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Gauss and Eisenstein Sums of Order Twelve

S. Gurak

Abstract. Let g = p" with p an odd prime, and F,; denote the finite field of g elements. Let Tr: F; —
F, be the usual trace map and set , = exp(27i/p). For any positive integer e, define the (modified)

Gauss sum gr(e) by
@)= ¢

x€Fy

Recently, Evans gave an elegant determination of g;(12) in terms of g1(3), g1(4) and g1(6) which re-
solved a sign ambiguity present in a previous evaluation. Here I generalize Evans’ result to give a
complete determination of the sum g,(12).

1 Introduction

Let ¢ = p" with p an odd prime, and F, denote the finite field of g elements. Fix a
generator y for the multiplicative group F; of F;. Then G = A@=1/(r=1 generates
F. Let Tr: F; — F, be the usual trace map and set (,, = exp(27i/m) for any positive
integer m. For a character x of F} define the Gauss sum G,(x) by

(1) G0 =D X

xEF;
which satisfies
() G:(X)G:(x™") = x(=1)p" forx #1

(We will write G(x) for G(x).) For r > 1, the value of G,(x) can be expressed in
terms of the Eisenstein sums

(3) E()= Y xbx)

xGF; JTr x=1

namely (chiefly, Theorem 12.1.1 in [2]),

(4)

G( )7 ET(X)G(X*) le* is nontrivial
YT —pE() i s trivial,

where x* denotes the restriction of x to Fj.
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When x is nontrivial, the Davenport-Hasse Theorem on lifted Gauss sums can
be applied to give a more refined result (chiefly, Theorem 12.1.3 in [2] or see [6]).
Namely, if x has order k > 1 and s the least positive integer such that k|p’ — 1, then
Ilr and x is the lift of some character 1) on F;, (thatis; x = 1 o Ng, /B> where N is

the relative norm map) and for s = r/I,

P! if y* is trivial

(=1)°G(x")/p if v is nontrivial and x* trivial
(—1)1G (™) /G(p™) if x* is nontrivial

E() _
E(¥)

(5)

For any positive integer e, define the modified Gauss sum g, (e) by

(6) glo=> ¢~

x€F,;

(We write g(e) for gi(e).) The modified Gauss sums are intimately related to the
Gauss sums G, () for characters x of order dividing e. Normalizing such characters

x s0 () = ¢l for1 < j <e, onehas

e—1
(7) g(e) =Y G(xi)
i=1

For small values of e, the sums E,(x) and g.(e) are known or easily derived using
(4) and (7). (particularly for e|6 or e|8.) The modern treatment of Eisenstein sums
E,(x) stems for the seminal work of Williams, Hardy and Spearman [6], in which
they have tabulated the values of E, () fore = 2, 3, 4, 6, 8. See also [2], where Berndt,
Evans and Williams give the value of g(e) for e = 2,3,4,6,8,12, and of g.(e) for
e = 2,3, 4, leaving the computation of g,(6) and g,(8) as exercises. Recently, Evans
[3] gave an elegant determination of g(12) in terms of g(3), g(4) and g(6) which
resolved a sign ambiguity present in a previous evaluation. Here I generalize Evans’
result to give a complete determination of the modified Gauss sum g,(12).

2 Eisenstein Sums of Order 12

Before giving the evaluation of the Eisenstein sums E, () for x having order 12, some
comments concerning Jacobi sums are in order. Let x and ¢ be characters of Fy,
where g = p”. The Jacobi sum J,(x, v) is defined by

(8) o) = > xy( —x),

x€F; —{1}

and satisfies

G(xX)G(¥)

) Jr(x; ) = G, (x0)
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and

(10) J0GY) = (=D J(x '~ ) = x(=DJ(x "% x)

if x, ¥ and x¥ are all non-trivial (chiefly Theorem 2.1.4 and 2.1.5 in [2]). (We write
as before J(x, ) for J1(x - v).) The explicit evaluation of J(x, 1) has been tabulated
by Berndt, Evans and Williams [2] for characters x and ¢ of F}, of order dividing 12.
In particular, if ¢ is the normalized character of F;f satisfying ¥ (G) = (1, then the
Jacobi sums J(1)™, x™), with m or n relatively prime to 12, may be determined using
(10) from the values J(¢, ") given below.

For a prime p = 1 (mod 3), write 4p = 2 + 3s% with r; and s; uniquely deter-
mined by the conditions 73 = 1 (mod 3), s; = 0 (mod 3) and 353 = (2G*~V/3 +
1)r3 (mod p). Put Z = indg 2 and T = indg 3. Then the quantity

(11) as +ibsV/3 = (13 +iV/3s3) /2

satisfies a3 +3b3 = p witha; = —1 (mod 3) and 3b; = 2G?~Y/? + 1)a; (mod p).
Similarly, for a prime p = 1 (mod 4), write p = a3 + bj with a4 and by uniquely de-
termined by the conditions a;, = —(—1) (mod 4) and by, = a,G?~Y/* (mod p).
For a prime p =1 (mod 12), set

(12) ap +iby = (=1)7/*%(ay + ib,).

(Note that 3 is a quadratic residue modulo p here so T is even.) If ¢, is the unique
4-th root of unity determined by

(13) S +1 with¢j, = —ay (mod 3) if3|b,
27 ) Liwith ¢ = —iby (mod 3)  if 3|as,

then

(14) ap + ib12 = C%2(614 + 1b4)

from (12) and Lemma 3.5.1 in [2].
In terms of the quantities defined above, we have (chiefly [2, p. 116])

Proposition 1  The values J(1, ") (0 < n < 6) are

1(1/1,1/10) =0

J(W, ) = ¢3¢ # (as + iby)

J(Wp, %) = &12¢; (s +iv/3s3) /2
J(W,¢?) = (=1)?e1a(ay + iby)
J(b, ) = (13 +iV/3s3) /2
J(, %) = (=1)T/%(ay + iby)
J(@h, 4°) = cf, (a4 + iby)
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I am now ready to give the values of the Eisenstein sums E, () of order 12, where
X is the (normalized) character of F satistying x(7) = (12, noting that r is even if
p # 1 (mod 12). The results given for p = 5 (mod 12) agree with the evaluation
of the Eisenstein sums of order 12 for F,. appearing in [2, p. 433].

Theorem 1  The Eisenstein sum E,(x) is explicitly given as follows:

(a) Ifp=1 (mod 12), say p = 12k + 1, then E,(x) = epmN wherem = ay +ib,
and \ = (r3 +iv/3s3)/2, with

1 ifr=0,1,5 (mod 12)
-1 ifr=4,8 (mod 12)
(—1)k ifr=7,11 (mod 12)
(=Dkcy, ifr=3 (mod 12)

€=
—(=1)7/? ifr=6 (mod 12)
c12 ifr=9 (mod 12)
—(=1)T2¢¥ ifr=2 (mod 12)
—(=1D)T2¢  ifr =10 (mod 12),

a=[(r—1)/12],

r/2 ifr =0 (mod 2)
B=4(r—1)/2 ifr=1,3,5 (mod 12)
(r+1)/2 ifr=7,9,11 (mod 12)

and
r/3 ifr=0 (mod 3)
(r—1)/3 ifr=1,4,7 (mod 12)
0=4q(r—2)/3 ifr=2 (mod 12)
(r+1)/3 ifr=5,8,11 (mod 12)
(r+2)/3 ifr=10 (mod 12).

(b) If p =5 (mod 12), say p = 12k + 5, then

E/(x) = —(=DEBAGIp DA ifr =2 (mod 4)
"XE (Cryapraig ifr =0 (mod 4),

where 0 = %1 satisfies = a,by (mod 3).
(o) If p=7 (mod 12), say p = 12k + 7, then

— (= 1)1k D/2p(r=D)/3 \(r+1)/3 ifr =2 (mod 6)
E(x) = { —=(=1)®D/2p(r=D/3\e=D/3 jfr = 4 (mod 6)
(_1)r(k+1)/2pf/3*1/\7/3 ifr=0 (mod 6).
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(d) Ifp =11 (mod 12), say p = 12k + 11, then E,(x) = (=1)k/2p"/2~1,

Proof (a) If p = 12k + 1 then Y is the lift of the character ) of F, satisfying 1/(G) =
G- Inaddition, x(G) = (y"""**" = ¢f, 50 x* = 4", Thus, by (5)

(15) E(y) = {G’(w)/P ifr =0 (mod 12)

(=1)1G(¢)/G@") ifr#0 (mod 12)
since E; (1)) = 1. From Proposition 1 and (9), one finds

G () /GW?) = J(, ) = ch(s “,
G () /GW®) = J(W, ), ¥*) = (—1)PcipmA,
G (W) /G@*) = J(, ) (o, ) J(, ) = 72,
G (W) /GW®) = J(W, ) J(W, ¥)) J(, ) J(p, ") = 7*A?,  and
G°(y) = (—=1)T2/pr A,

Then for r = ' (mod 12) with 0 < r’ < 6, E,(x) equals

(=)' ()G () /G ) = (=1) " (pr® ARG () /Gy

which yields the desired forms for E,(x) when r = 1,2,3,4,5 or 6 (mod 12). For
r=r" (mod 12) with 6 < r’ < 12, it follows from (2) and (15) that

(_l)r—lGH(lZ—r')(w) - (_l)kHr—lG(wlZ—r/)

_ 6 \4)(r—r")/12+41
G ()G PGy PN

Er(X) =

which yields the desired expressions for E,(y) whenr = 7,8,9,10and 11 (mod 12).
Finally, if r = 0 (mod 12) then E,(x) = p~'(pmSAY)/6 = p"/2=17'2 X3 from
(15).

(b) If p = 12k + 5 then x is the lift of the character ¢) of F . satisfying

YT = ) with (G) = ¢ = —1and y(G) = ¢4/~
50 1p* is quadratic and x* = (¢*)"/2. As] = 2 in (5) and G(¥*) = VP>

Ey) - E*()pr2/ ifr =2 (mod 4)
OTNEP@)p AT ifr=0 (mod 4).

Since E, (1)) = —(—1)*i3(as+ib,) here from Proposition 1 in [4] (see also [2, p. 433]),
where § = +1 satisfies 3 = asbs (mod 3), one finds that E,(x) equals

_(_1)kir/2ﬂp(r72)/4ﬂ_r/2
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if r = 2 (mod 4) or (—1)/*p"/4=17"2 if r = 0 (mod 4). This yields (b) since
i"? = (=1)"=2/% whenr = 2 (mod 4).
(c) If p = 12k + 7 then x is the lift of the character ¢) of F . satisfying

VT = G with () = (7 = ¢ and x(G) = ¢V = ¢
s0 1* is cubic and x* = (1v*)"/% in (5). Thus

—(=1)"PGP V) E () ifr=2 (mod 6)
E(x) = { —(=1)"2G2* ()2 () /p ifr=4 (mod 6)
(=126 (W) E 2 () [ p ifr =0 (mod 6).

Setting G; = G(¥*") and G3 = G(1*), and noting that G} = p\, G3 = p) and
E»(p) = (—=1)*X from [1, p. 391] (see also Proposition 1 in [4] where the sign of b3
should be ‘+’), one finds that if r = 2 (mod 6) then

Ar/2— r/2 . — < (r— .
E(x) = —(~1)"*GY? H((=DRN) /2 (= 1) /2 =D/}~ D)/6 )2
= _(_1)r(k+1)/2p(r—2)/3)\(r+1)/3.

Similarly one finds the desired expressions for E,(x) whenr = 0 and 4 (mod 6).
(d) If p =12k + 11 then E,(x) = (—l)kr/zpr/z_1 by Theorem 12.1.6 in [2].

3 Gauss Sums Over F, of Order Twelve

Before giving the evaluation of the modified Gauss sum g,(12), some comments
about g,(e) and the classical Gauss sums G(%)) for 1) of order e = 2,3,4 and 6 are
in order. Assume, for convenience, that ¢ is the (normalized) character satisfying
Y(G) = (.. Fore = 2, G(v») = i*/p where i* = 1 or i accordingas p = 1 or 3
(mod 4). Also,
—(=1)p=Dr/44yr/2 ifr =

(16) g(2) = {‘*( 1)( ,1)(,}1))/4 (r—1)/2 ?fr _ 0 (mod 2

i*(—1)\ p Vp ifr=1 (mod2)

from Theorem 12.10.2 in [2]. For e = 3, the modified Gauss sum g = g(3) satisfies
x®> — 3px — prs = 0 with r; and s3 as before. The correct choice of root for g(3)
was determined by Matthews [5] and is described in [2]. In terms of g(3), one sees
[4, p. 5] that

(7 03 = GY) = %(ng (g—¢"/(iV3))
and
(18) Gs = G(?) = %(g — (" = ¢"/(iV3),
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where the conjugates ¢’ and g’/ of g are given by

¢ = (g2 —2p— %(53 +r3)g>/ss and g¢'' = (ZP_gZ - %(53 - r3)g> /53~

In particular (chiefly, Theorem 12.10.3 in [2]),if p =1 (mod 3),
(19)
—(=1)p" PV, ifr =0 (mod 3)
&) =< —(=1)pr VBV _1y;5+ (g — g WUq—ry3)/2 ifr=1 (mod 3)
—(=1)p"=IB(gVinys — (8" — §)WUus1yy3)/2  ifr =2 (mod 3)

whereas if p =2 (mod 3)
(20) ¢(3) = —2(=1)72p""?0r 0 asris even or odd.

Here V,, and U,, are Lucas sequences given by

(21) Vo=X"+ X', U, = M

1
—=(A
1\/5
for n > 0. For later use we introduce the related sequences

i i 1 _ .
Vi = CON + N Uy = ——= (A" = Ay (n> 0
Js CG C6 I l\/§(<6 C6 ) ( = )

for any integer j, noting that V; , = V,, and U}, = U, when 6|;.
For e = 6 one finds from Lemma 4.1.4 in [2] that

1%

VP

1%

(MG and G = 7

(22) G() = (4 AGs

using the fact that G2 = AG;. For x, the (normalized) character of F; satisfying
x(7) = (s, one computes G,(x) + G,(x°) for p = 1 (mod 6) using (4), (22) and
Theorem 12.6.1 in [2].

Proposition 2 The value of G,(x) + G,(x°) above is given by

— (=D Rpr/O(\F/3 4 NF13) ifr=0 (mod 6),
(D=0 pr=D/0(\Cr=2/3G (1)) + X¥=2BG(¢°))  ifr=1 (mod 6),
—(=1)lr2pr=2/6((2Z\@r=D/3G, 4 (2N —D3Gy) ifr =2 (mod 6),
(—DKr=072 pr=3)/63x /(XT3 4 N2/3) ifr=3 (mod 6),
_(_1)kr/zp(r—4)/6(CéZ>\(2r+1)/SG3 + CgZ}\(ZrH)/SGS) ifT =4 (mod 6),

(_1)k(r71)/2p(r75)/6()\(2r+2)/3G(¢5) + }\(2r+2)/3G(¢)) ifr =5 (mod 6),

where p has the form 6k + 1.
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In view of (7) the above proposition gives the value for g,(6) — g,(3) — g,(2) which
may be conveniently expressed in terms of the sequences V; , and U; ,, using relations
(17), (18) and (22). Namely, if p = 6k + 1 then depending on the value of r modulo
6, g,(6) — g,(3) — g:(2) equals

(23)
—(—1)kr/2pr/6V2r/3 ifr=0
(—1)(kr=1)/2 p(r=1)/6 21;5 (8Vazamnys — (€ — 8 Wazomnys) ifr=1
—(=DF2pr=2/%(gV,yy 50 1y3 + (8" — &)Wz r—1)s3) /2 ifr=2
(_1)k(r71)/2p(f’*3)/6i*\/?VZr/S ifr=3
—(=D)R2pr=2/4(gV,yy ari1ys — (8" — 8)WUazarenys3) /2 ifr=4
(_1)k(f—1)/2p(7+1)/6 2’\/}7 (gV4Z,(2r71)/3 + (g” — g/)U4Z,(2r71)/3> ifr =5.

If p = 6k + 5 then

—(3(—1)’“/2 + 2(—1)’/2) p'/? ifriseven

24 (6) =
(24) 8:(6) {(_1)k(rl)/2p(rl>/2i*\/1_) if r is odd.

using Theorem 12.6.1 in [2].

Fore = 4 with p =1 (mod 4), one has (chiefly, from Theorem 4.2.4 in [2])
(25) Gy = G(p) =e(A+iB) and
(26) Gy =G(W’) = (=1)%e(A - iB),

where A = \/p+ (—1)Zas/p)/2, B = St [(p = (=1)7by /p)/2 and € = 1.
The correct choice of sign for € was determined by Matthews [5] and is described in
[2, p. 162]. In particular (chiefly Theorem 12.4.11in [2]),if p =1 (mod 4)

—pr/“Q,/z ifr=0 (mod 4)
(7)) — a2y — P VHGE TR £ G i =1 (mod 4)
8r 8r (—1)(P+3)/4P(r_2)/4Qr/z\/ﬁ ifr =2 (mod 4)

(—I)Zp(r_3)/4(é4ﬂ'(r+1)/2 + G4ﬁ'(r+l)/2) ifr=3 (mod 4),
whereas if p =3 (mod 4)

—(2(=D)P=3/8 4 (—1)/2) p/2 ifr even
(28) gr(4) =93. ( (r—1)/2 ,(r—1)/2 )P i

i(—1) p VP if r odd.
Here Q, and P, are the Lucas sequences given by
(29) Qu=7"+7"and P, = —i(x" — ") forn>0.

I am ready to consider the case e = 12. For the (normalized) characters y ; of F;

satisfying x;(7) = Cf,, put R = G,(x3) + G,(xo) and S = G,(x1) + G,(x5) + G, (x7) +
G,(x11) so the (modified) Gauss sum

(30) g:(12) =S+ R+ g (6).
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For p = 12k+1 and 1) the (normalized) character of F} of order 12 satisfying ¥ (G) =
(12, I explicitly evaluate G(1/7) next for ged(j, 12) = 1.

Proposition 3  For 1) as above with p = 12k + 1, one has
G(Y) = e2G3Gy /7 G()") = c12G3Gy /[
GW’) = enGs Gy /7 GW") = c1nG3Gy/m
where ™ = a4 + iby with G; and Gy as in (17) and (25).
Proof In view of (2) it suffices to verify the expressions for G(¢)!'!) and G(1)°). Using
(9) and (10),

i, GEWAGW®) GGy .
B T R S T
by Proposition 1. Also from (9), G(¥))G(¥°) = G(°®)J(, ) = (=1)T?7/p so

RN s, A A A oA AL
G(ZZ)S) = % = C12G3G4(—1)Z\/1>)/(Gi) = C12G3G4/7T by (26)

For the situation at hand, one finds an elegant expression for S in terms of R =
8 (4) — g:(2), g-(3) and g,(2).

Proposition 4  For 1) as in Proposition 3 with p = 12k + 1, one has

1,8 (3)R/g:(2) if r even or 3|by

k
wg,(3)P, /R = — =8P ier 5dd and 3lay,
@ (Q+22)

where w = +1 satisfies w = (—1)"*V/2*kp, (mod 3).

Proof Forr =0 (mod 12),onefindsS = _p(Er(Xl)+Er(XS)+Er(X7)+Er(X11)) =
_pr/12(7.[_r/2>\r/3+7rr/2}\r/3_1_,ﬁ_r/2)\r/3+7-rr/2}\r/3) _ _pr/S()\r/S_'_}\r/S)(ﬂr/Z+7-rr/2)/pr/4
or

(31) PSS = —g,(3)Q,

from Theorem 1 and (19).
Forr £ 0 (mod 12), one finds

S= Er(Xl)G(wr) + Er(XS)G(wsr) + Er(X7)G(1/J7V) + Er(Xll)G(wllr)

with G(1)/) given in Proposition 3, (17) or (22). In each case one finds a factorization
for S. To illustrate for odd r, consider the case r = 1 (mod 12). Then

S = pr=V/(e, g =V N=DBG G, /7 + cpn T VRATVAEEGG, 7
+ e V2ACTUBGGy 1+ 7 TV RAYB GGy /)
_ /2 DD N\CDSBG G, TPADBEG G,
+ e AV2ACDBG G, 4 o7 VRADAE,G)

_ p(rfl)/3()\(r71)/3G3 + }\(rfl)/3GA3) . (51271'(”1)/2(?4 + 6127?(’“)/2G4)/p(”3)/4
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or
(32) pUIAS = ¢,(3)(Em V26, + e VG,).

The formula (32) is seen to hold for any r = 1 (mod 4). Similarly, for r = 3
(mod 4) one finds

(33) pUVAS = g 3) (=1 (cram " V2Gy + e 7V EGY).

Forr =4 or 8 (mod 12), formula (31) is found to hold. Finally, for r = 2 (mod 4)
one finds that

(34) P PYPS = (=1)"7g(3)Q 2.
To illustrate formula (34) when r = 2 (mod 12), one finds

S — _(_I)T/Zp(r72)/12(<6ZZﬂ,r/2)\(r72)/3G(w2) " ngﬂr/z;\(r72>/3c(¢1o)
+ Cézzﬁr/zA(r—z)/sG(wz) + C;}Z,ﬁ_r/Z}\(r—Z)/?)G(wlO))
_ _(_1)T/Zp(r—2)/12(<6ZZ>\(r—2)/3G6 + ng;\(r—z)/aGA6)(7Tr/z + #7172
_ _(_I)T/Zp(r714)/12\/1—)(/\(r+1)/3é3 " }\(r+1)/3G3)Qr/2

or = (—1)72g,(3)Q,/»/(p"=?/*,/p) from (17)~(19) and (22).

Comparing the expressions (31)—(34) just derived with (16), (19) and (27) for
£:(2), g:(3) and R, one readily obtains the desired formula for S in case r is even or
3|by in view of the fact ¢, = (—1)T/2*k,

It remains to establish the formula for S when r is odd and 3|a4, in which case
¢, = =i satisfies ;o = —iby (mod 3) from (13). Forr =1 (mod 4),

GGy + 072G,
= prm Vg, (n VG, — 7RG (VG + 70TV2Gy) /R
= P(ril)/4f_12(7TrGA4G4 - ﬁrG4G4 + P(ril)/z(ﬂ'éi - ﬁGi)) /R
= P(7+3)/4512(—1)Z(ﬂj - ’ﬁj)/R

= (—D)Zic,p/*P, /R

from (27) with (—=1)%i¢;; = —(—1)*b; (mod 3). This yields the desired form for S
when r = 1 (mod 4) and its alternatives since R> equals

PIVR(=D2G, ¢ 7-D/26G,)2 = p(’—“/z(w’_lGi +2pr VGG, + 7 1G2)

— (—1)kp(r71)/2(ﬂ'r\/f)+2p(r+1)/2 +ﬁ_r\/1>))
= (—1)'g(2)(Q +28:(2))
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from (25)—(27). For r =3 (mod 4),
(—1)k(C127T(r_1)/2G4 + f]zﬁ(r_l)/zé4)
— p(r73)/4clz(ﬂ_(r71)/2G4 _ 7T_(rfl)/ZC";zt)(7_1_(r+1)/2GA4 + ﬁ(r+1)/2G4)/R
= p(r73)/4C12(7TrG4GA4 — ﬁrG4GA4 + p(ril)/z(ﬁ'Gi — ﬂ'GAi))
_ (_1)kp(r+1)/4clz(,n_r . ’/’_Tr)/R _ (—1)kiC12p(r+1)/4P,/R

again from (25)—(27), with (—Dkic;, = (=1)*by (mod 3). This yields the desired
form for Swhen r = 3 (mod 4) and its alternative since

R = (-D'g,(2)(Q, +2g(2))
in this case, too.
I completely determine g,(12) next without any sign ambiguities.

Theorem 2 The value g,(12) is explicitly given by
(i) Ifp=12k+1then

2(6) + R( 1+ c{zg,(3)/gr(2)) if r even or 3|b,
g(12) = (—Dfwg3)P, | .
gr(6)+R(1+gr(2)(Qr+2gr(2))) ifr odd and 3|ay.
(ii) Ifp = 12k + 5 then
—5p"2 — p4Q, n (2(—=1)7* + 1) if 4|r
&(12) = S —p2 + (=1)kpr=2/4 /p(Q, 1o + (—1)=D/28P, ) if2]|r
g(4) ifr odd.

(iii) Ifp = 12k + 7 then

(12) = g(6)+ 2(_1)r(k+1)/2<gr(3) - Pr/z) ifr even
v &(6) if r odd.

(iv) Ifp = 12k+ 11 then g,(12) = —(6(—1)¥/2 + 5(—1)"2) p/? or g,(2) according
as r is even or odd.

Proof From (30) one knows that g,(12) = g,(6) + R+ S and from [2, p. 421] that
(35) g,(12) = g,(d), whered = gcd(12,p — 1).

Thus statement (i) follows immediately from Proposition 4, and for p # 1 (mod 12)
results (ii)—(iv) hold when r is odd due to (35). It remains to verify (ii)—(iv) when r
is even.
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If p = 12k + 5 then x*(G) = Cfg_”/("‘” = (5. Forr=0 (mod 4),
S=—p(E(x) + E(xs) + E(x7) + E(xn)) = —2(=1)7*p"2(n"? + 7772)
= 2(=1)"*p"?Q,

from Theorem 1, R = —pr/4Q,/2 from (27) and g,(6) = —5p’/2 from (24). Whereas
forr =2 (mod 4),R = (—l)kp(’_z)/“Qr/z\/;_) from (27),

S = VP(E(x1) + E(xs) + E.(x7) + E:(x11))
_ _2(_1)k+(r72)/4ﬂp(r72)/4\/I_)(iﬂ_r/Z _ iﬁ_r/Z)
_ 2(_1)k+(r—2)/4ﬂprp(r—2)/4\/§

from Theorem 1 and g,(6) = — p’/ 2 from (24). In either case, the expression for
£-(12) in (ii) follows.
If p = 12k + 7 then x*(G) = (}} and one finds from Theorem 1 that

_2(_1)r(k+1)/2p(r—2)/3()\(r+1)/SG3 + ;\(r+1)/3G3) ifr=2 (mod 6)
S= 1 —2(=1) D2 pr=DB\C=DBG 4 N=D/3G)  ifr = 4 (mod 6)
—2(—1)" D2 pr3(N\1/3 4 N1/3) ifr=0 (mod 6)

or equivalently that
(36) S =2(—1)"12g (3)

from (19) when r is even. Also R = g,(4) — g.(2) = 2(—1)'("‘“)/21)*/2 from (16) and
(28). This yields the expression for g,(12) in (iii).

If p = 12k + 11 then S = —4(—1)"/2p"/2, R = —2(—1)"/2p’/? from Theorem 1,
(16) and (28), and g,(6) = —5(—1)"/2p"/? from (24). Thus g,(12) = —(6(—1)"’/2 +
5(—1)’/2) p"/? in (iv) when r is even.

The proof of the theorem is now complete.

References

[1]  B.Berndtand R. Evans, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer. Illinois J. Math. (3)
23(1979), 374-437.

[2]  B.Berndt, R. Evans and K. S. Williams, Gauss and Jacobi Sums. Wiley, New York, (1997).

[3]  R.Evans, Gauss sums of orders six and twelve. to appear.

(4] S.Gurak, Period polynomials for F > of fixed small degree. In: Finite Fields and Applications, (eds.,
D. Jungnickel and H. Niederreiter), Springer, 2000, 196-207.

[5]  C.R.Matthews, Gauss sums and elliptic functions I, II. Invent. Math. 52(1979), 163-185; 54(1979),
23-52.

[6] K.S.Williams, K. Hardy and B. K. Spearman, Explicit evaluation of certain Eisenstein sums. In:
Number Theory, (ed., R. A. Mollin), de Gruyter, Berlin, 1990, 553—626.

Department of Mathematics
University of San Diego

San Diego, California 92110
USA

https://doi.org/10.4153/CMB-2003-036-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-036-9

