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1. Introduction. Bellman [1], [2, p. 116] proved that, if all solutions of the equation

y" + q(t)y = 0 (1)
are in L\a, oo) and b(t) is bounded, then all solutions of

are also in L2(a, oo). The purpose of this paper is to present conditions on the function /
that guarantee that all solutions of

(r(t)y')' + q(t)y=f{t,y) (2)
be in the class L2(a, oo) whenever all solutions of the equation

(r(t)y')' + q(t)y = O (3)
have this property. It is assumed that r(t) > 0, r and q are continuous on a half line (a, oo)
and/is continuous. Actually the continuity assumptions may be weakened to local integra-
bility and L2(a, oo) may be replaced by Lp(a, oo) for anyp > 1.

The main results are contained in Theorems 1 and 2.

THEOREM 1. Assume that all solutions of (3) are in L2(a, oo) and that there exist non-
negative measurable functions ki and k2 such that \f{t,u)\ ^k1(t)+k2(t)u. If yk\/2 is in
L2(a, oo) andykv is integrable on (a, oo) for all solutions y of (3), then all solutions of (2) are
in L\a, oo).

If r(t) = 1, f(t, u) = -b{t)u, then Theorem 1 is contained in a theorem of Halvorsen
[4, Theorem 1 ], and, if b is also bounded, then Theorem 1 reduces to the result of Bellman
cited above.

The second result of this paper completely extends Halvorsen's Theorem 1 to a self-
adjoint equation of the form (3). This seems interesting since the known transformations
for changing (3) to the normal form (1) do not preserve the square integrability of solutions
(see §3); it is also easier to find examples of the limit circle case for the self-adjoint form (3).
In addition, the proof given here is more straightforward since a Priifer type transformation
is not needed.

The usual meaning of the limit circle and limit point classification for equation (3) is
maintained: equation (3) is in the limit circle or limit point case according as all solutions
are in L2(a, oo) or at most one (linearly independent) solution is in L2(a, oo). (See [5].)

THEOREM 2. Ifb is a real-valued continuous function with the property that y \ b | 1 / 2 is in
L2{a, oo) for all solutions y o/(3), then u \ b \1'2 is in L\a, oo) for all solutions u of

(r(t)u')'+(q(t)+b(t))u = O. (4)
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Ify \b\112 is in L2(a, oo)for all solutions y of Q), then (4) is in the limit circle or limit point case
according as (3) is in the limit circle or limit point case.

2. Proofs of the theorems. The proofs of Theorems 1 and 2 rely on the following lemma
which is a corollary to a version of the Gronwall inequality recently proved by H. E.
Gollwitzer [3].

LEMMA. Let u, </), g, and h be nonnegative continuous functions on an interval [a, b], let
a, P be positive continuous functions such that a(t)+P(t) = 1, let 1 ^p < oo and suppose that

«(0 ̂  m+g(t)\(\u(s)yh(s)dsT" (a g t g b).

Then

f \u(s))"h(s) ds g f a(s)(<£(s)a-' (s)Yh(s) exp ( f'Kx)(g(x)p-J (x))"ft(x) dx\ ds, (5)

from which it follows that

(s)(^(s)a-1(s))p/I(S)exp^r/S(x)(5WiS-1W)p/i(x)rfx^5l1/''. (6)

Proof of Theorem 1. Let yt and j 2 be solutions of (3) such that

and suppose that y is any solution of (2). Then, on using variation of parameters, y(t) may
be expressed as

XO = Ci y1(t) + c2y2(t)+ I b1(s)y2(t)-yi(t)y2(s)']f(s, y(s))ds.

By hypothesis k1y1 and kxy2 are integrable, so that there are constants Ku K2 such that

[Vbil^Xx and f'k^y^SK,
for all r ̂  a. Hence

where ^x = 1^1+^2 a nd ^2 = |c2|+-^i- 0 ° using the Schwarz inequality, (7) may be
written as

1/2

. (8)
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at y/2

yl(s)k2(s)ds I ^ Ml and
/ n \ 1/2
I y\(s)k2(s)ds J ^ M2 for f ^ a, so that (8) becomesat \l/2

/c2(S)y2(s)dsJ , (9)
where <j>{t) = d^ \yx(t)\+d2\yi{f)\ and g{t) = Mt | y2(t)\+M2 I J ^ O I • But 0 is the absolute
value of a solution of (3) and therefore 0fc2

/2 is in L2(a, oo); similarly gk\12 is in L2{a, oo).
If a(0 = /?(/) = i, /i(f) = A:2(0, then it follows from the lemma that>>(0 is bounded by a linear
combination of <j) and g; therefore y is in L2(a, oo). (Perhaps it should be mentioned that
the fact y is bounded by a linear combination of <f> and g also implies that y exists on (a, oo).)

o/ Theorem 2. If « is a solution of (4), then (7) holds with y replaced by u, k2{t)
replaced by b{t), dl = \cl\, d2 = \c2\ and ylt y2 as in the proof of Theorem 1. After using
the Schwarz inequality and this time multiplying by | b \l/2, (7) becomes

aI \l/2

\b\k2j , (10)where <t>(t) = \Kt)\u\dl\yl(t)\ + d2\y2(t)\), g(t) = \b(t)\1'2(M1\y2(t)\ + M2\yl(t)\) and
Mu M2 are as in the proof of Theorem 1. It now follows from (10) and (5), with hit) = 1,

f00
<x(0 = p(t) = i , that I b(t) I u2(t) < oo. This establishes the first part of Theorem 2; the

second part follows from the first part and Theorem 1. Indeed, it is clear that, if (3) is limit-
circle and y | b \1/2 is in L2(a, oo) for all solutions of (3), then (4) is limit-circle. On the other
hand, if y \b\l/2 is in L2(a, oo) for all solutions of (3), then the same is true for all solutions of
(4); therefore, since (3) is obtained from (4) by adding — b{t) to the coefficient of y in (4), it
follows that (3) is limit-circle when (4) is.

3. Examples and remarks. The Euler equation

(t6y')' + 6tAy = 0 (11)

has the linearly independent solutions yt(t) = l/t2 and y2(t) = 1/f3 which are in L2(l, oo).
Theorem 1 implies that all solutions of the equation

(t6yj+(6(4+t2)y = d {d= constant) (12)

are in L2{\, oo), which shows that the perturbation b{t) may grow rather fast.

One may attempt to apply Halvorsen's Theorem to equation (11) by writing it as

y" + w«)y'+q(t)y = 0 (13)

and then using the transformation

), (14)
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which transforms equation (13) into

«"+(<7(')-w'(0/2-M'2(0/4)u = 0. (15)

The equation that results from writing (11) in the form of (13) and applying (14) is the equation
u" = 0, and, since the solutions of this equation are not in L2{\, oo), Hal vorsen's Theorem does
not apply.

Similar difficulties are encountered when attempting to use other well-known trans-
formations to put (3) in the form of (1) and then apply Halvorsen's Theorem.

(The referee made the interesting observation that when the parameter X is introduced,
the standard form of equation (11) is

-{t6y')'-6tAy = Xy, (16)

which is in the limit-circle case on [1, oo). The effect of the transformation (14) is to take
(16) into

-u"=Xr6u, (17)

which, in the weighted integrable-square space with weight function t~6, is still in the limit-
circle case; that is,

j; r6\u\2dt<ao (18)

for all solutions u of (17). This follows from the fact that, when A = 0, the equation (17) has
solutions «/,(<) = 1 and u2(t) = t and (18) holds for these solutions.)

The following example shows that the perturbation term cannot grow too fast relative
to q(t). Two linearly independent solutions of

(t3y')' + ty =

a r e yi(0 = 1/' a n ( l yiiO = (logOA. a n d these solutions are in L2{\, oo). If b{t) = —t, then
the perturbed equation becomes (t3y')f = 0 which has y(t) = 1 as a solution.
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