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The scanning transmission electron microscope (STEM) allows access to a broad range of physics 

derived from a multitude of different signal modalities across different length scales. Advances in 

aberration correction, electron source monochromation, and detector technologies have enabled, for 

example, measurements of pm-level deviations in atomic columns, optical and vibrational 

spectroscopies at the nano- and atomic scales, and even studying beam sensitive specimens. Until now, 

the decision on where to acquire these advanced measurements has been in the hands of the microscope 

operator, inevitably introducing a level of bias in the experiment. While the experience of the 

microscopist is not in question, the sample space is generally vast and may contain unexpected and 

unexplored phenomena; therefore, in most cases, the microscopist will find what they sought out to find, 

and only rarely will they stumble upon an unforeseen event. A scheme that intelligently searches the 

sample space requires active learning, especially for unseen specimens. 

In this work, we demonstrate autonomous experiments in the STEM using a deep kernel learning [1] 

(DKL) workflow, targeting the discovery of specific physical phenomena via electron energy loss 

spectroscopic (EELS) signals. Physics is embedded into this by introducing a scalarizer function that 

operates on the EEL spectrum to extract the intended physics, for example, by finding the maximum 

peak intensity in a spectral region, or by calculating peak ratios. Here, we use the high angle annular 

dark field (HAADF)-STEM image to access the specimen structure, in which local image patches are 

created at every pixel, representing the local geometry. Next, several EEL spectra are randomly 

collected from the image space defined by the HAADF to initialize the DKL model, and these spectra 

are reduced to a single value defined by the scalarizer function’s physics criteria, then correlated to the 

local image patches from where they were acquired. Hence, a structure-property relationship is 

immediately formed after only a handful of measurements. Finally, the so-called acquisition function 

guides where each subsequent measurement will be taken – which continues to be appended to the DKL 

model such that learning occurs with each new measurement. 

The workflow is experimentally demonstrated [2] on several experimental systems using a NION 

monochromated aberration corrected STEM (MACSTEM) that allows Python-based control of 

hardware. In Figure 1, the DKL workflow is applied to a several-layer specimen of MnPS3, a 2D van der 

Waal material that undergoes beam-induced transformations [3] and therefore its natural state is beam 

sensitive, which also lends well as a motivation in using this workflow. Two separate scalarizers are 

demonstrated here to show the difference in the actively learned structure-property relationships and 

therefore the acquisition pathway. In choosing to search for the maximum of the peak ratio between    

and   , the acquisition pathway is shown to be highly concentrated near the top edge of the flake, seen 
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in Figure 1C. Meanwhile, if the maximum of    is instead used, it is clear that the sampled points all 

reside within the flake as in Figure 1D. Physically,    corresponds to the bulk plasmon, and exactly 

should be maximum while within the bulk of the material. An increased ratio of    to    on the other 

hand indicates the presence of an edge mode (and absence of the bulk mode) – in other words, this mode 

exists outside the flake but strongly localized to the edge. The presence of such an edge mode in MnPS3 

was previously not known until the DKL workflow was used in this example, which greatly motivates 

the use of autonomous experiments. 

 

Figure 1. Autonomous experiments with DKL on a several-layer MnPS3, a 2D van der Waal material, 

using two different scalarizer functions. HAADF-STEM image is shown in (A), where the EEL 

spectrum in (B) serves to illustrate how the scalarizer is chosen, shown with two prominent peaks,   and 

  . The effect of different choice in physics-based scalarizers is compared in (C) and (D), where the 

maximum of the peak ratio between    and    is used to guide the automated experiment in (C), and the 

maximum of    is used to guide that in (D). 

While the active learning approach with DKL was demonstrated here for one material system, it is 

completely generalizable to any material system. In fact, any material that can be placed inside the 

microscope can be used with this workflow, since DKL actively learns relationships on-the-fly, i.e., no 

model pre-training is required. The DKL workflow also can be extended beyond spectral measurements 
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like EELS and EDS to practically any type of higher dimensional analytical measurements, including 

4D-STEM. Additionally, these principles can also be applied to other probe-based imaging techniques 

such as scanning probe microscopy. Combining the correlative predictions from DKL with instrument 

automation has proven to be successful in discovering physics in initial experiments and with more 

adoption, we hope DKL can be the harbinger of discovering many more phenomena [4]. 
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