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AN ABSTRACT DAUNS-HOFMANN-KAPLANSKY 
MULTIPLIER THEOREM 

GEORGE A. ELLIOTT 

1. Introduction. The present investigation was stimulated by a theorem of 
Alfsen and Effros (4.9 of [1]) concerning a real Banach space, its ikf-ideals, and 
its primitive M -ideals (these are denned in [1]). This theorem states that a 
real Banach space is in the natural way a module over the ring of bounded 
continuous real-valued functions on the space of primitive Jlf-ideals with the 
Jacobson topology. 

It was shown in 6.18 and 6.19 of [1] that the M-ideals of the self-adjoint part 
of a C*-algebra are the self-adjoint parts of the closed two-sided ideals of the 
C*-algebra, and that the primitive if-ideals are the self-adjoint parts of the 
primitive ideals. In this specialization, then, the theorem 4.9 of [1] becomes a 
theorem which was proved by Dauns and Hofmann (111.5.2 and 111.8.16 of 
[2]), after a special case had been established by Kaplansky (Theorem 3.3 of 
[4]). 

In [3], a proof was given of the Dauns-Hofmann theorem which is in fact at 
the same time a proof of the Alfsen-Effros theorem referred to above. This is of 
interest both because the argument in [3] is considerably simpler than the 
argument in [1], and because the argument in [3] also proves the Alfsen-Effros 
theorem for complex Banach spaces, indeed, for a Banach space over any 
finite-dimensional real algebra. 

The contribution of the present paper is to show that the methods of [3] 
can be refined to yield a result which is, at least formally, a considerable 
generalization of the Alfsen-Effros multiplier theorem. The principal feature of 
this result is the absence of the assumption that the norm of an element is the 
supremum of its norms in primitive quotients. It is the sacrifice of this property 
which is the source of difficulty; if it were assumed then the methods of [3] 
would not need modification. 

We shall formulate our result axiomatically; the axioms are presented in § 2 
and the main result is proved in § 3. In § 4 the boundedness of the module 
structure is investigated, and also the related possibility of extending the 
main result to more general scalars. 

The author wishes to acknowledge valuable discussions with D. Olesen. 

2. The axioms. Let A be a real Banach space. Let there be given a collection 
of closed subspaces of A, which we shall call G-ideals, such that 0 and A are 
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828 GEORGE A. ELLIOTT 

G-ideals, and such that if J\ and J 2 are G-ideals then Ji + J2 and Ji P\ 72 are 
G-ideals and the canonical linear isomorphism 

/ i / Z i n / ^ ^ + j ^ 

is isometric. (The last condition can be expressed by saying that G-ideals are 
mutually orthogonal modulo intersections.) Let there be given a collection of 
proper G-ideals, which we shall call G-primitives, such that every G-ideal is an 
intersection of G-primitives. In these circumstances we shall say that A has 
a G-algebra structure. 

If G-primitives are prime, and if the closure of a sum of G-ideals is again 
a G-ideal, then it is easy to show that those sets of G-primitives which are hulls 
(a hull being the set of all G-primitives containing some fixed G-ideal) form 
the closed sets of a topology. We shall not make these assumptions, howevers 
but work instead with an abstract notion of continuity. A real-valued function 
on G-primitives will be called continuous if the inverse image of an open 
interval is the complement of a hull. 

3. The module structure. 

3.1. THEOREM. Let A be a real Banach space with a G-algebra structure. Let f 
be a bounded continuous real-valued function on G-primitives. Let x be an element 
of A. Then there exists a unique element fx of A such that for every G-primitive t, 

(fx)(t) =f(t)x{t). 

Proof. The conclusion follows from 3.3 and 3.6. 

3.2. Remark. If the norm on A satisfies 

\\y\\ = sup^.primIt ive \\y(t)\\, ally £ A, 

then the conclusion of 3.1 can be established by the simple argument given in 
[3]. The entire purpose of the lemmas which follow is to show that this 
assumption on the norm is not essential. 

3.3. LEMMA. Let A be a Banach space with a G-algebra structure. Let Ji, . . . , 
Jn be G-ideals such that J\ + . . . + Jn = A, and let x be an element of A. Assume 
that there exist a bounded real-valued continuous function f on G-primitives and 
open intervals 0\, . . . , On such that hull J\ — f~l(0\)c, . . . , hull Jn = f~l{On)

c. 
Then there exist i i f J i , . . . , xn £ Jn such that x = X\ + . . . + xn and such 
that for any positive real Xi, . . . , Xre, 

||XiXi + . . . + \nxn\\ ^ (7/2) supn|Xn| \\x\\. 

Hence if Xi, . . . , \n are arbitrary real numbers, 

||Xi*i + . . . + KXnW ^ 7 supn|Xw| ||x||. 

Proof. We may suppose that the cover {01} . . . , On] of the range of / is 
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minimal. Then the O's can be renumbered so that for j è i + 2, Oj consists of 
real numbers strictly greater than those of 0t. 

For each i = l , . . . , » — 1, denote by nt the point midway between the 
upper endpoint of 0t and the lower endpoint of 0*+i. By the definition of 
continuity of / there exist G-ideals 7i, . . . , In such that hull i \ = 
/ - 1 ( ] -«>, Mi[)c, hull 72 =/-1(]Mi, M2[)C, . . . , hull In = / - 1 ( ] M , - I , OO[)«. Set 
7x + . . . + 7n = 7. Then hull / = hull h H . . . H hull 7n = / - i ({ M l l . . . , M B - 1 } ) . 

For each i = 1, . . . , n — 1, Ot P\ 0*+i is an open interval (possibly empty) 
and therefore by continuity of/ there exists a G-ideal i£* such that hull Kt = 
f^iPt r\ Oi+1)

c. Set Ki + . . . + 2£n-i = X. Then hull X = hull ^ H . . . 
n hull Kn.x = (uVif-'iOt n oi+l)y. 

By construction, hull (7 + K) = hull J Pi hull K = 0. Since 7 + X is a 
G-ideal and therefore the intersection of G-primitives containing it, I + K = 
i4. In fact, Ji + Ki = Ju h + Kx + K2 = /2> 73 + 7C2 + X3 = / 8 , 
7n + Xn_i = Jn. This follows from the calculations 

hull h r\ hull Ki = /-H]-°° > MIIV Oi n o 2 ) c = f~l(Pi)e, 
hull ix n hull Xx n hull K2 

= /^GMI, M2[W o 1 n o 2 w o 2 n o3)
c = /~1(o2)

c, 
hull in n hull xn_! = /-1 (]M»-I, ex) [u on_x n on)« = /-HO»)*. 

There exist y £ 7 and z £ K such that 3/ + s = #. Since by hypothesis the 
canonical linear isomorphism 7/7 Pi K —> (7 + K)/K is isometric, it is pos
sible to choose 3/ such that ||y|| ^ (1 + 1/4) ||#||. There exist y\ £ 7i, . . . , 
3>n G 7n such that y = yx + . . . + yn, and zi £ Ku . . . , zn £ Kn (where i£n 

denotes 0) such that z = Si + . . . + zn. Set 3/1 + Zi = xx, . . . , yn + zn = xw. 
Then Xi G / 1 , . . . , xn £ /w and x = Xi + . . . + xn. 

Let S be a subset of {1, . . . , n\. Write — 00 = /z0, + 00 = jun, and 0 = On+i. 
Then 

( f W h u l l 7 < U r U s h u l l J f )
c = / " 1 (U*€sWi,M«[n Ui*s]MM,MiD 

= 0, 

(n i€Shuii7c iwn^shuii7: i)
c=/-1(u i^o inomn u ^ n o J + 1 ) 

= 0, 

whence ]£<€s-f* ^ X^s^* and £*€<si£* H J^^sKi are each contained in every 
G-primitive and are therefore both 0. By assumption two G-ideals with inter
section 0 are orthogonal ; in particular 

ll£<€s:y<ll ^ IIZ<€sy< + T,i*syt\\ = IMI, 
IIE<€fl2«ll ^ I I Z ^ + Z ^ I I = \\z\\. 

Hence 

IIZ<€S*,II ^ IMI + INI ^ IMI+ 11*11 +IMI 
g ( 2 ( 1 + 1/4) + 1)| |*| |= (7/2) | |* | | . 
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Since the characteristic functions of subsets 5 of {1, . . . , n) are the extreme 
points of the ^-tuples of positive reals (Xi, . . . , Xn) with sup„ Xn ^ 1, it follows 
by convexity that 

||Xi*i + . . . + X^H g (7/2) supw X, ||x||, Xi, . . . , Xn è 0. 

If Xi, . . . , Xn are arbitrary real numbers, 

||Xi*i + . . . + \nxn\\ = ||2Zx.->oX< *̂ + Zx^oXp^ll ^ 2(7/2) supn|Xw| ||x||. 

3.4. Problems. It is not clear whether in 3.3 the assumption of the existence of 
/ and open intervals Oi, . . . , On can be omitted. (Cf. Lemma 1 of [3].) 

It would be of interest also to determine the best possible constants in the 
inequalities in 3.3. The constant in the inequality for positive X's can certainly 
be no smaller than 1, and a two-dimensional example shows that in the in
equality for arbitrary real X's the best constant must be at least 2. 

3.5. LEMMA. Let A be a Banach space with a G-algebra structure. If J\, Ji are 

G-ideals and x € A then 

l |x(/in/2) | | ^2||x(j1)|| + ||x(/2)||. 
Proof. Fix e > 0. Then 

x = Xi + yi with yx £ J\ and \\xi\\ ^ (1 + €) | |*( / i ) | | ; 

x = x2 + y<i with y2 £ Ji and ||x2|| ^ (1 + e) | |x(/2) | | . 

Using x{J\) = Xi(/i) = x2(Ji) + yiUi), we deduce that 

| |y*(/ in/ s) | | = ||y,(/i)|| = HxCJx) -x^/OII ^ ||*(/i)|| + INI 
é IMJJW + (l + e)||*(/,)f|. 

Hence 

| |*( / in/ , ) l l ^ \\**{Jir\ J*)\\ + | |yj(/in j2)f| 
è (1 + e)||*(/2)|| + HxC/OII + (1 + 0II*(/»)||. 

Since e > 0 is arbitrary the desired inequality follows. 

3.6. LEMMA. Let A be a Banach space with a G-algebra structure. Let f be a 
bounded continuous real-valued function on G-primitives, and let x be an element 
of A. Let Ji, . . . , Jn be G-ideals such that Jx + . . . + Jn = A and there exist 
open intervals 0ly . . . , On with hull J\ = f~l(Oi)c, . . . , hull Jn = f~l{On)

c. Let 
X\ € Ju • • • > xn € Jn be such that xi + . . . + xn — x and the inequalities in 3.3 
are satisfied. Let J\y . . . , J' n>, 0'\, . . . , 0'n>, satisfy the same con
ditions with primes added. Assume that the families (Jt) and (JfV) are minimal 
with sum A. Assume that all lengths \Ot\ are equal and all lengths \Of

 t>\ are equal. 
Then for any X* £ Oi and X' V 6 0' t>, 

IIEÎ-iX^, - Er - iXVaVII ^ 196 sup {\Ot\, \0't>\] \\x\\. 
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Proof. We shall suppose that | 0V | g \0t\, and denote \0t\ by e. We shall 
denote Oi U . . . U 0n by 0 ; since / i + . . . + J n = i , 0 I ) range/. 

For fe = 1, . . . , n, denote by Sk the set of if = 1, . . . , nf such that Jf
 v (£ 

JLi&Jtt so that xÇE,i9£kJi) = Z ^ s p t V Œ ^ ) . We shall suppose that the 
families (Ot) and (0\>) are labelled so that within each family intersections 
occur only for consecutive indices. Then Skl P\ Sk2 = 0 if \ki — k2\ > 1. 
C V <Z Yji^kJi is equivalent to (hull / ' * ' ) * ^ ( 0 ^ * hull Jt)

c, which implies 
0 C\ 0'v <Z Ui*kOi, i.e., O'i' C\ (0 \UtW?t) ^ 0 , and the distance between 
0\{Ji*klOi and 0\\Ji9,kfii is at least e if |fei — k2\ > 1.) 

Fix fe = 1, . . . , ». Then 

Xkiz-jijékJi) — Xy^LsiiekJ i) ~ Z^i'^Sk^ V (z^ i^kJi)• 

Hence, with y denoting £*=iXi#f — ]Cr=iX'i'#V, 

= lli'ZSkO^k — X'' i')x*i'i/li^kJi)> 

Suppose that k is even. Since by what precedes Skl H ^ 2 = 0 for distinct 
even fei, &2 = 1, . . . , w, if m is even and m 9^ k then Y^i'tsmJ'v C ^Li&Ji-
Hence, 

y\l^i^kJi) = X/W even zJi'€>Sm(Xm ~ X * ' ) x i'\Zl i^kJi) -

Now take the intersection over all even &. We have 

^(Mfceven Luij^kJ i) = Lm even Z^ï'eSm(^w X *')# i'((Ueven jLsi^kJi)-

We remark that if i' G 5m then |XW — \' i>\ < 2e. (J"V (^ Ylt^mJi is equivalent 
to (hull J V ) C <Z (Plt^m hull 7 t)

c , which implies 0 C\ 0' v (£ Ui^mOu in par
ticular, O'i' C\ 0m 7* 0.) Again bearing in mind that Skl 0 5 ^ = 0 if \ki — k2\ 
> 1, by 3.3 we have 

||EmevenZt'€STn(Xm - XV)*'<' | | ^ 14e | |x | | . 

Hence 

I M O * even £<**/<) | | ^ 14€ ||jc||. 

In the same way we obtain the inequality 

||y(n*oddE<**/«)ll ^ 14e||x||. 

Now define open intervals O"0, . . . , 0"n as follows. We shall suppose that 
the interval 0\ is on the left in 0. Denote by 0 ' \ , i = 0, . . . , n, the open 
interval of which the left endpoint is the right endpoint of Oi_i, and the right 
endpoint is the left endpoint of Oi+2. Here 0_i, 0O and On+\, On+2 denote some 
nonempty intervals outside 0 to the left and to the right respectively. The 
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properties of 0"o , . . . , 0"n that we shall use are: 

O C O " 0 U . . . U O " „ ; 
0 \ U „ * 0 " < = (0PnOp+1)~,P = 1 , . . . , « - 1; 
for |£i - £2| > 2, distance (0"P l , 0"„2) è e. 

By continuity of / there exist G-ideals Ko, . . . , Kn such that hull K0 = 
f-l(O"0)

e, . . . , hull Kn = J-liP"n)
c. For p = 1, . . . , n - 1 denote by r„ the 

set of if = 1, . . . , nf such that J7*/ Ç£ ̂ 2i^pKif so that x ( X ) ^ ^ i ) = 

Zi'eTjfi'fŒt&Ki). Then TPl H T,2 = 0 if \px - p2\ > 2. (/ ' , , <Z E < * P # < is 
equivalent to (hull J'v)

c (£ ( P l ^ hull if*)c, which implies 0 C\ 0'v (£ 
UifépO" u in particular, OV H 0"v j± 0, and the distance between 0"Vl and 
0"„2 is at least e if \px - p2\ > 2.) 

Fix r = 1, 2, 3 and set 

L o r + 3 m n O r + 3 m + l ^ 0 ( ^ r + 3 m " " Xr+ 3ra+1 ) X r + 3ro+1 = sr-

Then all Xr+3wi — Xr+3m+i, w = 0, 1, . . . , 0r+3m H Or+3m+i ^ 0, are of absolute 
value less than 2e, so by the second inequality of 3.3, 

||zr|| S 7(2e)||x|| = Ue\\x\l. 

Since p! ^ p} p + 1 implies 0Pl C 0\(QP C\ Op+i)~, equivalently, Jpl C 
^Ili^pKi, we have, for any £ = 1, . . . , « • — 1, 

(xP + Xp_|_i)\2L/i9*pKi) — X\/^,ijépKi) = 2̂ *'çTy*- i ' I L ^ J i 

and, îor p = r (mod 3), 

(Note that if 0P H Op+1 = 0 then 0 C U ^ 0 " i , so I ^ 2 £ « = A.) Using the 
fact that TPl C\ TP2 = 0 if |£i — p2\ > 2 we deduce that for each p = r 
(mod 3), 

and hence that 

= Z^flsKmod 3 ) Z ^ i ' 6 7,g(X^ — X t') X f (P lp^ rGnod %)L*li?*pKi). 

Using again the fact that TPl C\ TP2 = 0 if |£i — p2 | > 2 and also using the 
fact that if i' £ TQ then |Xff — XVI < 2e (JV (£ Ht^qKi is equivalent to 
(hull rv)

c (£ ( r w ^ h u l l K^, which implies 0 C\ 0'v <£ \J t*fî" t, in par
ticular, 0'i> C\ 0q T* 0), we have by 3.3 

Therefore 

\\{y + SrXrVrCmod 3 ) E ^ ^ 0 | | ^ 14c | | * | | , 
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and, since | |s r | | fi 14e ||x||, 

l b ( n ^ ( m o d 3 ) i ; 4 ^ ) l l g (14 + 14) <||xl| = 28e||x||. 

Now consider the five G-ideals 

Is = Pl/c=s(mod 2)X,*^A>' *> 5 = 1 , 2 , 

-*2+r ~ C)p=r{mod 3)Z2i^pK-ii Y ~ 1) 2, 3. 

We have U«=i hull Is C hull ns=ils- Computation shows that 

hull h \J hull h Df'^UZlOi H Oi+1)
c, 

hull h W hull I, U hull h Df-1 (U£î (0< n 0*+i)-). 

This shows that every G-primitive lies in hull Pls=i^s, whence Pis=i^s = 0. 
By four applications of 3.5, to the pairs (A, 73), (Ii H 73, A), (7i H 72 H ^3, A) 
and (Ji P\ J2 n ^3 ^ ^4, Is) respectively, it follows that 

llbll ^ 7(2-2 + 4 + 2 2 + 2 4 + 24) e||x|| = 196e||*||. 

4. The Banach module structure. 

4.1. Remarks. It follows by the closed graph theorem that for each fixed / 
as in 3.1 the map X H / X is continuous. If Mf denotes this bounded operator, 
then a second application of the closed graph theorem shows that the map 
/1—» Mf is continuous, with respect to the supremum norm ||/ | |œ on the space 
of functions / . This shows that there exists a constant k ^ 1 such that for 
all / and x, 

||MlsS*||/UI*||. 
As a matter of fact it follows from 3.3 that k g 7, and that the inequality 

holds with k = 7/2 if / ^ 0. Analysis of the proof of 3.3 shows that these 
numbers can be replaced by 6 and 3 respectively. 

4.2. THEOREM. Let A be a Banach space with a G-algebra structure. Suppose 
that for every decreasing sequence of G-ideals J\ D J2 Z) . . . with intersection 0 
the identity 

\\x\\ = sup„ | !*(/„) || 

holds. Then for every bounded continuous real-valued function f on G- primitives 
and every x 6 A, 

IIMI s 211/IUMI, 

and if f ^ 0, 

IIMI =s ll/IUWI. 
Proof. Fix e > 0. Choose mutually disjoint nonempty open intervals 

O1!, . . . , Ol
n such that the distance between the midpoints of any two is at 
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most e and such that any point in the range of / is between the midpoints of 
0*2 and OV-i- For each i = 1, . . . , n choose a decreasing sequence of nonempty 
open intervals 01

iZ) 02
t Z) > • • with empty intersection. Denote by Jk

t the 
G-ideal the hull of which is /""1(0*€)c, i = 1, . . . , n, k = 1, 2, . . . . For each 
k = 1, 2, . . . set Zni=iJki = J*. Then 

huii rw* D u* huii j* = u* n«-i n hull A = u* r w . . . . » 
/-1(o^,)c = n*- i . . . . . « (n,/-l(o\-))c = 0C, 

so n*/* = o. 
Let x be an element of A and let / be a bounded continuous real-valued 

function on G-primitives. Then 

||*|| = sup*||*(/*)||, H/xll = sup*||/*(J*)||, 

so it is enough to show for each k = 1 , 2 , . . . that 

||/*(J*)||£2||/|U|*(/*)||, 
and that if/ è 0, 

||/*(/*)||£||/IU|*(/*)||. 
Passing to the quotient of A by a fixed Jk, k = 1, 2, . . . , we may suppose that 
/* = 0. In other words, the range of / is disjoint from Oki W . . . VJ Ok

n. If g 
denotes the real-valued function such that g(t) is the average of the midpoints 
of the two open intervals Ok

t and Ok
i+i between which f(t) lies, then g is con

tinuous and [|/ — g||oo < e. Moreover, by the orthogonality of a pair of G-
ideals with intersection 0 (cf. proof of 3.3) 

11**11 * I I « I U M I i f f ^ O 

and in general (as a consequence) 

llg*ll £2||g|UM|. 

Hence 

II/*H ^ ii(/-g)*ii + iig*n 
£3||/-g|U|*| |+2||g|U|*| | 
^ 3||/ - g|L||x|| + 2||/ - g|UW| + 2H/IUWI 
^5a| |x| |+2| | / | |JH|. 

Since e > 0 is arbitrary, 

IIMI^2||/|U|x||. 

If / è 0, then Oi, . . . , On may be chosen so that g ^ 0, and a similar calcula
tion using the inequality \\gx\\ :g ||g||œ|WI yields the inequality 

IIMI sll/IUWI-
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4.3. Remark. A two-dimensional example shows that in 4.2 the estimate 
| | /x | | S 211/llooll^H is the best possible for real -valued / not assumed to be 
positive. On the other hand, under the additional assumption on G-ideals 
that for xi Ç Ji, x2 £ J\ (J\ and J 2 G-ideals), 

||(*i + *2)(Jin j,) 11 = ||(*i -*s)(/ in/oil , 
the proof of 4.2 shows that the inequality 

IIMI^II/IUWI 
holds for all real-valued / . 

It is not clear whether the assumption on the projective limit behaviour of 
the norm made in 4.2 is necessary or not. 

4.4. Remark. If A is a Banach space with a G-algebra structure, then for 
each bounded continuous real-valued function / on G-primitives the map 
x i—>fx is (see 4.1) a bounded operator on A. This map leaves G-primitives 
invariant, and therefore leaves all G-ideals invariant. 

It would be interesting to determine if, conversely, every bounded operator 
on A which leaves G-ideals invariant and induces a homothety in each G-
primitive quotient must be the map x*-*fx for some bounded continuous real-
valued function / on G-primitives. It is not difficult to show this under the 
additional assumptions that the hulls of G-ideals form the closed subsets of a 
topology on G-primitives, and that for each x £ A the set of all G-primitives t 
such that | \x(t)\\ ^ 1 is a hull. (It is necessary to show that if / is a real-valued 
function on G-primitives such that for every x Ç i there exists fx G A with 
(fx)(t) = f(t)x(t) for every G-primitive /, then / is continuous. Adding a 
constant and scaling reduces the question to showing that the set f~l([ — l, 1]) 
is a hull. But this set is the intersection over all x £ A of the set of G-primitives 
fsuch that ||(/*)(0II ^ 10 

4.5. Problem. The question arises how general the scalars can be in 3.1. Of 
course the G-ideals must be invariant under the scalars. If we assume that 
the hulls form the closed sets of a topology on the set of G-primitives, so that 
continuity of functions can be defined in terms of this topology, then it is clear 
that if the range of / lies in a finite-dimensional algebra of operators on A 
which leaves G-ideals invariant then the conclusion of 3.1 holds also for / (it is 
understood that f(t) should denote also the operator induced in the quotient 

i 4 / * b y / ( 0 ) . 
The situation is not quite so clear if the range of/ is allowed to be an arbi

trary bounded subset of operators leaving G-ideals invariant. Simple examples 
show that some restriction is necessary, and it seems reasonable to ask if total 
boundedness of the range of/ is sufficient. Under either the hypothesis that the 
norm of an element of A is the supremum of its norms in G-primitive quotients 
(e.g. in the M -ideal situation of Alfsen and Effros [1]) or the hypothesis that 
for the range of/ in a finite-dimensional subspace there is a constant k indepen-
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dent of the dimension such that | | /# | | ^ k\\f | |œ | |#||, the argument which 
follows shows that total boundedness of the range of / suffices for fx to exist 
as in 3.1. (Note that by the closed graph theorem, if the conclusion is true then 
the second hypothesis must be satisfied.) 

Fix e > 0. Since the closure of the range of/, say K, is compact, there exist 
open balls 0\, . . . , On of radius e covering K. Choose ai Ç Oi, . . . , a„ G On, 
and choose a partition of unity (/\, . . . ,fn) on the compact space K subordi
nate to the cover (Oi, . . . , On). Denote the function / ^>ji(f{t))ai + . . . + 
/n( /(0)^n by/€ . Then | | / — fe\\m ^ e, and by 3.1 there existsfex £ A such that 
(f€x) (t) = ft(i)x(t) for every G-primitive t. Either of the hypotheses described 
in the preceding paragraph implies that as e —> 0, f€x converges. 
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