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Abstract

A nine-dimensional exponential Lie group G and a linear form ` on the Lie algebra of G are presented
such that for all Pukanszky polarizations p at ` the canonically associated unitary representation ρ =
ρ(`, p) of G has the property that ρ(L1(G)) does not contain any nonzero operator given by a compactly
supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be
repaired.
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1. Introduction

An extension of Kirillov’s original theory for nilpotent Lie groups gives a description
of the unitary dual Ĝ of an exponential Lie group G in terms of the coadjoint orbits
in the linear dual g∗ of the Lie algebra g of G – see, for example, [2]: for each
` ∈ g∗ one chooses a polarization at `, that is, a subalgebra p which is maximally
isotropic with regard to the skew-symmetric form (X, Y ) 7−→ `([X, Y ]) of g, and
which satisfies Pukanszky’s condition P` := Ad∗(P)`= `+ p⊥, where P = exp(p).
The form ` defines a character χ on P , χ(exp X)= ei`(X), and one may construct
π(`, p) := indG

p χ . This representation is irreducible, its class is independent of the
choice of p and it is only dependent on the coadjoint orbit from which ` is taken. In
brief, one obtains a bijection from the orbit space g∗/G onto Ĝ (which actually is a
homeomorphism, as was shown in [5]).

If π = π(`, p) then the operators π( f ), f ∈ L1(G), are given by kernels on
G × G satisfying certain covariance conditions with regard to P × P , that is, they are
basically functions on G/P × G/P (using appropriate cross sections). It is a classical
task in harmonic analysis to describe the image of the Fourier transform. Here, one
may study, for instance, the following problem (for the history of this problem, see
also [4]): describe the kernels obtained in that way (or large parts of them). Due
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to Howe [3], in the nilpotent case, one has a very satisfactory result: all Schwartz
functions on G/P × G/P are in the image of L1(G), actually obtained by Schwartz
functions on G. This result was generalized by Ludwig [6] (see also [5, 7, 8]) to
exponential Lie groups. Ludwig replaced the Schwartz space S (on G or G/P) by
a modified space ES of functions, where E stands for exponential and means that
those functions as well as some of their partial (abelian!) Fourier transforms have an
exponential decay in certain directions. In general, the compactly supported smooth
functions will not be contained in ES . The latter fact was the motive for Leptin to look
for a ‘theorem’ of the following form.

“THEOREM”. If G is an exponential Lie group and ` ∈ g∗ then π(`, p)(L1(G))
contains all operators given by compactly supported smooth kernels [for brevity, we
will say that the property (C K ) is satisfied], provided that p is suitably chosen.

In fact, while Howe and Ludwig’s results are true for arbitrary Pukanszky
polarizations, an example, given by Leptin [4], shows that the property (C K ) depends
on the polarization – for this example (g, `) there exist polarizations at ` such
that (C K ) is satisfied, and others where (C K ) is violated. It remained a question
what ‘suitable’ might mean in the “theorem”. Leptin coined in [4] the notion of a
tame polarization, and showed that, for each ` ∈ g∗, there exists at least one tame
polarization at ` and ‘proved’ the following.

THEOREM. If p is a tame polarization at ` ∈ g∗ then π(`, p) has property (C K ).

However, Abdennadher and Molitor constructed in [1] a nine-dimensional
exponential Lie group G, a functional ` on g, and a tame polarization p at ` such
that (C K ) does not hold. Thus, Leptin’s ‘Theorem’ is not true. Two comments on this
example may be in order. Firstly, there is a two-dimensional ideal a in g, contained
in ker ` ∩ g (which implies that π(`, p) factors through G→ G/ exp a), such that the
polarization p/a⊂ g/a of the induced functional is no longer tame. This shows that
the notion of tameness is not well behaved under forming quotients, a ‘fact’ which
was used by Leptin. We don’t know if this is the only error in [4]. Secondly, in this
example, there are other polarizations p′ at ` such that (C K ) holds true.

Hence the original question of a valid “theorem” (with another notion of ‘suitable
polarization’) is still open. It is the purpose of this note to present an example of
an exponential Lie group G which definitely behaves badly with regard to the above
question. There is a form ` in the linear dual g∗ of g such that, for all polarizations p at
`, the image π(`, p)(L1(G)) does not contain a nonzero operator given by a compactly
supported kernel. Thus, a revision of the notion of tameness will not help. At the end
of the paper we shall present a conjecture, under which conditions one presumably
finds all compactly supported smooth kernels in the L1-image.

2. The Lie algebra

We start with the five-dimensional Heisenberg algebra m with basis X1, X2, Y1, Y2,
Z and nontrivial brackets

[X1, Y1] = Z = [X2, Y2].
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To this algebra two further ‘nilpotent’ elements V1, V2 are added with the relations

[V1, X1] = Y1, [V2, X2] = Y2.

In that way we obtain a seven-dimensional nilpotent Lie algebra n (of step 3) which
will be the nilradical of the example algebra g. The algebra n may be thought of as
the product of two four-dimensional filiform algebras LR(X j , V j , Y j , Z), j = 1, 2,
glued together at the center. The Lie algebra g is, as a vector space, the sum of n and
LR(A1, A2) with additional relations:

[A1, X1] = X1, [A1, Y1] = −Y1,

[A2, X2] = X2, [A2, Y2] = −Y2,

[A1, V1] = −2V1, [A2, V2] = −2V2,

and [A1, A2] = Z .

The functional ` ∈ g∗ is just Z∗, that is, `(Z)= 1, and all other basis elements are in
the kernel of `. One of the features of the pair g, ` is that there are only very few
polarizations; in fact, we have the following proposition.

PROPOSITION 2.1. The radical g` of the skew-symmetric form (X, Y ) 7−→ `([X, Y ])
on g is the linear span of V1, V2, Z. For each polarization p at ` there are real numbers
λ1, λ2 with λ2

1 + λ
2
2 = 1 such that p= LR(−λ2 A1 + λ1 A2, V1, V2, Y1, Y2, Z). In

turn, all those spaces are polarizations, and they satisfy Pukanszky’s condition.

REMARK 2.2. The linear form ` is not in general position. Its coadjoint orbit is
of dimension six, while there are forms, for instance Z∗ + V ∗1 + V ∗2 , with eight-
dimensional orbits.

REMARK 2.3. As g` ⊂ n, tameness in the sense of [4] just means that the trace of
ad(X) on g/p is zero for all X ∈ p. This is the case if and only if λ1 = λ2.

PROOF. The easy verification of the first sentence is omitted. Let p be a given
polarization at `. From the first sentence we conclude

LR(V1, V2, Z)⊂ p, dim p= 6. (2.1)

Moreover, as g` is also the radical of the skew-symmetric form (X, Y ) 7−→ `([X, Y ])
on n, maximal isotropic subspaces of n have to be of dimension 5. Hence it is
impossible that p is contained in n. Therefore, one of the alternatives

(A) dim(p+ n)= 8, dim p ∩ n= 5,

(B) dim(p+ n)= 9, dim p ∩ n= 4,

has to hold.
Next we claim

p ∩ n is contained in LR(Z , V1, V2, Y1, Y2). (2.2)
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If not, by (2.1), there exist coefficients α1, α2, β1, β2 ∈R with α2
1 + α

2
2 = 1 such that

W := α1 X1 + α2 X2 + β1Y1 + β2Y2 ∈ p ∩ n.

If both α1 and α2 are different from zero, we apply V1 and V2 to W , and we conclude
that Y1, Y2 ∈ p. Hence Z , V1, V2, Y1, Y2, W are linearly independent elements of
n ∩ p, which is impossible. If, say, α2 = 0, but α1 6= 0 then [V1, W ] = α1Y1 ∈ p. But
[W, α1Y1] = α

2
1 Z = Z shows that p is not isotropic, and (2.2) is proved. This was the

first step to obtain
p ∩ n= LR(Z , V1, V2, Y1, Y2). (2.3)

Again we argue by contradiction. Suppose that there is strict containment in (2.3).
Then only (B) of the alternatives (A) and (B) is possible. Using (2.1), we find
coefficients α1, . . . , β2 and α′1, . . . , β

′

2 such that

W1 := A1 + α1 X1 + α2 X2 + β1Y1 + β2Y2, and

W2 := A2 + α
′

1 X1 + α
′

2 X2 + β
′

1Y1 + β
′

2Y2

are in p. The bracket

[W1, W2] = α
′

1 X1 − α2 X2 − β
′

1Y1 + β2Y2 + (1+ β ′1α1 + α2β
′

2 − α
′

1β1 − β2α
′

2)Z
(2.4)

has to be in p ∩ n.
If α2 6= 0 then p ∩ n 3 [V2, [W1, W2]] = −α2Y2. The relation [[W1, W2],−α2Y2]

= α2
2 Z contradicts the isotropy of p. Hence, we have to have α2 = 0 and, likewise,

α′1 = 0. In (2.4), the coefficient of Z has to vanish, which, in view of α2 = 0= α′1,
means that

1+ β ′1α1 − β2α
′

2 = 0= α2 = α
′

1. (2.5)

Further, [W1, V1] = −2V1 − α1Y1 is in p. If α1 6= 0 then Y1 ∈ p. But ` does not vanish
on [W1, Y1] = −Y1 + α1 Z . Hence α1 has to be zero, which, using (2.5), implies that
α′2 6= 0. The relation [W2, V2] = −2V2 − α

′

2Y2 shows that Y2 is in p. But ` does not
vanish on the bracket [W2, Y2] = −Y2 + α

′

2 Z , and this is a contradiction.
Using (2.3) (and dim p= 6), we conclude that there are coefficients λ1, λ2, α1, α2

with λ2
1 + λ

2
2 = 1 such that p is spanned by p ∩ n and

W := −λ2 A1 + λ1 A2 + α1 X1 + α2 X2.

As p is isotropic, the linear form ` has to vanish on the brackets [W, Y j ] for j = 1, 2.
But

[W, Y1] ∈ α1 Z + LR(Y1, Y2) and [W, Y2] ∈ α2 Z + LR(Y1, Y2)

show that α1 = 0= α2.
So far we have seen that all polarizations are of the form as claimed in the

proposition. The easy verification for the converse fact, namely that each choice of
λ1, λ2 yields a polarization satisfying Pukanszky’s condition, is omitted. 2
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For the rest of this article we fix a polarization as in (2.1) and we adapt a basis of
g accordingly. The basis elements V1, V2, X1, X2, Y1, Y2, Z of n remain unchanged,
but A1 and A2 are replaced by B1 := λ1 A1 + λ2 A2 and B2 := −λ2 A1 + λ1 A2 where,
of course, λ2

1 + λ
2
2 = 1. In this basis, we have the following, slightly more unpleasant,

relations:

[B1, X1] = λ1 X1, [B1, Y1] = −λ1Y1,

[B1, X2] = λ2 X2, [B1, Y2] = −λ2Y2,

[B2, X1] = −λ2 X1, [B2, Y1] = λ2Y1,

[B2, X2] = λ1 X2, [B2, Y2] = −λ1Y2,

[B1, V1] = −2λ1V1, [B1, V2] = −2λ2V2,

[B2, V1] = 2λ2V1, [B2, V2] = −2λ1V2,

[B1, B2] = Z , and p= LR(B2, V1, V2, Y1, Y2, Z). (2.6)

3. The group

Here we present a model for a group with the Lie algebra of the previous
section. The Lie algebra g is a sum of the ideal m= LR(X1, X2, Y1, Y2, Z) and the
subalgebra u= LR(B1, B2, V1, V2, Z). A particular model for the Heisenberg group,
a semidirect product-model, is obtained as follows.

On M =R5 a multiplication is defined by

(x1, x2, y1, y2, z)(x ′1, x ′2, y′1, y′2, z′)

= (x1 + x ′1, x2 + x ′2, y1 + y′1, y2 + y′2, z + z′ − x1 y1 − x ′2 y2). (3.1)

For the exponential map exp :m→ M and its inverse log : M→m one finds that

exp(α1 X1 + α2 X2 + β1Y1 + β2Y2 + ζ Z)

= (α1, α2, β1, β2, ζ −
1
2 [α1β1 + α2β2]), and

log(x1, x2, y1, y2, z)= x1 X1 + x2 X2 + y1Y1 + y2Y2

+ (z + 1
2 [x1 y1 + x2 y2])Z . (3.2)

A realization for a group U with Lie algebra u is given as follows.
On U =R5 a multiplication is defined by

(b1, b2, v1, v2, z)(b′1, b′2, v
′

1, v
′

2, z′)

= (b1 + b′1, b2 + b′2, exp(2λ1b′1 − 2λ2b′2)v1

+ v′1, exp(2λ2b′1 + 2λ1b′2)v2 + v
′

2, z + z′ − b′1b2). (3.3)

Using (3.2) and the relations (2.6), we see that elements (b1, b2, 0, 0, 0) ∈U act on
M as automorphisms Ib1,b2 via

Ib1,b2(x1, x2, y1, y2, z)= (x1 exp(b1λ1 − b2λ2), x2 exp(b1λ2 + b2λ1),

y1 exp(−b1λ1 + b2λ2), y2 exp(−b1λ2 − b2λ1), z). (3.4)
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Likewise, elements (0, 0, v1, v2, 0) ∈U act on M as automorphisms Iv1,v2 via

Iv1,v2(x1, x2, y1, y2, z)= (x1, x2, y1 + x1v1, y2 + x2v2, z − 1
2 [v1x2

1 + v2x2
2 ]).

(3.5)
Putting these pieces together, a realization of a group G with Lie algebra g is given as
follows. On G =R9 a multiplication is defined by

(b1, b2, v1, v2, x1, x2, y1, y2, z)(b′1, b′2, v
′

1, v
′

2, x ′1, x ′2, y′1, y′2, z′)

= (b1 + b′1, b2 + b′2, v1 exp(2λ1b′1 − 2λ2b′2)+ v
′

1, v2 exp(2λ2b′1 + 2λ1b′2)

+ v′2, x1 exp(−b′1λ1 + b′2λ2)+ x ′1, x2 exp(−b′1λ2 − b′2λ1)+ x ′2,

y1 exp(b′1λ1 − b′2λ2)− v
′

1x1 exp(−b′1λ1 + b′2λ2)+ y′1, y2 exp(b′1λ2 + b′2λ1)

− v′2x2 exp(−b′1λ2 − b′2λ1)+ y′2, z + z′ − b′1b2

+
1
2 [v
′

1, x2
1 exp(−2b′1λ1 + 2b′2λ2)+ v

′

2x2
2 exp(−2b′1λ2 − 2b′2λ1)]

− x ′1 y1 exp(b′1λ1 − b′2λ2)+ v
′

1x ′1x1 exp(−b′1λ1 + b′2λ2)

− x ′2 y2 exp(b′1λ2 + b′2λ1)+ v
′

2x ′2x2 exp(−b′1λ2 − b′2λ1)). (3.6)

This does not look very pleasant. Fortunately, we shall not really have to work with this
multiplication law, but mainly with the inner automorphisms restricted to the normal
(Heisenberg) subgroup M , which could be derived from the Lie algebra in a more
direct manner, that is, without constructing the group G. But as we are presenting
a counter-example, it seemed to be worthwhile to have the group once written down
explicitly. The automorphisms look much simpler, as follows.

If
g = (b1, b2, v1, v2, x1, x2, y1, y2, z) ∈ G

and
(0, 0, 0, 0, x ′1, x ′2, y′1, y′2, z′)=: [x ′1, x ′2, y′1, y′2, z′] ∈ M

then

g[x ′1, x ′2, y′1, y′2, z′]g−1
= [x ′1 exp(b1λ1 − b2λ2), x ′2 exp(b1λ2 + b2λ1), (y

′

1 + v1x ′1)

× exp(−b1λ1 + b2λ2), (y
′

2 + v2x ′2) exp(−b1λ2 − b2λ1),

z′ − x ′1 y1 − x ′2 y2 + x1 y′1 + x2 y′2 −
1
2 (v1x

′2
1 + v2x ′22 )]. (3.7)

Introducing appropriate notation the number of variables can be (formally) reduced.
On X := Y :=R2 we have the standard scalar product 〈·, ·〉 and the standard basis.
The group M may be written as follows.

M = X × Y ×R with multiplication law

(x, y, z)(x ′, y′, z′)= (x + x ′, y + y′, z + z′ − 〈x ′, y〉). (3.8)

The reason for introducing different letters X and Y for the same space R2 is that
by x ∈ X we not only mean that x is a vector in R2, but that we think of x as a member
of a particular subgroup of M . The vector −x is also the inverse of x in M , thus one
has ‘x−1

=−x’.
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NOTATION. Further we define for

g = (b1, b2, v1, v2, x1, x2, y1, y2, z) ∈ G : δ(g)

=

(
exp(b1λ1 − b2λ2) 0

0 exp(b1λ2 + b2λ1)

)
∈ GL2(R)= GL(X)= GL(Y ),

(3.9)

using the standard basis of

R2, τ (g) = −

(
v1 exp(−b1λ1 + b2λ2) 0

0 v2 exp(−b1λ2 − b2λ1)

)
∈ M2,2(R)

= HomR(X, Y ), σ (g)=

(
y1

y2

)
∈ Y,

and ω(g)=
(x1

x2

)
∈ X . Note that

τ(g)=−

(
v1 0
0 v2

)
δ(g)−1,

and that τ(g−1)=−τ(g).
With these notation the conjugation of g ∈ G on [x, y, z] ∈ M = X × Y ×R looks

as follows.

g[x, y, z]g−1
= [δ(g)x, δ(g)−1 y − τ(g)x, z − 〈σ(g), x〉

+ 〈ω(g), y〉 + 1
2 〈δ(g)τ (g)x, x〉]. (3.10)

In the following section a prominent role will be played by the subgroup H := {g ∈ G |
ω(g)= 0} of G. It contains Y as a normal subgroup, and one may form the quotient

group
•

H = H/Y ; accordingly we denote by
•

h = hY the coset of h ∈ H in
•

H . For
h ∈ H one has

σ(h−1)=−δ(h)−1σ(h) ∈ Y. (3.11)

Each element g ∈ G decomposes uniquely into g = xh, where x ∈ X , h ∈ H . In order
to transform xh into h′x ′(h′ ∈ H, x ′ ∈ X) we define

hx = xh(−δ(h)−1x) for x ∈ X, h ∈ H. (3.12)

More explicitly, we have the following. The element hx is in H , and it is also given by
the formula

hx = h[0,−τ(h)x, µ(x, h)] with

µ(x, h) = −〈σ(h−1), x〉 − 1
2 〈δ(h)

−1τ(h)−1x, x〉

= 〈δ(h)−1σ(h), x〉 + 1
2 〈δ(h)

−1τ(h)x, x〉, (3.13)

which can be seen as follows. From (3.10) one gets

h−1xh = [δ(h−1)x,−τ(h−1)x,−〈σ(h−1), x〉 + 1
2 〈δ(h

−1)τ (h−1)x, x〉] ∈ M.
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Using τ(h−1)=−τ(h), (3.9), one finds according to (3.8) for the product in M

h−1xh[−δ(h)−1x, 0, 0] = [0, τ (h)x,−〈σ(h−1), x〉 − 1
2 〈δ(h)

−1τ(h)−1x, x〉],

from which the claim follows; the other form ofµ is obtained by using (3.9) and (3.11).
From (3.13) we conclude, in particular, the following.

δ(hx )= δ(h) for all h ∈ H, x ∈ X. (3.14)

The coset (hx )
• in

•

H differs from h only by the central element [0, 0, µ(x, h)], which

is considered as being canonically embedded into
•

H .

We simply remark that the group
•

H is isomorphic to U introduced in (3.3).

4. The corner p ∗ L1(G)χ ∗ p of the Banach algebra L1(G)χ

Recall that we have a unitary character χ on exp p, where p is the chosen
polarization, see (2.6); in particular, we have χ on the central subgroup
Z := {[0, 0, z] ∈ M | z ∈R}. Using this restricted character, by a slight abuse of
the notation denoted by the same letter χ , we form, as usual, the convolution
algebra L1(G)χ consisting of all measurable functions f : G→C such that f (gz)
= χ(z) f (g) for all z ∈ Z and almost all g ∈ G, and that | f | is integrable with regard
to the left Haar measure on G/Z . It is the purpose of this section to show that, for
suitable idempotents p in the adjoint algebra of L1(G)χ , the corner p ∗ L1(G)χ ∗ p is

isomorphic to a Beurling subalgebra of L1(
•

H)χ , where the corresponding weight can
be computed explicitly. The considerations in this section (and partly in the previous
one) are modifications of a part of my earlier paper [10]. Very often we shall identify
G with X × H , see (3.12), and the lines in front of it. Under this identification the left
Haar measure on G is given by the following.

d(xh)=1(h) dx dh, (4.1)

where dx is the Lebesgue measure on X =R2, dh is the left Haar measure on H , and
1(h) := det δ(h)−1. This means that the functional ϕ 7−→

∫
R2

∫
H ϕ(xh)1(h) dh dx

is G-left invariant on Cc(G).
This is easily proved using (3.12), (3.13) and (3.14), in particular δ(hx )= δ(h).
For f ∈ L1(R2)= L1(Y ) the Fourier transform is given by

f̂ (η)=
∫
R2

e−i〈y,η〉 f (y) dy, η ∈R2.

For the moment, take any u ∈ S(Y )= S(R2)= Schwartz space on R2 such that
u∗ = u, that is, u(−y)= u(y) for all y ∈ Y , and that ‖û‖2 = 1. Later, we shall
specify u. For any f ∈ L1(Y ), x ∈ X , we put

f x (y)= e−i〈x,y〉 f (y), y ∈ Y. (4.2)
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Using this operation we define p = pu on M by

p[x, y, a] = e−i z(ux
∗ u)(y). (4.3)

According to [9], p is contained in L1(M)χ , which is formed analogously to L1(G)χ

and L1(
•

H)χ . In a canonical fashion, L1(M)χ is sitting in the adjoint algebra of
L1(G)χ . The function p satisfies p∗ = p and p ∗ p = p.

For a function f ∈ L1(
•

H)χ , which is continuous and compactly supported modulo
Z , we define a function S f on G via

(S f )(xhy)= (2π)−21(h)−1/2
∫

X
dx ′û(−x ′)̂u(x − δ(h)x ′)e−i〈x ′,y〉 f (h•δ(h)x ′),

(4.4)
where x ∈ X , y ∈ Y , h ∈ H .

Of course, as Y is contained in H , S f is ‘overdetermined’, but it is easily
checked that S f is well defined. From (3.14), it follows that f (h•

δ(h)x ′)

= f (h•[0, 0, µ(δ(h)x ′, h])), and using (3.13) yields

f (h•δ(h)x ′)= f (h[0, 0, 〈σ(h), x ′〉 + 1
2 〈δ(h)τ (h)x

′, x ′〉]).

The covariance property of f then gives the following alternative description of S f :

(S f )(xhy) = f (
•

h)8(x, hy) with 8(x, hy)

= (2π)−21(h)−1/2
∫

X
dx ′û(−x ′)̂u(x − δ(h)x ′)e−i〈y,x ′〉

× exp(−i{〈σ(h), x ′〉 + 1
2 〈δ(h)τ (h)x

′, x ′〉})

for x ∈ X, y ∈ Y, h ∈ H. (4.5)

From this we draw the following consequence. If we define a weight w = wu on
•

H = H/Y – actually on H/Y Z – by

w(h)=1(h)
∫

X
dx
∫

Y
dy|8(x, hy)| (4.6)

then S induces an isometric embedding from the Beurling algebra L1(
•

H , w)χ into
L1(G)χ ; we denote this embedding by the same letter S.

By direct computation, compare [10], one can show that S is involutive, that is,

S( f ∗)= S( f )∗ for f ∈ L1(
•

H , w)χ . (4.7)

In order to show that S is multiplicative (with regard to convolution), and that
the image of S is contained in p ∗ L1(G)χ ∗ p, we use representation theory and
deduce some formulas, which are also useful for the treatment of the representation
ρ = indG

Pχ, P = exp p, which after all is the main subject of this article. Let π ′ be

any representation of
•

H such that π ′ = χ on Z . Considering π ′ as a representation of
H , one may form the induced representation π = indG

Hπ
′. Observe that ρ is of that
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type, ρ = indG
Hρ
′ with ρ′ = indH

P χ , so that all that will be said about π will apply
to ρ as well. We consider the more general representation π , which may be chosen
to be faithful on L1(G)χ in order to complete our discussion of the properties of the
operator S. if K denotes the representation space of π ′ then π may be realized in
H= L2(X, K); actually π is given by

{π(xh)ξ}(x ′)=1(h)1/2π ′(hx−x ′)(ξ(δ(h)
−1(x ′ − x))) for ξ ∈H, x ′, x ∈ X, h ∈ H.

(4.8)
For the orthogonal projection π(p), see (4.3), one finds, compare [10]:

{π(p)ξ}(x ′)= û(x ′)
∫

X
dx û(x)ξ(x). (4.9)

This means in particular that π(p)H can be canonically identified with K; the map
V : K→ π(p)H, given by

(Vη)(x ′)= û(x ′)η (4.10)

is an isometry from K onto the range of the projection π(p).

Direct computation, see [10], shows that, for any f ∈ L1(
•

H , w)χ , the space
π(S f )H is contained in π(p)H. This implies, as π is faithful, that p ∗ S f = S f . Since
S commutes with the involution we conclude that also S f ∗ p = S f . Consequently we
get the following.

The range of the isometric map S : L1(
•

H , w)χ → L1(G)χ is contained in

p ∗ L1(G)χ ∗ p. (4.11)

Again referring to [10], we state that

V−1π(S f )V = π ′( f ) for all f ∈ L1(
•

H , w)χ . (4.12)

Summing up, we have seen that S is an isometric ∗-morphism from L1(
•

H , w)χ into
p ∗ L1(G)χ ∗ p. In order to see that S maps onto p ∗ L1(G)χ ∗ p take any continuous

F ∈ L1(G)χ with compact support modulo Z , and define T F on
•

H by

(T F)(
•

h) = 1(h)3/2
∫

X
dx
∫

X
dx ′

∫
Y

dy û(x ′)̂u(δ(h)−1
[x ′ − x])

× exp(iµ(x − x ′, hy))F(xhy). (4.13)

Obviously, T F is compactly supported modulo Z . Along the lines of [10], one
can verify that π(p)π(F)π(p)= π(S(T F)), which shows that S(T F)= p ∗ F ∗ p.
Therefore, the range of S contains all functions p ∗ F ∗ p, F as above, which form a
dense subspace of p ∗ L1(G)χ ∗ p. As the range of the isometric embedding is closed,
we conclude that S maps onto p ∗ L1(G)χ ∗ p.

So far we have proved the following proposition.

PROPOSITION 4.14. For any u ∈ S(Y ) such that u∗ = u and ‖û‖2 = 1 the operator
S of (4.4) or (4.5) yields an isometric ∗-isomorphism from the Banach algebra

L1(
•

H , w)χ onto p ∗ L1(G)χ ∗ p, the weight w on H being given by (4.6) and (4.5).
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In order to determine the weightw more explicitly, we specialize u to be a Gaussian
function. But first we explain why this will tell us (almost) the weight for general u.
The reason is that different u’s yield equivalent weights. Choose u0 ∈ S(Y ) so that

û0(x)= Ce−(1/2)〈x,x〉 for x ∈ X =R2 with C = π−1/2. (4.15)

The factor C is necessary for ‖û0‖2 = 1. We retain the notation p,
w = wu , S, 8 for a ‘general’ u, while the corresponding objects for u0 are denoted
by p0, w0, S0, 80. The tool for comparing w and w0 is the function k ∈ L1(M)χ
given by k[x, y, z] = e−i z(ux

0 ∗ u)(y). It has the following properties.

k∗[x, y, z] = e−i z(ux
∗ u0)(y), k ∗ k∗ = p0, k∗ ∗ k = p. (4.16)

Using k we define

K : p0 ∗ L1(G)χ ∗ p0→ p ∗ L1(G)χ ∗ p and

K ′ : p ∗ L1(G)χ ∗ p→ p0 ∗ L1(G)χ ∗ p0 by

K (F)= k∗ ∗ F ∗ k and K ′(F)= k ∗ F ∗ k∗,

respectively. The equations of (4.16) show that K and K ′ are involutive isomorphisms
of Banach algebras (but no longer isometric); in fact, they are inverse to each other. It
is a routine matter to verify that the diagram

L1(
•

H , w0)χ
S0 //

Id
��

p0 ∗ L1(G)χ ∗ p0

K

��

L1(
•

H , w)χ
S // p ∗ L1(G)χ ∗ p

K ′

OO

commutes. Consequently, the identity map is a bounded operator from L1(
•

H , w0)χ

onto L1(
•

H , w)χ , and vice versa. From this fact, we conclude that w and w0 are
equivalent, that is, there is a positive constant E such that

1
E
w(
•

h)≤ w0(
•

h)≤ Ew(
•

h) for all
•

h ∈
•

H . (4.17)

Now we are going to compute the weight w0 explicitly. In order not to interrupt the
discussion at a later point, we state here the following formula.

For real numbers γ and v, γ being positive, one has

π−1/2 1
2π
γ−1/2

∫
∞

−∞

dx
∫
∞

−∞

dy

∣∣∣∣∫ ∞
−∞

ds e−(1/2)s
2

exp
(
−

1
2
(x − γ s)2

)
× exp

(
−i

{
sy −

1
2
vs2

})∣∣∣∣=√2
{(

1
γ
+ γ

)2

+

(
v

γ

)2}1/4

. (4.18)
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To this end, we recall the well-known formula∫
∞

−∞

ds e−(A/2)s
2
e−isz

=

(
2π
A

)1/2

exp
(
−

1
A

z2

2

)
(4.19)

for complex numbers A, z with RA > 0.
To evaluate the integral over s in (4.18) we put A := 1+ γ 2

− iv. For the
expression in (4.18) we get

I := π−1/2 1
2π
γ−1/2

∣∣∣∣2πA
∣∣∣∣1/2 ∫ ∞

−∞

dx e−x2/2
∫
∞

−∞

dy

∣∣∣∣exp
(
−

1
2A
(y + i xγ )2

)∣∣∣∣.
As ∣∣∣∣exp

(
−

1
2A
(y + i xγ )2

)∣∣∣∣ = exp
(

1

2AA
(xγ )2(1+ γ 2)

)
× exp

(
−

1
2

1+ γ 2

AA
y2
)

exp
(
vγ xy

AA

)
,

carrying out the integration over y yields

I = π−1/2 1
2π
γ−1/2

∣∣∣∣2πA
∣∣∣∣1/2( 2π AA

1+ γ 2

)1/2

×

∫
∞

−∞

dx e−x2/2 exp
{
(xγ )2(1+ γ 2)

2AA
+

(vγ x)2

2(1+ γ 2)AA

}
= π−1/2γ−1/2

(
|A|

1+ γ 2

)1/2 ∫ ∞
−∞

dx exp
(
−

1
2

x2 1

1+ γ 2

)
= π−1/2γ−1/2

(
|A|

1+ γ 2

)1/2

(2π)1/2(1+ γ 2)1/2 =
√

2γ−1/2
|A|1/2

=
√

2
(
|A|2

γ 2

)1/4

=
√

2
{(

1
γ
+ γ

)2

+

(
v

γ

)2}1/4

.

According to (4.5) and (4.6), the weightw0 is given by (introducing the new integration
variable y + σ(h))

w0(
•

h) =

(
1

2π

)2

1(h)1/2
∫

X
dx

∫
Y

dy

∣∣∣∣∫
X

dx ′ û0(−x ′)̂u0(x − δ(h)x
′)

× exp
(
−i

{
〈y, x ′〉 +

1
2
〈δ(h)τ (h)x ′, x ′〉

})∣∣∣∣.
Let h = (b1, b2, v1, v2, 0, 0, 0, 0, 0) ∈ H , hence

δ(h)=

(
γ1 0
0 γ2

)
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with γ1 = exp(b1λ1 − b2λ2) and

γ2 = exp(b1λ2 + b2λ1), δ(h)τ (h)=−

(
v1 0
0 v2

)
and 1(h)= 1/(γ1γ2), see (3.9) and (4.1). Writing x = (x1, x2), y = (y1, y2) and
x ′ = (s1, s2) for the integration variables, we find, plugging in the formula (4.15) for
u0, that

w0(
•

h) =

(
1

2π

)2

(γ1γ2)
−1/2C2

∫
∞

−∞

∫
∞

−∞

dx1 dx2

∫
∞

−∞

∫
∞

−∞

dy1 dy2

×

∣∣∣∣∫ ∞
−∞

∫
∞

−∞

ds1 ds2 exp
(
−

1
2
(s2

1 + s2
2)

)
× exp

(
−

1
2
(x1 − γ1s1)

2
−

1
2
(x2 − γ2s2)

2
)

× exp
(
−i

{
s1 y1 + s2 y2 −

1
2
v1s2

1 −
1
2
v2s2

2

})∣∣∣∣.
Since C = π−1/2, we readily see that w0(h) is a product of two integrals as considered
in (4.18). Hence we find that

w0(h)= 2
{(

1
γ1
+ γ1

)2

+

(
v1

γ1

)2}1/4{( 1
γ2
+ γ2

)2

+

(
v2

γ2

)2}1/4

.

Summing up we have shown the following proposition.

PROPOSITION 4.20. Let u ∈ S(Y ) with u∗ = u and ‖û‖2 = 1, and form p = pu
according to (4.3). Then the operator S, see (4.4) and (4.5), is an involutive

isomorphism from L1(
•

H , w0)χ onto p ∗ L1(G)χ ∗ p, where the weight w0 is given
by

w0(h) = 2{(exp(−b1λ1 + b2λ2)+ exp(b1λ1 − b2λ2))
2

+ v2
1 exp(−2b1λ1 + 2b2λ2)}

1/4
{(exp(−b1λ2 − b2λ1)

+ exp(b1λ2 + b2λ1))
2
+ v2

2 exp(−2b1λ2 − 2b2λ1)}
1/4

if h = (b1, b2, v1, v2, 0, 0, 0, 0, 0) ∈ H.

5. Finishing the argument

After these lengthy preparations it is fairly easy to prove the theorem of this article.

THEOREM 5.1. Let G be the group as described in (3.6) with Lie algebra g, let
`= Z∗ ∈ g∗ be the functional as in the lines before Proposition 2.1, let p be any
polarization at ` with associated group P = exp(p), and let χ ∈ P∧ be the unitary
character corresponding to `|p. If ρ denotes the induced representation indG

Pχ then
ρ(L1(G)) does not contain a nonzero operator given by a compactly supported kernel.
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PROOF. As we described all polarizations in Section 2, we can, of course, take p to be
the polarization given in (2.6). We think of ρ as ρ = indG

Hρ
′ with ρ′ = indH

P χ . Recall
that H is the subgroup {(b1, b2, v1, v2, 0, 0, y1, y2, z) | b1, b2, v1, v2, y1, y2 ∈R} of
G, and that P is its one-codimensional (normal) subgroup consisting of the elements
with b1 = 0. Using the most obvious one-parameter subgroup complementary to P ,
the representation ρ′ is realized in K= L2(R) by

(ρ′(b1, b2, v1, v2, 0, 0, y1, y2, z)ξ)(t)= exp(i(z + b1b2 − tb2))ξ(t − b1). (5.2)

Observe that ρ′ is trivial on a certain four-dimensional normal subgroup of H , that
{(b1, b2, z)} is a Heisenberg group, and that ρ′ is basically one of the standard models
of one of the irreducible representations of the Heisenberg group.

Suppose now that F ∈ L1(G) has the property that (the nontrivial) ρ(F) is given
by a compactly supported kernel. We may as well assume that F is contained in
L1(G)χ because ρ|Z = χ |Z . Then F∗ ∗ F has the same properties. Next we claim the
following.

ASSERTION. There exists u ∈ S(Y ), compare (3.8) and (4.3), such that u = u∗,
‖û‖2 = 1, û is compactly supported, and with p = pu we have ρ(p)ρ(F∗ ∗ F)ρ(p) 6=
0 (and this operator is represented by a compactly supported kernel as well).

Suppose to the contrary that ρ(p)ρ(F∗ ∗ F)ρ(p)= 0 for all u as above.
We think of ρ as being realized in L2(X =R2, K)= L2(R2)⊗ L2(R)= L2(R3),
compare (4.8). As ρ(p) projects onto û ⊗ K, the equation ρ(p)ρ(F∗ ∗ F)ρ(p)= 0
means that 0= 〈ρ(F∗ ∗ F )̂u ⊗ η, û ⊗ η〉 = ‖ρ(F)(̂u ⊗ η)‖2 for all η ∈ K. As, clearly,
the collection of vectors û ⊗ η is a total subset of L2(R3), this tells that ρ(F) is
zero, which is a contradiction. From the structure of ρ(p) it is immediately clear
that ρ(p)ρ(F∗ ∗ F)ρ(p) is given by a compactly supported kernel.

From the results of Section 4, in particular (4.12), we conclude that the operator
ρ(p ∗ F∗ ∗ F ∗ p) is completely determined by an operator ρ′( f ) on K given by a

function f ∈ L1(
•

H , w0)χ . Also this (nontrivial) operator has to be represented by a
compactly supported kernel. We are going to show that this is impossible. Since ρ′

is trivial on the subgroup of the v’s, to compute ρ′( f ) we have first to integrate f
over those variables. It results a function f ′ on the Heisenberg group {(b1, b2, z |
b1, b2, z ∈R} with a covariance condition, that is, f ′(b1, b2, z)= e−i z f ′′(b1, b2)

with some function f ′′ on R2
= {(b1, b2)}. The crucial point is that, as f is integrable

against the weight w0, the function f ′′ has at least to be integrable against the weight

w′0(b1, b2) : = 2(exp(−b1λ1 + b2λ2)+ exp(b1λ1 − b2λ2))
1/2

× (exp(−b1λ2 − b2λ1)+ exp(b1λ2 + b2λ1))
1/2 (5.3)

on R2, see (4.20).
From the structure of the representation ρ′, (5.2), we see that

(ρ′( f )ξ)(t)=
∫
∞

−∞

K f (t, s)ξ(s) ds (5.4)
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for ξ ∈ K= L2(R), if the kernel K f on R2 is defined to be

K f (t, s)=
∫
∞

−∞

db2 f ′′(t − s, b2)
−isb2 .

For almost all b1 ∈R the integral
∫
∞

−∞
db2| f ′′(b1, b2)|w0(b1, b2) exists. As

for any fixed b1 the function b2 7−→ w0(b1, b2) grows exponentially the Fourier
transforms s 7−→

∫
∞

−∞
db2 f ′′(b1, b2)e−ib2s extend to analytic functions in certain

strips depending on b1 and the λ’s. Therefore, it is impossible that K f is compactly
supported (if not zero almost everywhere), and the theorem is proved. 2

6. Concluding remarks

The reader may wonder why we have taken a nine-dimensional counter-example.
Why didn’t we take, for instance, the following seven-dimensional algebra g0 =

LR(A1, A2, X1, X2, Y1, Y2, Z) with nonvanishing brackets:

[X1, Y1] = Z = [X2, Y2],

[A1, X1 = X1, [A1, Y1] = −Y1,

[A2, X2] = X2, [A2, Y2] = −Y2,

[A1, A2] = Z?

In fact, if again `= Z∗, then p= LR(λ1 A2 − λ2 A1, Y1, Y2, Z), λ2
1 + λ

2
2 = 1 is a

Pukanszky polarization at ` (which for λ1 = λ2 is tame in the sense of [4]). And it can
be shown along the lines of this article that the image of L1(G0) under indG0

P χ (P and
χ are formed in the obvious manner) does not contain any operator with compactly
supported kernel. The reason for taking g is that, besides the above p’s, there are more
‘strange’ polarizations such as

LR(A2, X2, Y1 + βX1, Z), β 6= 0, or

LR(A1 + A2, X1 + αX2, Y2 − αY1, Z), α 6= 0.

These polarizations are less pleasant because they are not invariant under A1 and A2.
We did not investigate these polarizations systematically with regard to compactly
supported kernels because we considered it simpler to accept the complication
arising from two additional variables (where we had complete control over all the
polarizations) than to discuss various types of polarizations separately.

Some further words may be in order as to why Leptin’s theorem (and his approach)
failed. Leptin refers to the determinant (or trace) on certain homogeneous spaces. But
the results of [11] show that not only the determinant counts; rather, all eigenvalues
contribute to some sort of ‘analytical’ structure. In the context of the above mentioned
paper the eigenvalues on the stabilizers G f of functionals f ∈ g∗ are crucial. In the
present context, they are less influential because representations on the nilradical can
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be extended against G f , but nontrivial eigenvalues on other pieces of polarizations
do harm to compactly supported kernels. These sentences may sound a little vague,
but they led me to the following rigorous conjecture which presumably is close to
being optimal.

CONJECTURE. Let G be an exponential Lie group with Lie algebra g; the nilradical
[g, g] of g is denoted by n. Let f ∈ g∗, and denote by g the restriction of f to
n. The linear form f induces a skew symmetric bilinear form B = B f on g by
B(X, Y )= f ([X, Y ]); the symbol v⊥B for any subspace v of g denotes the orthogonal
space with regard to B. The stabilizer algebra gg = n⊥B of g acts via the adjoint
representation on n/ng , where ng = gg ∩ n. Let k⊂ gg be the common kernel of all
eigenvalues of this action of gg , that is, k is the largest subspace of gg acting nilpotently
on n/ng or, which is the same, on g/g f . Suppose that one of the following equivalent
conditions is satisfied, where g f = stabilizer algebra of f = g⊥B .

(i) k⊥B
⊂ g f + k+ n,

(ii) (k+ n)⊥B
⊂ k+ g f + n.

Then there exists a Pukanszky polarization p at f such that, with P = exp p, χ = χ f ∈

P∧, the image of L1(G) under indG
Pχ contains all operators with compactly supported

smooth kernels.
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