PRODUGTS OF REFLECTIONS IN AN AFFINE MOUFANG PLANE

K. MARTIN GÖTZKY

Let \mathfrak{A} be a Moufang plane. By specializing one line ω, the line at infinity, we obtain an affine Moufang plane \mathfrak{A}_{ω}. The group generated by the shears of \mathfrak{A}_{ω} is called the equiafine group. Veblen $[9, \S 52]$ asked whether every equiaffinity is a product of two affine reflections. He gave a proof which will work in an affine Pappian plane, using the following two properties.

Property 1. If an equiaffinity fixes two distinct proper points of \mathfrak{N}_{ω}, it fixes every point collinear with them.

Property 2. Let e be an equiaffinity and P a point such that $P P^{e^{2}} P^{e^{3}}$ is a triangle. Then the lines $P^{e} P^{e^{2}}$ and $P P^{e^{3}}$ are parallel.

Without using these properties, it will be proved that the answer to Veblen's question is "yes" if and only if the Moufang plane \mathfrak{A} is Pappian.

1. Axial affinities. Let \mathfrak{N}_{ω} be an affine Moufang plane. A collineation fixing ω (while possibly permuting its points) is called an affinity (or an affine collineation). An axis of a collineation means a line whose points are all fixed. We call an affinity of \mathfrak{H}_{ω} axial if it is a homology or elation whose centre lies on ω. Thus if the axis is an ordinary line, the axial affinity is a strain or shear according as it is a homology or elation; it is a translation if its axis is ω. An affinity is called a dilatation if it is a homology with axis ω or a translation. We shall find it convenient to use "shear" both for ordinary shears and for translations.

Let B be a pencil of lines (concurrent or parallel). Let \mathfrak{U}_{B} denote any group of affinities generated by axial affinities whose axes belong to B. Any axial affinity in \mathfrak{U}_{B} will be called a generator if its axis belongs to B. We call \mathfrak{U}_{B} a B-group if, for each pair of distinct points P and Q whose joining line $P Q$ does not belong to B, \mathfrak{u}_{B} has a generator a that transforms P into Q (that is, $P^{a}=Q$).

We shall find it convenient to use the same symbol B for the pencil and its centre (which is on ω if B is a pencil of parallels). Thus, for any other point P, the line $P B$ is the member of B that passes through P.

Generally we will denote lines by lower case Greek letters, points by capital Latin letters, and axial affinities by lower case Latin letters. Occasionally we use the symbol || for parallel.

[^0]We investigate the following two statements.
1.1. Theorem of the three axial affinities. Let a_{1}, a_{2}, a_{3} be any generators of \mathfrak{U}_{B}. For any proper point $P \neq B$, let β denote the line $P B$. If $P^{a_{1} a_{2} a_{3}}=P$ and

$$
\begin{equation*}
\beta \neq \beta^{a_{1}} \neq \beta^{a_{1} a_{2}} \neq \beta^{a_{1} a_{2} a_{3}}=\beta, \tag{1.11}
\end{equation*}
$$

then $a_{4}=a_{1} a_{2} a_{3}$ is an axial affinity and β is its axis.
1.2. Desargues' (B, ω)-theorem. Let $A_{1} A_{2} A_{3} B$ and $B_{1} B_{2} B_{3} B$ be nondegenerate quadrangles such that
(1.21) each line $A_{i} B$ coincides with $B_{i} B$ and
(1.22) $A_{i} A_{i+1}| | B_{i} B_{i+1}$ for $i=1,2$.

Then $A_{3} A_{1} \| B_{3} B_{1}$.
1.3. Theorem. Let \mathfrak{u}_{B} be a B-group. Then 1.1 holds for \mathfrak{U}_{B} if and only if 1.2 holds for B.

Proof. First, suppose that 1.2 holds for B; let \mathfrak{U}_{B} be a B-group and let the assumptions of 1.1 be satisfied. Let B_{1} be a point on β distinct from B; furthermore, let

$$
A_{1}=P, \quad A_{3}=A_{2}{ }^{a_{2}}=A_{1}{ }^{a_{1} a_{2}}, \quad \text { and } \quad B_{3}=B_{2}{ }^{a_{2}}=B_{1}{ }_{1}^{a_{1} a_{2}}
$$

Then either the assumptions of 1.2 are satisfied or each of the triplets A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3} is collinear. Thus either from 1.2 or trivially, $A_{1} A_{3} \| B_{1} B_{3}$. Since

$$
A_{1}=P=P^{a_{1} a_{2} a_{3}}=A_{3}{ }^{a_{3}},
$$

we have

$$
B_{1}=B_{3}^{a_{3}}=B_{1}{ }^{a_{1} a_{2} a_{3}} .
$$

Hence β is an axis of $a_{1} a_{2} a_{3}$. This proves 1.1.
Secondly, let \mathfrak{U}_{B} be a group satisfying 1.1. Suppose that B and $A_{i}, B_{i}(i=1,2,3)$ satisfy the assumptions of 1.2 . Then there exist generators a_{1}, a_{2}, a_{3} of \mathfrak{U}_{B} with

$$
A_{1}=A_{3}^{a_{3}}=A_{2}^{a_{2} a_{3}}=A_{1}^{a_{1} a_{2} a_{3}} \quad \text { and } \quad B_{3}^{a_{3}}=B_{2}^{a_{2} a_{3}}=B_{1}^{a_{1} a_{2} a_{3}} .
$$

Put $\beta=A_{1} B$. Then (1.11) holds true since the quadrangle $A_{1} A_{2} A_{3} B$ is nondegenerate. Since $A_{1}{ }_{1} a_{1} a_{2} a_{3}=A_{1}, 1.1$ implies that β is an axis of $a_{4}=a_{1} a_{2} a_{3}$. Thus we have $B_{1}=B_{1}{ }^{a_{4}}$ and $B_{3}{ }^{a_{3}}=B_{1}$, and therefore $B_{3} B_{1} \| A_{3} A_{1}$. This completes the proof of Theorem 1.3.

Our next goal is the following.
1.4. Theorem. \mathfrak{N}_{ω} is a Desarguesian plane if and only if
(1.41) for each B there exists a B-group \mathfrak{U}_{B} and
(1.42) 1.1 holds for all B without (1.11).

Consider the following lemma.
1.5. Lemma. Let a_{1} and a_{2} be generators of \mathfrak{U}_{B}, let $\beta \in B$, and let P be a proper point on β distinct from B. Suppose that

$$
P^{a_{1} a_{2}}=P \quad \text { and } \quad \beta^{a_{1} a_{2}}=\beta
$$

Then β is an axis of $a_{1} a_{2}$.
Proof. If $P^{a_{1}}=P^{a_{2}-1}=P$, then β is an axis of $a_{1} a_{2}$. Thus we may assume that $P^{a_{1}}=P^{a_{2}-1} \neq P$. Then a_{1} and a_{2} have the same centre. Hence $a_{1} a_{2}$ is axial with the fixed points P and B. Thus $\beta=P B$ is an axis of $a_{1} a_{2}$ unless $\omega \in B$. Thus we may assume that $\omega \in B$.

Assume now that β is not an axis of $a_{1} a_{2}$. Then since β is a fixed line, it must be a trace of $a_{1} a_{2}$. Since a_{1}, a_{2}, and $a_{1} a_{2}$ have the same centre (which is B since $\omega \in B), \beta$ is also a trace of a_{1} and a_{2}. Thus a_{1}, a_{2}, and therefore also $a_{1} a_{2}$, are shears with centre B. Moreover, P is a fixed point of $a_{1} a_{2}$. Hence β is an axis of $a_{1} a_{2}$, contrary to the assumption. This proves the lemma.

Proof of Theorem 1.4. First suppose that for each $B, 1.1$ holds and a B-group exists. Then 1.3 yields 1.2 for every B. Hence \mathfrak{N}_{ω} is Desarguesian [8, §3.2, Satz 27].

Secondly, let \mathfrak{N}_{ω} be Desarguesian. Then (1.41) holds and 1.3 yields 1.1 for each B-group \mathfrak{U}_{B}. We next show in three steps that 1.1 holds for each B-group without (1.11).
(a) 1.1 remains valid if (1.11) is replaced by

$$
\begin{equation*}
\beta \neq \beta^{a_{1}} \neq \beta^{a_{1} a_{2}}=\beta^{a_{1} a_{2} a_{3}}=\beta \tag{1.12}
\end{equation*}
$$

We use the notation of 1.1, replacing (1.11) by (1.12). Let a be the strain with the axis $\beta^{a_{1}}$ which maps $P^{a_{1} a_{2}}$ into P. Let Q be any point on β distinct from B. We have

$$
P P^{a_{1}} \| Q Q^{a_{1}} \quad \text { and } \quad P^{a_{1}} P^{a_{1} a_{2}} \| Q^{a_{1}} Q^{a_{1} a_{2}}
$$

furthermore, $\beta^{a_{1}}$ is an axis of a and $\beta^{a_{1} a_{2}}=\beta$. Hence $P^{a_{1} a_{2} a}=P$ implies $Q^{a_{1} a_{2} a}=Q$. Thus β is an axis of $a_{1} a_{2} a$. Since $a_{1} a_{2} a_{3}=\left(a_{1} a_{2} a\right) \cdot\left(a^{-1} a_{3}\right)$, we have $P^{a-1 a_{3}}=P$ and $\beta^{a-1 a_{3}}=\beta$. Thus, by $1.5, \beta$ is an axis of $a^{-1} a_{3}$. Since β is also an axis of $a_{1} a_{2} a$, it must be an axis of $a_{1} a_{2} a_{3}$. This proves (a).
(b) 1.1 remains valid if (1.11) is replaced by

$$
\begin{equation*}
\beta=\beta^{a_{1}}=\beta^{a_{1} a_{2}}=\beta^{a_{1} a_{2} a_{3}}=\beta \tag{1.13}
\end{equation*}
$$

We use once more the notation of 1.1, but replacing (1.11) by (1.13). Then (1.13) implies that $\beta^{a_{1}}=\beta^{a_{2}}=\beta^{a_{3}}=\beta$. Hence β is a trace or axis of each a_{i}. Since

$$
\begin{equation*}
a_{1} a_{2} a_{3}=a_{2}\left(a_{2}^{-1} a_{1} a_{2}\right) a_{3}=a_{3}\left(a_{3}^{-1} a_{1} a_{3}\right)\left(a_{3}^{-1} a_{2} a_{3}\right), \tag{1.14}
\end{equation*}
$$

we may assume without loss of generality that β is either an axis of a_{1} or a trace of a_{1}, a_{2}, and a_{3}.

First, let β be an axis of a_{1}. Then $P^{a_{2} a_{3}}=P$ and $\beta^{a_{2} a_{3}}=\beta$; hence, by $1.5, \beta$ is an axis of $a_{2} a_{3}$. Thus β is an axis of $a_{1} a_{2} a_{3}$.

Secondly, let β be a trace of a_{1}, a_{2}, and a_{3}. Then $a_{1} a_{2} a_{3}$ is axial and keeps P, β, and B fixed. Moreover, if $\omega \in B$, then B is the centre of a_{1}, a_{2}, and a_{3}, and therefore also of $a_{1} a_{2} a_{3}$, all of which are then shears. Thus β is an axis of $a_{1} a_{2} a_{3}$. This proves (b).
(c) 1.1 holds without (1.11). If $\beta^{a_{1}}=\beta^{a_{2}}=\beta^{a_{3}}=\beta$, then (1.13) holds and therefore 1.1 holds by (b). Suppose that (1.13) is false. On account of (1.14), we may assume that $\beta \neq \beta^{a_{1}}$. If $\beta^{a_{1} a_{2}}=\beta^{a_{1} a_{3}}=\beta^{a_{1}}$, we would have $\beta=\beta^{a_{1} a_{2} a_{3}}=\beta^{a_{1} a_{3}}=\beta^{a_{1}}$. Since $a_{1} a_{2} a_{3}=a_{1} a_{3}\left(a_{3}{ }^{-1} a_{2} a_{3}\right)$, we may even assume that $\beta \neq \beta^{a_{1}} \neq \beta^{a_{1} a_{2}}$. Thus (c) follows from 1.1, (a), and (b).

This proves that 1.1 holds without (1.11) for each B-group \mathfrak{H}_{B}. Since on account of (1.41) each group \mathfrak{U}_{B} is contained in a B-group $\overline{\mathfrak{U}}_{B}, 1.1$ holds without (1.11) for each group \mathfrak{U}_{B}. This completes the proof of 1.4.

We next investigate the following statement.
1.6. Existence of the third axial affinity. Let \mathfrak{U}_{B} be maximal with respect to B. Let a_{1} and a_{2} be generators of \mathfrak{U}_{B}. Then for each $\beta \in B$ there exists a generator a_{3} of \mathfrak{U}_{B} such that β is an axis of $a_{4}=a_{1} a_{2} a_{3}$.
1.7. Theorem. \mathfrak{N}_{ω} is Desarguesian if and only if
(1.71) 1.6 holds for each maximal \mathfrak{U}_{B} and
(1.72) each maximal group \mathfrak{H}_{B} is a B-group.

Proof. First, let \mathfrak{N}_{ω} be Desarguesian and let \mathfrak{l}_{B} be maximal. Let a_{1} and a_{2} be generators of \mathfrak{U}_{B} and let $\beta \in B$. Further, let P be a proper point on β distinct from B. Since \mathfrak{H}_{ω} is Desarguesian, (1.72) holds, and some generator a_{3} of \mathfrak{U}_{B} will satisfy $P^{a_{1} a_{2} a_{3}}=P$. By 1.4, β is an axis of $a_{1} a_{2} a_{3}$. This proves (1.71).

Secondly, assume that (1.71) and (1.72) hold. Suppose that $\mathfrak{U}_{B}, a_{1}, a_{2}, a_{3}, \beta$, and P satisfy the assumptions of 1.1 without (1.11). Then by 1.6 there exists a generator a of the maximal group $\overline{\mathfrak{U}}_{B}$ containing \mathfrak{u}_{B} such that β is an axis of $a_{1} a_{2} a$. By $1.5, \beta$ is also an axis of $a^{-1} a_{3}$. Thus β is an axis of $a_{1} a_{2} a_{3}$. This proves 1.1 without (1.11). Hence by 1.4, \mathfrak{N}_{ω} is Desarguesian. This completes the proof of 1.7 .
2. Veblen's Theorem. Let \mathfrak{A}_{ω} be an affine Moufang plane of characteristic $\neq 2$, and let \subseteq be the equiaffine group of \mathfrak{N}_{ω}. Again B may be a pencil of lines. We call the group \mathfrak{U}_{B} maximal in S if it is generated by all the shears with axes in B. Note that such a group is a B-group. Any group ${ }^{(55}$ of affinities is called $b i$-reflectional if each element of G is a product of two reflections.

We wish to investigate the following theorem.
Veblen's Theorem. The equiaffine group © is bi-reflectional.
We first prove the following result.
2.1. Lemma. Let b_{1} and b_{2} be reflections. If b_{1} and b_{2} have the same centre or the same axis, then $b_{1} b_{2}$ is a shear. If $b_{1} b_{2}$ is axial, then b_{1} and b_{2} have the same centre or the same axis.

Proof. Obviously, $b_{1} b_{2}$ is a shear if b_{1} and b_{2} possess the same centre or the same axis.

Let β be an axis of $b_{1} b_{2}$. If $P^{b_{1}}=P^{b_{2}}=P$ for each point P on β, then β is an axis of b_{1} and b_{2}. If $P^{b_{1}}=P^{b_{2}} \neq P$ for some point P, then b_{1} and b_{2} have the same centre. This proves the lemma.
2.2. Theorem. If \mathfrak{U}_{B} is bi-reflectional and maximal in \mathfrak{S}, then 1.1 holds for \mathfrak{U}_{B} without (1.11).

Proof. We use the notation of 1.1 (without assuming (1.11)). Since \mathfrak{U}_{B} is bi-reflectional, there exist reflections b_{1} and b_{2} such that $a_{1} a_{2} a_{3}=b_{1} b_{2}$. The assumptions of 1.1 yield $P^{b_{1} b_{2}}=P$ and $\beta^{b_{1} b_{2}}=\beta$. Since the a_{i} s are shears, $a_{1} a_{2} a_{3}$ is always a shear with axis β if B is a parallel class. We may therefore assume that B is a proper point.

Obviously, $B^{b_{1} b_{2}}=B$. If $B^{b_{1}}=B^{b_{2}} \neq B$ or $P^{b_{1}}=P^{b_{2}} \neq P$, then b_{1} and b_{2} have the same centre and 2.1 implies that $a_{1} a_{2} a_{3}=b_{1} b_{2}$ is a shear. It trivially has the axis $B P=\beta$. Thus we may assume that $B^{b_{1}}=B^{b_{2}}=B$ and $P^{b_{1}}=P^{b_{2}}=P$. Then β is an axis of both b_{1} and b_{2} and hence of $a_{1} a_{2} a_{3}=b_{1} b_{2}$. This proves 2.2.

2.3. Theorem. If \mathfrak{S} is bi-reflectional, \mathfrak{N}_{ω} is a Pappian plane.

First proof. The groups \mathfrak{U}_{B} which are maximal in \mathfrak{S} are B-groups. Since \mathfrak{S} is bi-reflectional, the groups \mathfrak{U}_{B} contained in \mathfrak{S} are bi-reflectional. 2.2 therefore implies 1.1 without (1.11). Thus 1.4 yields that \mathfrak{H}_{ω} is Desarguesian. Hence [1, Chapter IV, Theorem 4.2] the matrix

$$
\left[\begin{array}{ccc}
r \cdot s \cdot r^{-1} \cdot s^{-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

represents an element b of \subseteq for any choice of r and s in the skew field of coordinates of \mathfrak{U}_{ω} and for a suitable basis. This basis may be chosen so that b becomes axial. Since \mathfrak{S} is bi-reflectional, b is the product of two reflections. By $2.1, b$ is a shear. But the only shear that can be represented by such a matrix is the identity. Thus $r \cdot s \cdot r^{-1} \cdot s^{-1}=1$, and the skew field of coordinates of \mathfrak{Y}_{ω} is commutative. This completes the proof.

Second proof. Let B_{1}, B_{2}, B_{3}, and B be mutually distinct points on the line β and let D_{1}, D_{2}, D_{3}, and B be mutually distinct points on the line $\delta \neq \beta$. Consider the hexagon $B_{1} D_{2} B_{3} D_{1} B_{2} D_{3}$. We assume that

$$
\begin{equation*}
B_{1} D_{2} \| B_{2} D_{1} \quad \text { and } \quad B_{3} D_{2} \| B_{2} D_{3} \tag{2.31}
\end{equation*}
$$

We have to show that $B_{3} D_{1} \| B_{1} D_{3}$. Let $r_{i k}$ denote the reflection with the axis through B which maps B_{i} into D_{k}. Furthermore, denote by $s_{i k}$ the strain with the axis δ which maps B_{i} into B_{k}. Then
(2.32) $\quad \beta^{\tau_{i k}}=\delta, \delta^{\tau_{i k}}=\beta \quad$ and

$$
\begin{equation*}
\beta^{s_{i k}}=\beta, \delta^{s_{i k}}=\delta . \tag{2.33}
\end{equation*}
$$

By Theorem 2.2, $a=r_{12} \gamma_{32} s_{31}$ and $b=s_{13} \gamma_{31} r_{11}$ are axial with axis β. Thus β is an axis of $r=a \cdot b=r_{12} r_{32} r_{31} r_{11}$.

Since r is the product of an even number of reflections, it belongs to \mathfrak{S} [4 or 6]. Hence, \mathbb{S} being bi-reflectional, r is the product of two reflections. Since r has the axis β, it is a shear with that axis. By (2.32), $\delta^{r}=\delta$; hence r must be the identity. This yields $r_{11}=r_{12} r_{32} r_{31}$. Since, by (2.31), $r_{12}=r_{21}$ and $r_{23}=r_{32}$, we obtain

$$
D_{3}^{\tau_{13}}=B_{1}=B_{1}^{r_{11} r_{11}}=B_{1}^{r_{12} r_{32} \tau_{11} \cdot r_{21} r_{23} r_{31}}=D_{3}^{r_{31}}
$$

Hence $r_{31}=r_{13}$ and therefore $B_{3} D_{1} \| B_{1} D_{3}$.
The next theorems are the groundwork for the proof that \mathfrak{S} is bi-reflectional if \mathfrak{U}_{ω} is a Pappian plane.
2.4. Theorem. Let \mathfrak{N}_{ω} be Desarguesian. Then every product b of axial affinities is the product $b=a_{1} a_{2} t$ of two axial affinities a_{1} and a_{2} and one translation t.

Proof. Let B be a parallel class of lines and let \mathfrak{l}_{B} be maximal with respect to B. Denote by $k=k(b)$ the smallest number such that
(2.41) $b \in a_{1} \ldots a_{k} \cdot \mathfrak{U}_{B}$, where a_{1}, a_{2}, \ldots are axial affinities.

Assume that $k>1$. By (1.71), there must exist an axial affinity \bar{a}_{k-1} such that $a_{k}{ }^{-1} a_{k-1}{ }^{-1} \bar{a}_{k-1}=\bar{a}_{k}{ }^{-1}$ is axial with axis in B. Thus

$$
a_{1} \ldots a_{k-1} a_{k} \mathfrak{u}_{B}=a_{1} \ldots a_{k-2} \bar{a}_{k-1}\left(\bar{a}_{k} \mathfrak{l}_{B}\right)=a_{1} \ldots a_{k-2} \bar{a}_{k-1} \mathfrak{l}_{B}
$$

and k would not be minimal. Hence $k \leqq 1$.
Next let $j=j(c)$ be the smallest number for the element c of \mathfrak{H}_{B} such that
(2.42) $c^{-1} \cdot a_{2} \ldots a_{j}$ is a translation for some axial affinities

$$
a_{2}, a_{3}, \ldots, a_{j} \in \mathfrak{u}_{B}
$$

(1.71) similarly yields $j \leqq 2$.

Since $k \leqq 1$ and $j \leqq 2$, (2.41) and (2.42) together yield our assertion.
2.5. Theorem. Let \mathfrak{N}_{ω} be an affine Moufang plane. Then the product $b_{1} b_{2} t$ of two reflections b_{1} and b_{2} and one translation t is equal to a product of two reflections.

Proof. Let β_{1} and β_{2} be the axes of b_{1} and b_{2}, respectively.
First suppose that $\beta_{1} \| \beta_{2}$. Let B_{2} be the centre of b_{2}. Construct the reflection b with axis β_{1} and centre B_{2}. Then $b_{1} b_{2} t=\left(b_{1} b\right)\left(b b_{2} t\right)$, where $b_{1} b$ is a shear but not a translation different from the identity, and where $b b_{2}$ and therefore $b b_{2} t$ are translations. If $b_{1} b$ is the identity, then $b_{1} b_{2} t$ is a translation and 2.5 holds trivially. If $b_{1} b$ is not the identity, it is a product of two reflections with nonparallel axes. Thus this case will be included in the following case.

Let $\beta_{1} \nVdash \beta_{2}$. There exist half turns H_{1} and H_{2} with centres A_{1} and A_{2}, respectively, such that $t=H_{1} H_{2}$ and A_{i} is on β_{i} for $i=1$ and 2 . Since $b_{1} b_{2} H_{2} b_{1}$ and $b_{1} H_{1}$ are reflections, the splitting $b_{1} b_{2} t=\left(b_{1} b_{2} H_{2} b_{1}\right)\left(b_{1} H_{1}\right)$ completes the proof of 2.5 .

2.6. Theorem. If \mathfrak{H}_{ω} is a Pappian plane, then \mathfrak{S} is bi-reflectional.

Proof. Let $b \in \mathbb{S}$. By 2.4, there exist axial affinities a_{1} and a_{2} and one translation t such that $b=a_{1} a_{2} t$. Since \mathfrak{N}_{ω} is Pappian, \mathbb{S} is represented by a linear group over a commutative field. Thus we may use the theory of determinants (representing the elements of $\subseteq \subseteq$ by matrices with determinant 1) [1, Chapter IV, Theorem 4.3]. Since $a_{1} a_{2}=b t^{-1} \in \mathbb{S}$, $\operatorname{det}\left(a_{1} a_{2}\right)=1$. Hence $a_{1} a_{2}$ is a dilatation if and only if it is a half turn or a translation, which implies that b is a half turn or a translation. Thus 2.6 holds trivially if $a_{1} a_{2}$ is a dilatation. Hence, we may assume that $a_{1} a_{2}$ is not a dilatation.

Let B be a pencil of lines containing the axes of a_{1} and a_{2}, and let \mathfrak{U}_{B} be maximal with respect to B. Since $a_{1} a_{2}$ is not a dilatation, there exists a reflection $b_{2} \in \mathfrak{U}_{B}$ satisfying $P^{a_{1} a_{2} b_{2}}=P$ for some proper $P \neq B$. By (1.42), $b_{1}=a_{1} a_{2} b_{2}$ is axial. Since $\operatorname{det} b_{1}=-1, b_{1}$ must be a reflection. Thus $b=b_{1} b_{2} t$, and 2.5 yields our assertion.
2.3 and 2.6 combined show that Veblen's Theorem holds if and only if \mathfrak{A}_{ω} is Pappian. Moreover, we show the following.
2.7. Main Theorem. If \mathfrak{H}_{ω} is an affine Moufang plane, the following statements are equivalent:
(2.71) \mathfrak{H}_{ω} is a Pappian plane;
(2.72) the equiaffine group \mathfrak{S} is bi-reflectional;
(2.73) every equiaffinity is a product of three shears. Every equiaffinity that is not a half turn is a product of two shears (may be an ordinary shear and a translation);
(2.74) Properties 1 and 2 hold.

By 2.3 and 2.6, (2.71) and (2.72) are equivalent; (2.72) implies (2.73) [4;5]; (2.74) implies (2.72) [9, §52]. Thus we only have to show that (2.73) implies (2.74).

For the half turns, Properties 1 and 2 hold trivially. We may therefore assume that every equiaffinity which will occur below is a product of two shears.

Let e be an equiaffinity which is the product of the two shears s_{1} and s_{2}, and let $P \neq Q$ satisfy $P^{e}=P$ and $Q^{e}=Q$. If $P^{s_{1}}=P^{s_{2}-1}=P$ and $Q^{s_{1}}=Q^{s_{2}-1}=Q$, then s_{1}, s_{2}, and e all have the axis $P Q$ so that Property 1 holds for e. But if $P^{s_{1}}=P^{s_{2}-1} \neq P$ or $Q^{s_{1}}=Q^{s_{2}-1} \neq Q$, then s_{1} and s_{2} have the same centre which yields again that $P Q$ is an axis of e. Hence Property 1 holds in either case. Coxeter [3, p. 42] used the Cayley-Hamilton Theorem to deduce Property 2 from (2.71). Since (2.71) and (2.72) are equivalent, it only remains to prove that (2.73) implies (2.72).

First, half turns are products of two reflections.
Secondly, each product of two shears with parallel axes is a shear, hence a product of two reflections.

Thirdly, let s_{1} and s_{2} be two shears with centres L_{1} and L_{2} and non-parallel
axes β_{1} and β_{2}, respectively. Denote by $s_{i j}$ the reflection with centre L_{i} and axis β_{j}. Then the equation

$$
s_{1} s_{2}=\left(s_{1} s_{12}\right)\left(s_{12} s_{2}\right)
$$

splits the product $s_{1} s_{2}$ into the product of two reflections.
By the preceding discussion, (2.73) implies (2.72). This completes the proof of the Main Theorem.

References

1. E. Artin, Geometric algebra, Interscience Tracts, No. 3 (Interscience, New York, 1957).
2. F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff (Die Grundlehren der mathematischen Wissenschaften, Band XCVI (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959).
3. H. S. M. Coxeter, Affinely regular polygons, Abh. Math. Sem. Univ. Hamburg 34 (1969), 38-58.
4. -_ Products of shears in an affine Pappian plane, Rend. Mat. Pura Appl. (1970).
5. Günter Ewald, Eine Gruppentheoretische Begründung der ebenen affinen Geometrie, Arch. Math. 18 (1967), 100-106.
6. Rolf Lingenberg, Über Gruppen, projektiver Kollineationen, welche eine perspektive Dualität invariant lassen, Arch. Math. 13 (1962), 385-400.
7. Martin Götzky, Eine Kennzeichnung der orthogonalen Gruppen unter den unitären Gruppen, Arch. Math. 15 (1964), 261-265.
8. Günter Pickert, Projektive Ebenen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXX (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955).
9. O. Veblen and J. W. Young, Projective geometry, Vol. II (Ginn and Company, Boston, 1918).

University of Toronto, Toronto, Ontario;
University of Kiel,
Kiel, West Germany

[^0]: Received April 28, 1969 and in revised form, September 15, 1969.

