
1

1

Introduction

1.1 Initial Considerations

Some years ago at Cran�eld, where we had set up a �ow rig for testing the effect of 
upstream pipe �ttings on certain �owmeters, a group of senior Frenchmen was being 
shown around and visited this rig. The leader of the French party recalled a similar 
occasion in France when visiting such a rig. The story goes something like this.

A bucket at the end of a pipe seemed particularly out of keeping with the remain-
ing high-tech rig. When someone questioned the bucket’s function, it was explained 
that the bucket was used to measure the �ow rate. Not to give the wrong impression 
in the future, the bucket was exchanged for a shiny, new, high-tech �owmeter. In due 
course, another party visited the rig and observed the �owmeter with approval. “And 
how do you calibrate the �owmeter?” one visitor asked. The engineer responsible 
for the rig then produced the old bucket!

This book sets out to guide those who need to make decisions about whether 
to use a shiny �owmeter, an old bucket, nothing at all or a combination of these! It 
also provides information for those whose business is the design, manufacture or 
marketing of �owmeters. I hope it will, therefore, be of value to a wide variety of 
people, both in industry and in the science base, who range across the whole spec-
trum from research and development through manufacturing and marketing. In my 
earlier book on �ow measurement (Baker 1988a/1989, 2002b, 2003), I provided a 
brief statement on each �owmeter to help the uninitiated. This book attempts to give 
a much more thorough review of published literature and industrial practice.

This �rst chapter covers various general points that do not �t comfortably else-
where. In particular, it reviews guidance on the accuracy of �owmeters (or calibra-
tion facilities).

The second chapter reviews brie�y some essentials of �uid mechanics necessary 
for reading this book. The reader will �nd a fuller treatment in Baker (1996), which 
also has a list of books for further reading.

A discussion of how to select a �owmeter is attempted in Chapter 3, and some 
indication of the variety of calibration methods is given in Chapter 4, before going 
in detail in Chapters 5–20 into the various high- (and low-) tech meters available. 
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In this edition, I have introduced three additional chapters to cover new commer-
cial meters and to allow a brief and super�cial review of multiphase hydrocarbon 
�owmeters. Chapter 21 deals with probes. Chapter 22 covers general issues relating 
to veri�cation and clamp-on meters. Chapter  23 provides a brief introduction to 
remote data handling and Chapter 24 provides �nal personal re�ections relating to 
manufacture and future developments.

In this book, I have tried to give a balance between the laboratory ideal, manu-
facturers’ claims, the realities of �eld experience and the theory behind the practice. 
I am very conscious that the development and calibration laboratories are some-
times misleading places, which omit the problems encountered in the �eld (Stobie 
1993), and particularly so when that �eld happens to be the North Sea. This may be 
more serious for �owmeters than for some other instruments, and may require care-
ful consideration of the increase in uncertainty which results. In the same North Sea 
Flow Measurement Workshop, there was an example of the unexpected problems 
encountered in precise �ow measurement (Kleppe and Danielsen 1993), resulting, 
in this case, from a new well being brought into operation. It had signi�cant amounts 
of barium and strontium ions, which reacted with sulphate ions from injection water 
and caused a deposit of sulphates from the barium sulphate and strontium sulphate 
that were formed.

With that salutary reminder of the real world, we ask an important – and per-
haps unexpected – question.

1.2 Do We Need a Flowmeter?

Starting with this question is useful. It may seem obvious that anyone who looks to 
this book for advice on selection is in need of a �owmeter, but for the process engin-
eer it is an essential question to ask. Many �owmeters and other instruments have 
been installed without careful consideration being given to this question and with-
out the necessary actions being taken to ensure proper documentation, maintenance 
and calibration scheduling. They are now useless to the plant operator and may even 
be dangerous components in the plant. Thus, before a �owmeter is installed, it is 
important to ask whether the meter is needed, whether proper maintenance sched-
ules are in place, whether the �owmeter will be regularly calibrated, and whether 
the company has allocated to such an installation the funds needed to achieve this 
ongoing care. Such care will need proper documentation.

The water industry in the United Kingdom has provided examples of the prob-
lems associated with unmaintained instruments. Most of us involved in the meter-
ing business will have sad stories of the incorrect installation or misuse of meters. 
Reliability-centred maintenance recognises that the inherent reliability depends 
on the design and manufacture of an item, and if necessary this will need improv-
ing (Dixey 1993). It also recognises that reliability is preferable in critical situations 
to extremely sophisticated designs, and it uses failure patterns to select preventive 
maintenance.
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In some research into water consumption and loss in urban areas, Hopkins, 
Savage and Fox (1995) found that obstacles to accurate measurements were

•	 buried control valves,
•	 malfunctioning valves,
•	 valve gland leakage,
•	 hidden meters that could not be read and
•	 locked premises denying access to meters.

They commented that “water supply systems are dynamic functions having to be 
constantly expanded or amended. Consequently continuous monitoring, revisions 
and amendments of networks records is imperative. Furthermore, a proper pro-
gramme of inspection, maintenance and subsequent recording must be operative in 
respect of inter alia:

•	 networks,
•	 meters,
•	 control valves,
•	 air valves,
•	 pressure reducing valves,
•	 non-return valves.”

They also commented on the poor upstream pipework at the installation of many 
domestic meters.

So I make no apology for emphasising the need to assess whether a �owmeter is 
actually needed in any speci�c application.

If the answer is yes, then there is a need to consider the type of �owmeter and 
whether the meter should be measuring volume or mass. In most cases, the most 
logical measure is mass. However, by tradition, availability and industrial usage, vol-
ume measurement may be the norm in some places, and as a result, the regulations 
have been written for volume measurement. This results in a Catch-22 situation. 
The industry and the regulations may, reasonably, resist change to mass �ow meas-
urement until there is suf�cient industrial experience, but industrial experience is 
not possible until the industry and the regulations allow. The way forward is for one 
or more forward-looking companies to try out the new technology and obtain �eld 
experience, con�dence in the technology and approval.

In this book, I have made no attempt to alert the reader to the industry-speci�c 
regulations and legal requirements, although some are mentioned. The various authors 
touch on some regulations, and Miller (1996) is a source of information on many 
documents. An objective of the Organisation Internationale de Métrologie Légale 
(OIML) is to prevent any technical barriers to international trade resulting from 
con�icting regulations for measuring instruments. With regard to �ow measurement, 
it appears to have been particularly concerned with the measurement of domestic 
supplies and industrial supplies of water and gas (Athane 1994). This is because two 
parties, the supplier and the consumer, are involved, and the consumer is unlikely to 
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be able to ascertain the correct operation of the meter. In addition, the supplier does 
not continually monitor these measurements, the meters may fail without anyone 
knowing, the usage is irregular and widely varying in rate, the measurements are not 
repeatable, and the commodities have increased in value considerably in recent years.

In order to reduce discussions and interpretation problems between manufac-
turers and authorised certifying institutes, the European Commission was mandating 
the European standardisation bodies (CEN and CENELEC) to develop harmonised 
standards that would give the technical details and implementation of the require-
ments based on OIML recommendations. These would be such that a measuring 
instrument complied with essential requirements, assuming that the manufacturer 
had complied with them (Nederlof 1994).

The manufacturer will also be fully aware of the electromagnetic compatibility 
(EMC), which relates to electromagnetic interference. In particular, the EMC char-
acteristics of a product are that

•	 the level of electromagnetic disturbance the instrument generates will not inter-
fere with other apparatuses, and

•	 the operation of the instrument will not be adversely affected by electromag-
netic interference from its environment.

In order to facilitate free movement within the European area, the CE mark was 
designed to identify products that conformed to the European essential requirements. 
For further details relating to the European Community (EC), the reader is referred 
to the Measuring Instrument Directive (MID 2004, DTI 1993, Chambers 1994).

First, we consider the knotty problem of how accurate the meter should be.

1.3 How Accurate?

Inconsistency remains about the use of terms that relate to accuracy and precision. 
This stems from a slight mismatch between the commonly used terms and those that 
the purists and the standards use. Thus we commonly refer to an accurate meas-
urement, when strictly we should refer to one with a small value of uncertainty. We 
should reserve the use of the word accurate to refer to the instrument. A high-quality 
�owmeter, carefully produced with a design and construction to tight tolerances and 
with high-quality materials as well as low wear and fatigue characteristics, is a pre-
cise meter with a quanti�able value of repeatability. Also, it will, with calibration 
on an accredited facility, be an accurate meter with a small and quanti�able value 
of measurement uncertainty. In the context of �owmeters, the word repeatability is 
preferred to reproducibility. The meanings are elaborated on later, and I regret the 
limited meaning now given to precision, which I have used more generally in the past 
and shall slip back into in this book from time to time! In the following chapters, 
I have attempted to be consistent in the use of these words. However, many claims 
for accuracy may not have been backed by an accredited facility, but I have tended 
to use the phrase “measurement uncertainty” for the claims made.
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Hayward (1977a) used the story of William Tell to illustrate precision. William 
Tell had to use his crossbow to �re an arrow into an apple on his little son’s head. 
This was a punishment for failing to pay symbolic homage to an oppressive Austrian 
ruler. Tell succeeded because he was an archer of great skill and high accuracy.

An archer’s ability to shoot arrows into a target provides a useful illustration of 
some of the words related to precision. So Figure 1.1(a) shows a target with all the 
shots in the bull’s-eye. Let us take the bull’s-eye to represent ±1%, within the �rst 
ring ±3%, and within the second ring ±5%. Ten shots out of ten are on target, but 
how many will the archer �re before one goes outside the bull’s-eye? If the archer, 
on average, achieves 19 out of 20 shots within the bull’s-eye [Figure 1.1(b)], we say 
that the archer has an uncertainty of ±1% (the bull’s-eye) with a 95% con�dence 
level (19 out of 20 on the bull’s-eye: 19 ÷ 20 = 0.95 = 95 ÷ 100 = 95%).

Suppose that another archer clusters all the arrows, but not in the bull’s-eye, 
Figure 1.1(c). This second archer is very consistent (all the shots are within the same 
size circle as the bull’s-eye), but this archer needs to adjust his aim to correct the 
offset. We could say that the second archer has achieved high repeatability of ±1%, 
but with a bias of 4%. We might even �nd that 19 out of 20 shots fell within the top 
left circle so that we could say that this archer achieved a repeatability within that 
circle of ±1% with a 95% con�dence. Suppose this archer had �red one shot a day, 
and they had all fallen onto a small area [Figure 1.1(c)], despite slight changes in 
wind, sunshine and archer’s mood; we term this good day-to-day repeatability. But 
how well can we depend on the archer’s bias? Is there an uncertainty related to it?

Finally, a third archer shoots 20 shots and achieves the distribution in 
Figure 1.1(d). One has missed entirely, but 19 out of 20 have hit the target some-
where. The archer has poor accuracy, and the uncertainty in this archer’s shots is 
about �ve times greater than for the �rst, even though the con�dence level at which 
this archer performs is still about 95%.

If the third archer has some skill, then the bunching of the arrows will be greater 
in the bull’s-eye than in the next circle out, and the distribution by ring will be as 
shown in Figure 1.1(e).

We shall �nd that the distribution of readings of a �owmeter results in a curve 
approximating a normal distribution with a shape similar to that for the shots. 
Figure 1.1(f) shows such a distribution where 95% of the results lie within the shaded 
area and the width of that area can be calculated to give the uncertainty, ±1% say, 
of the readings with a 95% con�dence level. In other words, 19 of every 20 readings 
fall within the shaded area.

With this simplistic explanation, we turn to the words that relate to precision.

Accuracy

It is generally accepted that accuracy refers to the truthfulness of the instrument. An 
instrument of high accuracy more nearly gives a true reading than an instrument of 
low accuracy. Accuracy, then, is the quality of the instrument. It is common to refer 
to a measurement as accurate or not, and we understand what is meant. However, 
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the current position is that accuracy should be used as a qualitative term and that 
no numerical value should be attached to it. It is, therefore, incorrect to refer to a 
measurement’s accuracy of, say, 1%, when, presumably, this is the instrument’s meas-
urement uncertainty, as is explained later.

Repeatability

In a process plant, or other control loop, we may not need to know the accuracy of 
a �owmeter as we would if we were buying and selling liquid or gas, but we may 
require repeatability within bounds de�ned by the process. Repeatability is the value 
below which the difference between any two test results, taken under constant con-
ditions with the same observer and with a short elapsed time, are expected to lie with 
95% con�dence.

Centre
of target

–2 –1 0 1

11

4½ 4½

8

2

(a) (b)

(c) (d)

(e) (f)

Figure 1.1. Precision related to the case of an archery target. (a) Good shooting – 10 out of 10 
arrows have hit the bull’s-eye. An accurate archer? (b) Good shooting? – 19 out of 20 arrows 
have hit the bull’s-eye. An accurate archer and a low value of uncertainty (±1%) with a 95% 
con�dence level. (c) Shots all fall in a small region but not the bull’s-eye. Good repeatabil-
ity (±1%) but a persistent bias of 4%. (d) Shots, all but one, fall on the target – 19 out of 20 
have hit the target. A ±5% uncertainty with 95% con�dence level. (e) Distribution of shots in 
(d) on a linear plot, assuming that we can collapse the shots in a ring semicircle onto the axis. 
(f) The normal distribution, which is a good approximation for the distribution of �owmeter 
readings.
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1.3 How Accurate? 7

Precision

Precision is the qualitative expression for repeatability. It should not take a value 
and should not be used as a synonym for accuracy.

Uncertainty

Properly used, uncertainty refers to the quality of the measurement, and we can cor-
rectly refer to an instrument reading having an uncertainty of ±1%. By this we mean 
that the readings will lie within an envelope ±1% of the true value. Each reading 
will, of course, have an individual error that we cannot know in practice, but we are 
interested in the relationship of the readings to the true value. Because uncertainty is 
referred to the true value, by implication it must be obtained using a national stand-
ard document or facility. However, because it is a statistical quantity, we need also 
to de�ne how frequently the reading does, in fact, lie within the envelope; hence the 
con�dence level.

Con�dence Level

The con�dence level, which is a statement of probability, gives this frequency, and it 
is not satisfactory to state an uncertainty without it. Usually, for �ow measurement, 
this is 95%. We shall assume this level in this book. A con�dence level of 95% means 
that we should expect on average that 19 times out of 20 (19/20 = 95/100 = 95%) 
the reading of the meter will fall within the bracket speci�ed (e.g. ±1% of actual 
calibrated value).

Linearity

Linearity may be used for instruments that give a reading approximately propor-
tional to the true �ow rate over their speci�ed range. It is a special case of conform-
ity to a curve. Note that both terms really imply the opposite. Linearity refers to the 
closeness within which the meter achieves a truly linear or proportional response. 
It is usually de�ned by stating the maximum deviation (or nonconformity e.g. ±1% 
of �ow rate) within which the response lies over a stated range. With modern signal 
processing, linearity is probably less important than conformity to a general curve. 
Linearity is most commonly used with such meters as the turbine meter.

Range and Rangeability

An instrument should have a speci�ed range over which its performance can be 
trusted. Therefore, there will be upper- and lower-range values. This re�ects the fact 
that probably no instrument can be used to measure a variable when there are no 
limitations on the variable. Without such a statement, the values for uncertainty, lin-
earity etc. are inadequate. The ratio of upper-range value and lower-range value may 
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be called the rangeability, but it has also been known as the turndown ratio. The 
difference between upper- and lower- or negative-range values is known as span. It 
is important to note whether the values of uncertainty, linearity etc. are a percentage 
of the actual �ow rate or of the full-scale �ow [sometimes referred to as full-scale 
de�ection (FSD), full-scale reading (FSR), maximum-scale value, or upper-range 
value (URV)].

1.4 A Brief Review of the Evaluation of Standard Uncertainty

Kinghorn (1982) points out the problem with terminology in matters concerning 
statistics and �ow measurement. To the engineer and the statistician, words such as 
error and tolerance may have different meanings. The word tolerance was used for 
what is now known as uncertainty.

In providing an introduction to the terminology of uncertainty in measurement, 
I shall aim to follow the guidance in BIPM et al. (2008), which is usually known as 
the Guide or GUM, and also in a document consistent with the Guide, which pro-
vides the basis for uncertainty estimates in laboratories accredited in the United 
Kingdom (UKAS 2012). The reader should note that the Guide may also be avail-
able as ISO/IEC 98-3: 2008 and that a further valuable document is a guide on the 
vocabulary of metrology, ISO/IEC 99: 2007. The reader is strongly advised to con-
sult this document, which is full of clear explanations and useful examples. Those 
wishing to pursue background arguments are referred to Van der Grinten’s (1994, 
1997) papers.

Random error, the random part of the experimental error, causes scatter, as the 
name suggests, and re�ects the quality of the instrument design and construction. It 
is the part that cannot be calibrated out, and the smaller it is, the more precise the 
instrument is. It may be calculated by taking a series of repeat readings resulting in 
the value of the standard deviation of a limited sample n, and sometimes called the 
experimental standard deviation:

s q
n

q q
j

n

j j( )=
−

−( )









=
∑1

1

2

1

1 2

(1.1)

where q  is the mean of n measurements qj. The experimental standard deviation of 
the mean of this group of readings is given by

 s q
s q

n
( )= ( )j

(1.2)

Where too few readings have been taken to obtain a reliable value of s(qj), an earl-
ier calculation of s(qj) from previous data may be substituted in Equation (1.2). In 
obtaining the overall uncertainty of a �owmeter or a calibration facility, there will be 
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1.4 A Brief Review of the Evaluation of Standard Uncertainty 9

values of group mean experimental standard deviation for various quantities, and so 
UKAS (2012) de�nes a standard uncertainty for the ith quantity as

u x s qi( )= ( ) (1.3)

where xi is one of the input quantities. For those with access to UKAS (2012), this is, 
essentially, dealt with there as a Type A evaluation of standard uncertainty.

Systematic error, according to �owmeter usage, is that which is unchanging within 
the period of a short test with constant conditions. This is, essentially, dealt with in UKAS 
(2012) under the heading Type B evaluation of standard uncertainty. It is also called 
bias. However, in modern �owmeters and in calibration facilities, it is likely that this 
bias or systematic error will result in a meter adjustment, or a rig correction. The result-
ing uncertainty in that adjustment or correction will contribute to the overall uncer-
tainty. The systematic uncertainty, therefore, may derive from various factors such as

 a. uncertainty in the reference and any drift,
 b. the equipment used to measure or calibrate,
 c. the equipment being calibrated in terms of resolution and stability,
 d. the operational procedure, and
 e. environmental factors.

From these we deduce further values of u(xi).
There has been debate about the correct way to combine the random and sys-

tematic uncertainties. We can combine random and systematic uncertainties con-
servatively by arithmetic addition. This results in a conservative estimate. UKAS 
(2012) has followed the Guide in taking the square root of the sum of the squares 
of the standard uncertainties in consistent units. Thus the combined standard 
uncertainty is

 u y c u xc i i( )= ( ) ∑ 2  (1.4)

where y is the output quantity. To ensure consistent units, a sensitivity coef�cient, ci, 
will be required for each input xi, although in practice this may be unity in most cases 
(as in Figure 4.3).

The �nal step (and we have glossed over many important details in UKAS 2012) 
is to deduce from uc the bracket within which the reading of, say, the meter lies.

In the past, bearing in mind that uc or its components have been derived from 
standard deviations, we have used Student’s t value, which for a number of readings 
n is given by

n t

10 2.26
20 2.09
>30 2.0
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for a 95% con�dence level. The Guide replaces this, in general, with a coverage 
 factor, k, to obtain the expanded uncertainty

 U ku y= ( )c (1.5)

The recommended value is k = 2, which gives a con�dence level of 95.45% taken 
as 95%, assuming a normal distribution. If this assumption is not adequate, then we 
need to revert to Student’s t.

The net result is that the assumption of a factor of 2 has now been given a sys-
tematic basis. The reader who is interested in more details about the basis of normal 
and t distributions is referred to Appendix 1.A.

1.5 Note on Monte Carlo Methods

An alternative approach, which is an outcome of the speed and accessibility of 
personal computers, is based on the use of random number generators to model 
instrument errors, and on running many tests to obtain the overall uncertainty of 
the system, say, a �ow calibration rig. This is known as the Monte Carlo method for 
assessing uncertainty.

Not being a statistician, my perception of these methods is that, essentially, a 
numerical model of the measurement system is set up on a computer, instrument 
and system errors are modelled using values obtained from a random number gen-
erator and the measurement procedure is, thereby, modelled. The program is then 
run very many times, to obtain the likely uncertainty by averaging all the results. 
The procedure may be less conservative in its assessment than the standard GUM 
(BIPM et al. 1993) approach.

Monte Carlo computer programs are available, some as freeware. One or more 
such programs may be speci�cally modelled on the latest GUM approach (e.g. 
GUM-Workbench may be available) (private communication from Peter Lau).

Some explanation of the procedure can be found in Coleman and Steele (1999).

1.6 Sensitivity Coef�cients

Suppose that output quantity, a �ow rate, has the relationship

y x x x xp q r s= 1 2 3 4 (1.6)

then if x2, x3 and x4 are held constant, we can differentiate y with respect to x1 and 
obtain the partial derivative. This is the slope of the curve of y against x1 when the 
other variables are kept constant. It also allows us to �nd the effect of a small change 
in x1 on y. This slope (or partial derivative) is the sensitivity coef�cient c1 for x1

and may be found by calculation. It will have the value c px x x xp q r s
1 1

1
2 3 4= −( ) , where 

the values of x1, x2, x3 and x4 will be at the calibration point and may be dimen-
sional. In some cases, it may be a known coef�cient (e.g. a temperature coef�cient of 
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expansion). For cases where it is dif�cult to calculate, it may be possible to �nd the 
coef�cient by changing x1 by a small amount and observing the change in y. In some 
cases, the sensitivity coef�cient may provide a conversion between different sets of 
units (e.g. where output quantity or velocity may be obtained from a dimension, a 
pressure, a movement or a voltage).

1.7 What Is a Flowmeter?

We take as a working de�nition of an ideal �owmeter:

A group of linked components that will deliver a signal uniquely related to the �ow 
rate or quantity of �uid �owing in a conduit, despite the in�uence of installation and 
operating environment.

The object of installing a �owmeter is to obtain a measure of the �ow rate, usu-
ally in the form of an electrical signal, which is unambiguous and with a speci�ed 
expanded uncertainty. This signal should be negligibly affected by the inlet and 
outlet pipework and the operating environment. Thus the uncertainty of measure-
ment of a �owmeter should be reported as y ± U, where U, the uncertainty band, 
might have a value of, say, 0.5%, and it should be made clear whether this is related 
to rate, full-scale de�ection (FSD) or other value that might be a combination of 
these [e.g. in the form ±a (rate) ±b (FSD)]. The range should be given (e.g. 1 m3/h 
to 20 m3/h).

The statement of performance should include the coverage factor k = 2 and the 
level of con�dence of approximately 95%, and, if appropriate, the authority that 
accredited the calibration facility (national or international).

In addition, the ranges of properties for which it can be used should be speci�ed, 
such as �uid, �ow range (beyond calibration), maximum working pressure, tempera-
ture range of �uid and ambient temperature range.

It is useful to introduce two factors that de�ne the response of �owmeters, 
although they are most commonly used for linear �owmeters with pulse output. The 
K factor is the number of pulses per unit quantity. In this book, we shall take it as 
number of pulses per unit volume when dealing with turbine and vortex meters:

 K =
Pulses

True volume
 

whereas the meter factor is usually de�ned as

 Meter factor =
True volume

Indicated volume
 

The reader should keep a wary eye for other de�nitions of meter factor such as the 
reciprocal of the K factor.

Let us take a speci�c example of a �ctitious, but reasonably realistic �ow-
meter. In Figure  1.2(a), a typical �owmeter envelope is shown. It de�nes an 
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approximately linear �owmeter with a 10:1 turndown and an uncertainty of ±1% 
of rate with a con�dence level of 95% against a traceable standard calibration. This 
is a reasonable performance for a �owmeter and probably satis�es most industry 
requirements. This, let us assume, is the performance speci�cation the manufac-
turer carries in its sales literature. Actually the characteristic of the �owmeter may 
be the curve shown in Figure 1.2(a). If the company works to a high standard of 
manufacture, then the company may know that this characteristic lies within close 
tolerances in all cases. It may, therefore, only be necessary for the manufacturer 
to calibrate each �owmeter at, say, 90% of FSD, or 50% and 90% of FSD, in order 
to make the claim that the characteristic falls within the envelope speci�ed in the 
sales literature.

If the meters are actually of this standard, it may well be feasible to calibrate 
them in much greater detail so that a 5-, 10- or even 20-point calibration may 
provide a characteristic that ensures that the reading is known to, say, ±0.2%. 
The values obtained from the calibration will then be programmed into a �ow 
computer, which will interpret each reading of the �owmeter against this look-up 
table. Since we are comparing the �owmeter’s signal to a linear one, if it were 
without error it would also be linear. Consequently, companies sometimes record 
linearity within their literature. In this case, it would also be ±1% with a 10:1 
turndown.

The envelope just discussed gives the uncertainty at each �ow rate in terms of 
the actual �ow rate. Because of the physical basis of some �owmeters, this method 
is not appropriate, and the uncertainty may then be given in terms of the full scale. 
Figure  1.2(b) shows such an envelope where the performance of the �owmeter 
would be de�ned as ±1% FSD. It is apparent that the uncertainty in the �owmeter’s 
reading at, say, half scale is ±2% of rate and at 20% of reading will be as much as 
±5% of rate. The problem often arises wherein the user has a particular �ow range 
that does not match that of the actual instrument. The user’s full �ow may be at only 
60% of the instrument’s range, and so for the user the instrument has an uncertainty, 
at best, of 1.7% of rate.

A third type of envelope is shown in Figure 1.2(c). This is particularly common 
in the speci�cations for water and gas meters. In the example shown, the meter has 
an uncertainty of ±2% of rate from full �ow down to 20%. Below this value of �ow 
rate, the uncertainty is ±5% of �ow rate down to 2% of range. In practice, a meter 
might have more steps in its envelope.

In many cases, the manufacturer’s speci�cation of uncertainty may be a com-
bination of these. As indicated earlier, it is common to have an uncertainty that 
combines a value based on rate and another on full-scale de�ection. In addition, 
there may be allowances to be added for zero drift, temperature change and, pos-
sibly, even pressure change. In some �owmeters, viscosity is important but is prob-
ably accommodated by charts showing the variation in performance with viscosity.
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1.7 What Is a Flowmeter? 13

One note of caution! Clever electronics can take any signal, however nonlinear, 
and straighten the characteristic before the signal is output. Suppose such a proced-
ure were used for the characteristic in Figure 1.2(a), below 10% of range. The charac-
teristic is probably very sensitive to minor variations in this region, and any attempt 
to use the characteristic could lead to disguised, but serious, errors.

Variation of temperature and pressure can affect the performance of a �ow-
meter, as can humidity, vibration and other environmental parameters.

Often the units used in a manufacturer’s catalogue are not those that you have 
calculated. For this reason, conversion factors that provide conversions to four sig-
ni�cant �gures of �ow rate, velocity, temperature, pressure, length etc. have been 
included in Table 1.1. If not otherwise speci�ed, the International System of units 
(SI) based on meter, kilogram, second is assumed.
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Figure 1.2. Required envelope for a �owmeter. (a) Envelope as a percentage of rate; (b) enve-
lope as a percentage of FSD; (c) stepped envelope with increased uncertainty at low-range 
values. The Measuring Instruments Directive of the European Commission should be con-
sulted for the latest de�nitions of Qmax etc. for the EC.
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1.8 Chapter Conclusions (for those who Plan to Skip the Mathematics!)

I have tried to bring together, within the compass of this book, essential information 
for all who may have dealings with �owmeters and �ow measurement, although 
I have tried to avoid duplicating information available in other excellent books on 
the subject. For this reason, the chapters not only address the technical aspects but 
also the selection, maintenance, calibration and typical applications of the various 
meters. I hope that this book will provoke the prospective entrepreneur, the small 
and medium-sized enterprises (SME) or the major instrument company to assess 
the market needs and the relevant development and production needs of their com-
panies for new devices.

The management of �owmeters, at all stages from selection through application in 
complex systems, to identifying malfunction, is clearly an area where modern informa-
tion technology methods would be attractive. How does one select? How do we allow 

Table 1.1. Conversion for some essential measurements from Imperial, U.S. and other  
units to metric, to four signi�cant �gures (Note that the EC has time limits by which  

certain standard units must be used.)

Length 1 ina = 25.4 mm
1 ft = 0.3048 m

Volume 1 ft3 = 0.0283 m3

1 ft3 = 28.32 l (litre)
1 bbl (barrel) = 0.1590 m3

Mass 1 lb = 0.4536 kg
1 long ton (2,240 lb) = 1,016 kg
1 short ton (2,000 lb) = 907.2 kg
1 metric tonne (2,205 lb) = 1,000 kg

Density 1 lb/ft3 = 16.02 kg/m3

Temperature (Temperature in °F – 32)/1.8 = Temperature in °C
Pressure 1 psi = 6,895 N/m2

Viscosity Dynamic viscosity: SI (metric) unit is the Pascal second (Pas)  
to which the more common unit, the centipoise (cP), is related  
by 1 cP = 10–3 Pas.

Kinematic viscosity: SI (metric) unit is m2/s to which the more common 
unit, the centistoke (cSt), is related by 1 cSt = 10–6 m2/s = 1 mm2/s.

Velocity 1 ft/s = 0.3048 m/s
Volumetric �ow rate 1 ft3/s (1 cusec) = 0.02832 m3/s

1 Imp gal/s = 0.004546 m3/s
1 Imp gal/s = 4.546 1/s
1 U.S. gal/s = 0.003785 m3/s
1 U.S. gal/s = 3.785 1/s
1 Imp gal/h = 0.004546 m3/h
1 Imp gal/h = 4.546 1/h
1 U.S. gal/h = 0.003785 m3/h
1 U.S. gal/h = 3.785 1/h

Mass �ow rate 1 lb/h = 0.4536 kg/h
1 lb/s = 0.4536 kg/s

a An approximate conversion is 4 in. to 100 mm.
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for the costs of ownership? How can we check performance and identify emerging 
problems? De Boom (1996) considered life-cycle analysis to help users select the most 
appropriate technology for their use. Menendez, Biscarri and Gomez (1998) used a 
model of a water supply net to deduce the errors in �ow measurement from: analysis 
of the system, assignment to the meters of �ow measurement uncertainty, estimate of 
�ow distribution in the net and comparison of the estimated values with the measured 
values. Nilsson and Delsing (1998) and Nilsson (1998) considered malfunctions and 
inaccuracies in gas �owmeters. Scheers and Wolff (2002) saw the production measure-
ment process from �eld data collection to �nal reporting as the entire chain.

As the reader moves into the following chapters, two sets of information may be 
useful. Table 1.1 lists the conversion factors for Imperial, U.S. and metric units, and 
Table 1.2 relates volumetric and mass �ow rate to linear velocity in various sizes of 
tube (Baker 1988a/1989, 2002b, 2003). It is common in �ow measurement to require 
the velocity of �ow, and Table 1.2 provides an order of magnitude.

Finally, the whole matter of accuracy and the limits of accuracy, when related 
to all the parameters that in�uence a �owmeter’s operation, remains an area with 
unanswered questions.

1.9 Mathematical Postscript

I have left this note to the end so that those who are not concerned with advanced 
mathematical concepts can ignore it.

I have included essential mathematics in the main text of this book. In certain 
�owmeters, the mathematical theory is more complex (e.g. the turbine meter), and 
the theory has, accordingly, been consigned to an appendix after the relevant chapter.

One important and interesting mathematical approach, which starts to develop a uni-
�ed theory of �ow measurement, was �rst suggested by Shercliff (1962) and signi�cantly 
extended by Bevir (1970). Both applied it to electromagnetic �owmeters, where it has 
been highly successful. Hemp (1975) has also applied this theory to electromagnetic �ow-
meters, but he has developed the theory for other types of �owmeters: ultrasonic (1982), 
thermal mass (1994a) and Coriolis (1994b, and Hemp and Hendry 1995). In Chapter 12 
on electromagnetic �owmeters, an appendix describes the essential mathematics. The 
weight function developed in this theory provides a measure of the importance of �ow 
in each part of the meter with respect to the overall meter signal. The �ow at each point 
of a cross-section is weighted with this function. Ideally, the weighting should result in a 
true summation of the �ow in the meter to obtain a volume �ow rate. It has been possible 
to approach this ideal for the electromagnetic �owmeter. For the other types of meters, 
the reader will be given only a brief explanation and will be referred to relevant papers. 

A second mathematical physics theory, �rst (to my knowledge) applied by Hemp 
(1988) to �ow measurement, is reciprocity. This, essentially, states that if you apply a 
voltage to one end of an electrical network and measure the current at the other end, 
you �nd that by reversing the ends and hence the direction you obtain the same rela-
tionship. Hemp has proposed this as a means of eliminating some errors in �owmeters 
to which the theory is applicable.
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Table 1.2. Velocity in pipes for various �ow rates to two signi�cant �gures

m3/ha l/min gal/min gal/min ft3/min Mean Velocity (m/s) in a Circular Pipe of Diameter

10 mm 25 mm 50 mm 100 mm 200 mm 500 mm 1000 mm 2000 mm

Very low 10–3 0.017 3.7 × 10–3 4.4 × 10–3 5.9 × 10–4 3.5 × 10–3 5.7 × 10–4 1.4 × 10–4 3.5 × 10–5

10–2 0.17 3.7 × 10–2 4.4 × 10–2 5.9 × 10–3 3.5 × 10–2 5.7 × 10–3 1.4 × 10–3 3.5 × 10–4 8.8 × 10–5 1.4 × 10–5

0.1 1.7 0.37 0.44 5.9 × 10–2 0.35 5.7 × 10–2 1.4 × 10–2 3.5 × 10–3 8.8 × 10–4 1.4 × 10–4 3.5 × 10–5

1 17 3.7 4.4 0.59 3.5 0.57 0.14 3.5 × 10–2 8.8 × 10–3 1.4 × 10–3 3.5 × 10–4 8.8 × 10–5

10 170 37 44 5.9 35 5.7 1.4 0.35 8.8 × 10–2 1.4 × 10–2 3.5 × 10–3 8.8 × 10–4

100 1,700 370 440 59 350 57 14 3.5 0.88 0.14 3.5 × 10–2 8.8 × 10–3

1,000 1.7 × 104 3700 4,400 590 3,500 570 140 35 8.8 1.4 0.35 8.8 × 10–2

104 1.7 × 105 3.7 × 104 4.4 × 104 5,900 3.5 × 104 350 88 14 3.5 0.88
105 1.7 × 106 3.7 × 105 4.4 × 105 5.9× 104 3.5 × 105 880 140 35 8.8

Very high 106 1.7 × 107 3.7 × 106 4.4 × 106 5.9 × 105 3.5 × 106 350 88

Reproduced from Baker (1988a/1989) with permission of Professional Engineering Publishing.
a Since water has a density of 1,000 kg/m3 (approximately), the mass �ow rate in kilograms per hour of water may be obtained by multiplying this column by 1,000.
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Appendix 1.A Statistics of Flow Measurement 17

In preparing this second edition, I have added new material to the appendices. 
This is partly because much of the new material goes further into the mathematics or 
into experimental research, but also to accommodate many new references without 
disturbing the �ow of the main text.

Appendix 1.A Statistics of Flow Measurement

1.A.1 Introduction

The engineer’s main needs are to

•	 understand and be able to give a value to the uncertainty of a particular 
measurement;

•	 know how to design a test to provide data of a known uncertainty;
•	 be able to combine measurements, each with its own uncertainty, into an overall 

value; and
•	 determine the uncertainty of an instrument at the end of a traceable ladder of 

measurement.

The international and national documents set the recommended approach for 
�ow metering. Most standard statistics books will provide the essentials (Rice 1988; 
cf. Campion, Burns and Williams 1973, which is often quoted but may not be easy 
to obtain), but good school texts may be more accessible (Crawshaw and Chambers 
1984, Eccles, Green and Porkess 1993a, 1993b). Hayward (1977c) is an extremely 
well-written and elegant little book, which deserves to be updated and reprinted; 
Kinghorn (1982) provides a well-written and useful brief review of the main points; 
and Mattingly (1982) addresses some of the problems concerned with transfer stand-
ards. I would also draw the reader’s attention to an excellent book on experimenta-
tion and uncertainty analysis by Coleman and Steele (1999).

1.A.2 The Normal Distribution

The normal distribution, Figure  1.A.1(a), is also known as the Gaussian distribu-
tion after Carl Friedrich Gauss, who proposed it as a model for measurement errors 
(Rice 1988). The notation used for the normal curve is N(µ, σ2), which is the distri-
bution under the curve

 f x e
x( )= − −( ) 1

2

1
2

2

σ π
µ σ

(1.A.1)

where µ is the mean value of the data, and σ2 is the variance. Alternatively, σ is the 
standard deviation for the whole population. We can simplify the curve (normalise 
it) by putting z = (x − µ)/σ and obtaining [Figure 1.A.1(b)]

 φ
π

z e
z( )= −1

2

1
2

2

 (1.A.2)
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With the form of Equation (1.A.2), the curve does not vary with the size of the 
parameters µ and σ.

What the curve tells us (in relation to instrument measurements) is that the 
statistical chance of an instrument reading giving a value near to the mean µ is 
high, but the farther away the reading is from the mean, the less the chance is of its 
occurring (indicated by the curve decreasing in height the further one moves from 
the mean), and as values of the reading get farther still from µ, so the chance gets 
less and less.

The area under the curve of Equation (1.A.2) [Figure 1.A.1(b)], which reaches 
to in�nity each way, is unity, and this is the probability of the reading lying within this 
curve (obviously). The area under the curve between z = –∞ and some other value 
of z is given by

Φ z e dt
tz( )= −

−∞∫
1

2

1
2

2

π
 (1.A.3)

and is the probability that a reading will lie within that range and is obtained 
numerically and given in Table 1.A.1 in normalised form. For instance, if z = 0.5, 
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Φ (z) = 0.6915, where Φ (z) is the area under the curve from z = –∞ to z = 0.5 in this 
case. So the chance of a reading lying beyond this point is 0.3085, or about 30%.

We shall be interested in the chance that a �owmeter reading will fall between 
certain limits each side of z = 0, the mean value. A chance of 95% is often used and is 
called a 95% con�dence level. This means that 19 times out of 20 the reading will fall 
between the limits. This requires that the central area of the curve [Figure 1.A.1(c)] 
has a value of 0.95, or 0.475 each side of the mean. To obtain z from this value, we 
need to add 0.475 + 0.5 = 0.975, and this gives a value (Table 1.A.l) of z = 1.96. If we 
put this in terms of x, we obtain

x − =µ σ1 96.  (1.A.4)

or the band around the mean value of the reading within which 95% of the read-
ings statistically should fall, is approximately ±2σ, or two standard deviations from 
the mean.

If we are interested, not in the spread of individual readings, but in the spread 
of the mean of small sets of readings, a statistical theorem called the Central Limit 
Theorem provides the answer. If a sample of n readings has a mean value of M, 
then the distribution of means like M is given by N(µ, σ2/n). This is intuitively rea-
sonable because one would expect that the scatter of means of groups of n read-
ings would have a smaller variance, σ2/n, than the readings themselves, as well as a 
smaller standard deviation, σ n . In this discussion, we have skated over the need 
to know the value of the standard deviation of the whole normal population. If we 
do not know σ, then we can approximate it with the value of the standard deviation 
s of the small set of n. So if n ≥ 30, it is usually suf�ciently precise to take σ = s. If n 
< 30, the standard deviation should be taken as σ= −s n n 1.

Table 1.A.l. A selection of values from the normal distribution 
function Φ(z)

z Φ(z) Symmetrical central area under curve

0 0.5000
0.5 0.6915
1.28 0.8997
1.282 0.9000 0.80
1.29 0.9015
1.64 0.9495
1.645 0.9500 0.90
1.65 0.9505
1.96 0.9750 0.95
2.57 0.99492
2.576 0.99500 0.99
2.58 0.99506
3.29 0.99950 0.999
3.30 0.99952

After D. V. Lindley and W. F. Scott, New Cambridge Statistical Tables, 2nd 
ed., Cambridge: Cambridge University Press. Table 4, pp. 34, 35.
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1.A.3 The Student t Distribution

We now need to look at one more subtlety of these estimates. The normal distribu-
tion assumed that we had obtained many readings and could with con�dence know 
that they formed a normal distribution. We can agree that if the error is random, 
then it is a fair assumption that many readings would form a normal distribution. 
However, often we have only a few readings, and these may not be uniformly dis-
tributed within the curve of Figure 1.A.1. Too many may lie outside the 1.96σ limit. 
For this reason, we use the Student t distribution, which allows for small samples on 
the assumption that the distribution, as a whole, is normal. Figure 1.A.2 shows the 
effect of the small number of readings. Because, with a small number of readings, 
one has to be subtracted from all the others to obtain a mean, the number of inde-
pendent values is one less than the number of readings, and so the statisticians say 
that there is one less degree of freedom than the number of readings. In Figure 1.A.2, 
ν is the symbol for the degree of freedom, and ν = n – 1, where n is the number of 
readings. For ν → ∞, the t distribution tends to a normal curve with mean zero and 
variance unity.

Figure 1.A.2 shows clearly the larger area spreading beyond the normal curve in 
which the readings may lie and the reason for the greater uncertainty. The curves are 
used in a similar way to the normal curve, but, as an alternative, Table 1.A.2 provides 
the information we need. If we have 10 readings, say, and so select the value of v = 9 
for the degree of freedom, and if we wish to �nd the limits for a con�dence level of 
95%, we shall need to use the 5% column. We obtain t = 2.262, which we can apply to 
obtain the limits for a 95% con�dence of ±2 262. σ n on the mean values of groups 
of readings, where n is the number of readings in the group. We should note, how-
ever, that the 95% con�dence level from Table 1.A.2 gives a t value that varies little 
from 2.0 if v ≥ 20. The limits for 95% con�dence will then be ±2 0. σ n on the mean 
values of groups of readings.

I have always been puzzled by the name Student, but Eccles et  al. (1993b) 
explained that the originator of this technique was William S. Gosset, born in 1876, 
who used the pseudonym Student.

–4 –3 –2 –1 0 1 2 3 4

1.96 2.23 4.3

ν = 2

ν = 10

ν = ∞

S tandard devi ati ons

Figure 1.A.2. Student’s t distribution curves 
compared with the normal curve. Note 
p = 5% as related to Table 1.A.2 for both 
tails.
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1.A.4 Practical Application of Con�dence Level

The method described in Section 1.4 leads to the following steps (cf. Guide ISO/IEC 
98-3: 2008, Hayward 1977b, 1977c):

 i. Write down systematic uncertainties and derive the standard uncertainty for 
each component.

 ii. Write down random uncertainties and derive the standard uncertainty for each 
component.

 iii. Calculate the combined standard uncertainty for uncorrelated input quantities 
(and refer to UKAS 2012 if correlated).

 iv. Obtain the expanded uncertainty using k = 2 for 95% con�dence.

Taking a simple example, where we need to revert to t, suppose that we obtain 
a series of volumetric �ow readings from a 50 mm ID �owmeter with the �ow set at 
10m3/h:

 10.06, 10.01, 9.95, 9.99, 9.85, 10.02, 10.03, 10.12, 9.90, 9.98. 

The results are plotted in Figure 1.A.3. The mean of these readings is 9.991, and 
the standard deviation is 0.07752. We could thus conclude that the true reading 
of this meter fell in the bracket 9 991 0 0 9 0 0. . . . .± × = ±2 262 7752 9 991 5845, or 
between 9.93 and 10.05 with a 95% con�dence. This fairly brackets the value of 
10 m3/h.

The actual readings should have all fallen within 9.991 ± 0.07752, or 9.91 and 
10.07. In fact, three fell outside this bracket – rather higher than the 1 in 19 implied 
by the 95% con�dence level. We might wish to look more closely at the procedure 

Table 1.A.2. A selection of values from the Student t function

n ν p(%) (Total)

20 10 5 1 0.1

p/2 (%) (per tail)

10 5 2.5 0.5 0.05

2 1 3.078 6.314 12.71 63.66 636.6
3 2 1.886 2.920 4.303 9.925 31.60
5 4 1.533 2.132 2.776 4.604 8.610

10 9 1.383 1.833 2.262 3.250 4.781
20 19 1.328 1.729 2.093 2.861 3.883
30 29 1.311 1.699 2.045 2.756 3.659
61 60 1.296 1.671 2.000 2.660 3.460

121 120 1.289 1.658 1.980 2.617 3.373
∞ ∞ 1.282 1.645 1.960 2.576 3.291

After D. V. Lindley and W. F. Scott, New Cambridge Statistical Tables, 2nd ed., Cambridge: Cambridge 
University Press, Table 10, p. 45.
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for obtaining these results since this suggests a possible problem with the means for 
obtaining the data.

1.A.5 Types of Error

There are essentially four types of error (Kinghorn 1982).

•	 Spurious errors result from obvious failures, obvious in the sense that they can 
be identi�ed and documented. Readings with these should be eliminated.

•	 Random errors cause a variation in the output reading even when the input par-
ameter has not changed.

•	 Constant systematic error, which is also called bias, may vary over the range but 
is constant in time, and could, in principle, be corrected out of the reading.

•	 Variable systematic error (bias) slowly varies with time, usually in a consistent 
direction, and may be caused by wear in bearings of a rotating meter, fatigue in 
components of a vibrating meter, erosion of geometry, etc.

Figure 1.A.4 illustrates these errors. Clearly one of the readings is so far out that 
there must be some explanation other than randomness. It is comforting to know 
that some of the most eminent experimentalists of the past have had cause to discard 
readings in critical experiments!

The scatter around the mean line will provide the basis of the calculation which 
we did in Section 1.A.4. The constant systematic error (bias) can be seen and could 
be built into a �ow computer. The change in the mean value with time shows the 
changing systematic error, which is, in part, the reason for regular recalibration of 
meters.

The repeatability is related to the closeness of readings. If we expect a reading to 
lie within a band given by ±2s, the worst case difference between successive readings 
that fall within this band would be 4s [(2 × 2)s], but a less extreme working value is 
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Figure 1.A.3. A set of �owmeter test readings (after Kinghorn 1982) for a �xed �ow rate.
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obtained from the root of the sum of the squares (or the quadrature; cf. Pythagoras 
and the length of the hypotenuse):

2 2 22 2s s s( ) + ( ) or 2
 

1.A.6 Combination of Uncertainties

If we combine uncertainties due to the nature of a �owmeter’s operating equa-
tion, then we take the following approach. Suppose that the �owmeter has the 
equation

 q x x x xn m
v = 1 2 3 4  (1.A.5)

To obtain the uncertainty in qv, we need the partial derivative of qv with respect to x1,
x2 etc. The required result can be achieved, either by differentiating the equation as 
it stands or by �rst taking logarithms of both sides. We shall skip this and go straight 
to the result:
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(1.A.6)

The problem with this equation is that the arithmetic sum of the uncertainties is 
usually overly pessimistic. It is, therefore, recommended that they be combined in 
quadrature, or by the root-sum-square (rss) method. This leads to the following 
equation:
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 (1.A.7)
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Figure 1.A.4. Diagram to show the various types of error (after Kinghorn 1982).
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There are complications beyond this equation. x2 may appear in the equation 
as x5 + x6. In this case, x5 + x6 will need to be dealt with �rst and will require careful 
consideration as to whether the actual errors in these quantities are combining, can-
celling or random.

1.A.7 Uncertainty Range Bars, Transfer Standards and Youden Analysis

It is sometimes useful to indicate the range of uncertainty estimated from the experi-
mental method in each reading. This can be done by using bars that give uncertainty 
limits on each experimental point. This will then indicate, for a particular �ow rate, 
the likely uncertainty in the reading. This is shown in Figure 1.A.5(a). In some cases 
where �ow rate varies, there may be an uncertainty in both primary �ow rate meas-
urement and reading of second meters. In this case, uncertainty bars are needed in 
both directions, and the rectangle [Figure 1.A.5(b)] will de�ne the limits of the pos-
sible uncertainty. In other words, the maximum uncertainty will have been obtained 
by quadrature.

Mattingly (1982) describes the procedure for checking the validity of differ-
ent �ow measurement laboratories using a Measurement Assurance Program 
(MAP) [or Pro�ciency Testing, as referred to by Mattingly in a draft report on the 
approach of the National Institute of Standards and Technology (NIST)] where a 
good-quality �owmeter acting as a transfer standard is exchanged between labora-
tories. Figure 1.A. 6(a) shows the results of such a cycle of checks; and the bars on 
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Figure  1.A.5. (a) Uncertainty limit bars on 
readings. (b) Uncertainty limit bars on both 
�ow rate and readings.
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Figure 1.A.6. Turbine meter as a transfer standard (from Mattingly 1982; reproduced with the 
author’s permission). (a) Typical turbine meter control chart for meter factor; (b) typical tur-
bine meter control chart for ratio; (c) graphical representation of the Youden plot.
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the experimental points presumably indicate the uncertainty of the turbine meter 
at a particular laboratory. Various people have suggested the use of two �owmeters 
usually in series, but as a possible alternative in parallel, to enhance the accuracy of 
a transfer standard. In this case, the ratio of the signals from the two meters will give 
an indication as to whether there has been a shift in either, and, if there has not been, 
the reading of the meters will provide, with greater con�dence, the accuracy of the 
facility. In Figure 1.A.6(b), Mattingly (1982) gave a typical control chart for the ratio 
of a pair of National Bureau of Standards turbine meters. If the ratio falls outside 
an agreed tolerance band, the cause of the error will need to be found before con�-
dence in the meter readings is restored.

For laboratory comparison, the transfer package with two meters should be run 
at one or two agreed �ow rates. The position of the two �owmeters may be inter-
changed to obtain a second set of data. Using the Youden analysis in Figure 1.A.6(c), 
each laboratory is represented by a single point (1, 2, 3, etc.) resulting from plotting 
the meter factor of the two meters on the two axes. It is apparent that the position 
of the points relates to the type of error. Essentially, if the points lie in quadrants 
I or III, then the meters are reading the same, and the error can be attributed to the 
�ow rig. If the readings are in quadrants II or IV, the �owmeters are not agreeing, 
and the error may be due to a malfunction in one of them. The reader is referred to 
Mattingly’s (1982) article for further details of this procedure (cf. Youden 1959 and 
see Wu and Meng 1996 on the statistics of Youden circles).

https://doi.org/10.1017/CBO9781107054141.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107054141.002



