold. Suppose that U5, &i, a2, a3, /3, 

and P satisfy the assumptions of 1.1 without (1.11). Then by 1.6 there exists a 
generator a of the maximal group 11B containing IXB such that 0 is an axis of 
a\a2a. By 1.5, ft is also an axis of a_1a3. Thus ($ is an axis of a\a2a%. This proves 
1.1 without (1.11). Hence by 1.4, 9L is Desarguesian. This completes the proof 
of 1.7. 

2. Veblen's Theorem. Let 2L be an affine Moufang plane of characteristic 
7e 2, and let © be the equiaffine group of 2L- Again B may be a pencil of lines. 
We call the group IXB maximal in 5 if it is generated by all the shears with 
axes in B. Note that such a group is a ^-group. Any group ® of affinities is 
called bi-reflectional if each element of G is a product of two reflections. 

We wish to investigate the following theorem. 

VEBLEN'S THEOREM. The equiaffine group © is bi-reflectional. 

We first prove the following result. 

2.1. LEMMA. Let b\ and b2 be reflections. If b\ and b2 have the same centre or the 
same axis, then b\b2 is a shear. If bjb2 is axial, then bi and b2 have the same centre 
or the same axis. 
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Proof. Obviously, b\b2 is a shear if b\ and b2 possess the same centre or the 
same axis. 

Let p be an axis of bjj2. If P&1 = PH = P for each point P on 0, then 0 is an 
axis of 6i and è2. If P

bl = P&2 ^ P for some point P , then bi and &2 have the 
same centre. This proves the lemma. 

2.2. THEOREM. If 1XB is bi-reflectional and maximal in ©, then 1.1 AoWs /or UB 

without (1.11). 

Proof. We use the notation of 1.1 (without assuming (1.11)). Since UB is 
bi-reflectional, there exist reflections 61 and b2 such that a\a2a% = b±b2. The 
assumptions of 1.1 yield P6l&2 = P and /36l&2 = 13. Since the ats are shears, 
a\a2az is always a shear with axis 13 il B is a, parallel class. We may therefore 
assume that B is a proper point. 

Obviously, £6l&2 = B. If £&1 = B^ ^ B or P6* = P&2 5* P , then &i and 62 

have the same centre and 2.1 implies that <2ia2a3 — b\b2 is a shear. It trivially 
has the axis BP = p. Thus we may assume that Bbl = Bb2 = B and 
Pbl = P&2 = P . Then /5 is an axis of both b\ and b2 and hence of a\a2az = &i£2. 
This proves 2.2. 

2.3. THEOREM. 7/ © w bi-reflectional, SIW w a Pappian plane. 

First proof. The groups Us which are maximal in © are 7>-groups. Since © is 
bi-reflectional, the groups UB contained in © are bi-reflectional. 2.2 therefore 
implies 1.1 without (1.11). Thus 1.4 yields that 2lw is Desarguesian. Hence 
[1, Chapter IV, Theorem 4.2] the matrix 

\r - s - r~x • s~x 0 0 1 
0 1 0 

L 0 0 l j 
represents an element b of © for any choice of r and s in the skew field of 
coordinates of 2L and for a suitable basis. This basis may be chosen so that b 
becomes axial. Since © is bi-reflectional, b is the product of two reflections. By 
2.1, & is a shear. But the only shear that can be represented by such a matrix is 
the identity. Thus r • s • r~l • s~l = 1, and the skew field of coordinates of 3IW is 
commutative. This completes the proof. 

Second proof. Let Bh B2l BZi and B be mutually distinct points on the line j3 
and let Di, D2, J93, and B be mutually distinct points on the line 8 7^ 13. Consider 
the hexagon BiD2BsDiB2Ds. We assume that 

(2.31) B1D2\\B2D1 and BZD2\\B2D*. 

We have to show that BzDi\\BiDz. Let rik denote the reflection with the axis 
through B which maps Bt into Dk. Furthermore, denote by sik the strain with 
the axis ô which maps Bf into Bk. Then 

(2.32) /3r<* = <5, Ôr** = p and 

(2 .33) /3*<* = 0, S8** = Ô. 
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By Theorem 2.2, a = r^r^Szi and b = 1̂3̂ 31̂ 11 are axial with axis fa Thus ft is 
an axis of r = a • 6 = f 12̂ 32̂ 31̂ 11. 

Since r is the product of an even number of reflections, it belongs to © 
[4 or 6]. Hence, © being bi-reflectional, r is the product of two reflections. 
Since r has the axis /3, it is a shear with that axis. By (2.32), hT = 8; hence r 
must be the identity. This yields ru = r\2r%2r%x. Since, by (2.31), r12 = r21 and 
2̂3 = 3̂2, we obtain 

£ ) 3
r 1 3 = jfi1 — j ^ ^ l i r i l _- ^1?*12»*32»'31.^21^23^31 = £ ) 3

r 3 1 # 

Hence r3i = 1̂3 and therefore BzDi\\BiDz. 

The next theorems are the groundwork for the proof that © is bi-reflectional 
if 2IW is a Pappian plane. 

2.4. THEOREM. Let ?IW be Desarguesian. Then every product b of axial affinities 
is the product b = a\a2t of two axial affinities a\ and a2 and one translation t. 

Proof. Let B be a parallel class of lines and let MB be maximal with respect 
to B. Denote by k = k(b) the smallest number such that 

(2.41) b 6 a\ . . . ak • UB, where ai, a2, . . . are axial affinities. 
Assume that k > 1. By (1.71), there must exist an axial affinity ô^-i such that 
ak~

lak-\~
lâk-i = âk~

l is axial with axis in B. Thus 

ai . . . ak-iak]XB = di . . . a^ô^ - i f eU^) = ai . . . aA_2âA_iU5 

and & would not be minimal. Hence k S 1. 
Next let j = j ( c ) be the smallest number for the element c of UB such that 
(2.42) c~x - a2 . . . a,j is a translation for some axial affinities 

a2, as, . . . , cij £ UB. 

(1.71) similarly yields j ^ 2. 
Since k ^ 1 and j ^ 2, (2.41) and (2.42) together yield our assertion. 

2.5. THEOREM. Let 2L fre an affine Moufang plane. Then the product bib2t of two 
reflections bi and b2 and one translation t is equal to a product of two reflections. 

Proof. Let fa and fa be the axes of bi and b2l respectively. 
First suppose that fa\ \fa. Let B2 be the centre of b2. Construct the reflection b 

with axis £1 and centre B2. Then b\b2t = (èi&) (bb2t), where 01& is a shear but not 
a translation different from the identity, and where bb2 and therefore bb2t are 
translations. If bib is the identity, then b±b2t is a translation and 2.5 holds 
trivially. If bib is not the identity, it is a product of two reflections with non-
parallel axes. Thus this case will be included in the following case. 

Let 0i X jS2. There exist half turns Hi and H2 with centres A1 and ^42, respec
tively, such that t = H\H2 and At is on fa for i = 1 and 2. Since bib2H2bi and 
£ii?i are reflections, the splitting b\b2t = (bib2H2bi) (biHi) completes the proof 
of 2.5. 
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2.6. THEOREM. If 2L is a Pappian plane, then © is bi-reflectional. 

Proof. Let b Ç ©. By 2.4, there exist axial affinities a\ and a2 and one 
translation t such that b = a\a2t. Since 2tw is Pappian, © is represented by a 
linear group over a commutative field. Thus we may use the theory of deter
minants (representing the elements of © by matrices with determinant 1) 
[1, Chapter IV, Theorem 4.3]. Since a\a2 = bt~l Ç @, det(aia2) = 1. Hence 
a±a2 is a dilatation if and only if it is a half turn or a translation, which implies 
that b is a half turn or a translation. Thus 2.6 holds trivially if a±a2 is a dilata
tion. Hence, we may assume that a\a2 is not a dilatation. 

Let B be a pencil of lines containing the axes of a± and a2, and let UB be 
maximal with respect to B. Since #ia2 is not a dilatation, there exists a reflection 
&2 G Us satisfying Pfllfl2&2 = P for some proper P ^ 5 . By (1.42), bx = aia2&2 is 
axial. Since det^i = — 1, b\ must be a reflection. Thus b — b\b2t, and 2.5 yields 
our assertion. 

2.3 and 2.6 combined show that Veblen's Theorem holds if and only if 3IW is 
Pappian. Moreover, we show the following. 

2.7. MAIN THEOREM. If SIW is an affine Moufang plane, the following statements 
are equivalent: 

(2.71) 2L is a Pappian plane; 
(2.72) the equiaffine group © is bi-reflectional; 
(2.73) every equiaffinity is a product of three shears. Every equiaffinity that is 

not a half turn is a product of two shears {may be an ordinary shear and 
a translation); 

(2.74) Properties 1 and 2 hold. 

By 2.3 and 2.6, (2.71) and (2.72) are equivalent; (2.72) implies (2.73) 
[4; 5]; (2.74) implies (2.72) [9, § 52]. Thus we only have to show that (2.73) 
implies (2.74). 

For the half turns, Properties 1 and 2 hold trivially. We may therefore 
assume that every equiaffinity which will occur below is a product of two 
shears. 

Let e be an equiaffinity which is the product of the two shears Si and s2, and let 
P j* Q satisfy Pe = P and Qe = Q. If P S l = PS2_1 = P and <2Sl = <2S2_1 = Q, 
then si, s2, and e all have the axis PQ so that Property 1 holds for e. But if 
P S l = P52"1 ^ P or QSl = <2S2_1 ^ Q, then s± and s2 have the same centre 
which yields again that PQ is an axis of e. Hence Property 1 holds in either case. 
Coxeter [3, p. 42] used the Cayley-Hamilton Theorem to deduce Property 2 
from (2.71). Since (2.71) and (2.72) are equivalent, it only remains to prove 
that (2.73) implies (2.72). 

First, half turns are products of two reflections. 
Secondly, each product of two shears with parallel axes is a shear, hence a 

product of two reflections. 
Thirdly, let Si and s2 be two shears with centres Li and L2 and non-parallel 
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axes 0i and /32, respectively. Denote by Stj the reflection with centre Lt and 
axis f$3. Then the equation 

sis2 = (siSn) O12S2) 

splits the product S1S2 into the product of two reflections. 
By the preceding discussion, (2.73) implies (2.72). This completes the proof 

of the Main Theorem. 
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