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Abstract. Three issues, which are to my opinion the main obstacles in
modeling the variability of Miras and Long Period Variables (LPVs), are
presented and discussed:

a. The initial static models - Possible influences of the evolutionary
details, the helium shell flashes and the use of the core-mass luminosity
relation.

b. Modeling the convective energy transport - The mixing-length
theory, its limitations and validity. First attempts for two-dimensional
calculations of the convective flow in AGB stars.

c. The surface conditions - Introduction to the main difficulties and
uncertainties. What should be done in the future.

Finally, the ancient problem, concerning the mode of pulsation, in
Miras, is discussed using the recent radii observations confronted with
the results of our full non-linear calculations.

1. Major problems in modeling Long Period Variables

1.1. The initial static configurations (Wagenhuber & Tuchman 1996)

This problem which, in practice, is considered of a secondary importance, might
be crucial in the understanding of the general features of Miras or Long Period
Variables (LPVs) as a group. All previous initial models for LPVs have been
created using the, well known, core-mass luminosity (CML) relation (Paczyniski
1971; Becker & Iben 1980). The real situation, however, is quite different. One
should always remember that this core-mass luminosity (CML) relation was built
for the evolutionary phase during which the star passes through the successive
helium shell flashes. This relation was created to fit the luminosity around the
peaks of the quiescent hydrogen-burning phase, between flashes.

The photospheric luminosity of a 1.5M(, as a function of time is presented
in Fig. 1 (Wagenhuber & Tuchman 1996) for most of the relevant AGB phase.
The core-mass (labeled M¢) as well as the luminosity, according to the CML
relation (L(M,), dotted line), are presented as well.

At this point we are not interested in the very rapid flash phase (of about
1000 years), even though, it might be very important as a trigger for mass loss
(e.g. the creation of multiple shell planetary nebulae, Tuchman & Barkat 1980).
Concentrating upon the slow inter-flash phases (each of about 10° years), the
following conclusions should be drawn from Fig. 1:
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Figure 1.  The photospheric luminosity evolution (L) of a 1.5M, star
along the AGB. The dotted line (L(M.)) presents the commonly used
evolution assuming the CML relation. Also shown is the evolution of
the core mass M,

a. The CML relation holds only for about 20% of the time. Elsewhere, in
general, the real luminosity is lower than the one dictated by the CML relation.

b. The same luminosity can be obtained for a relatively large range of core
masses (e.g. a luminosity of 2000L, is obtained in all inter-flash periods).

c. In the first few flashes the luminosity is much below the values given by
the CML relation.

d. The stellar luminosity might change by a factor of 2 or even more during
one inter-flash period.

All these facts should be considered in any attempt to confront theoretical
models of these stars with observations.

The stellar periods, like its luminosity, are not monotonically increasing as
might be predicted from the CML relation (Fig. 2). As it can be seen from
Fig. 2, the linear periods might change by almost a factor of three during one
inter-flash time interval.

The first apparent conclusion caused by the differences between the real
evolution and the one dictated by the CML relation (Fig. 2) is the relatively
fast period changes. In our specific example, the period of the fundamental mode
in a 1.5M(, star is increasing about 0.3 days per 100 years, to be compared with
0.02 days according to the CML relation. Much faster increase is expected for
more massive cores (> 0.8M(;), with progenitors of about 4M;. In these cases
a change of about 3 days per 100 years is expected (can it be confirmed with
observations?).

A second conclusion is that stars might switch to a lower mode of pulsation
while passing through the low luminosity range of the inter-flash periods. Stars
located at these phases will probably appear as semi-regulars, in addition to the
pre-flashes period.

A last important conclusion, derived from the real period evolution, is the
possibility for a star with highly evolved core-mass (above 0.8M()) to have rel-
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Figure 2. The period evolution, fundamental mode (Fp) and first
overtone (P)), calculated for the real luminosity sequence (full line)
and for the one which assumes the CML relation (dotted line) as was
presented in Fig. 1.

atively low luminosity, just starting an inter-flash period. This situation might
explain the possibility to observe stars, with features characteristic for evolved
stars, also in a region commonly believed to be occupied with low mass cores
(low luminosity), as for example carbon stars (Lattanzio 1989).

1.2. Modeling the convection in LPVs (Asida & Tuchman 1997)

An accurate calculation of the convective energy transport in envelopes of AGB
stars is one of the crucial demands in any attempt for modeling these stars. Its
importance is caused by the fact that the convective region in these stars is very
efficient and large (in mass and radius).

The method commonly used to calculate the convective flux in AGB stars
is the well-known mixing length theory (MLT, Bohm-Vitense 1958) and its vari-
ants (Baker & Gough 1979). Four major defects are embedded in the MLT. The
assumptions that the convective flux is: local, instantaneous, characterized by
one-size eddies, and uses an unknown length-scale (the mixing-length parame-
ter). Many attempts have been carried out in order to release one or more of
these assumptions (e.g. Ulrich 1976; Stellingwerf 1982; Xiong, Cheng & Deng
1997; Canuto & Mazzitelli 1991). The success was always found to be only par-
tial and in most cases the corrections were very complicated and difficult to be
used. At this point a multidimensional (3D or at least 2D) nonlinear simulation
was naturally required.

Previous two-dimensional (2D) calculations have already been performed
for RR-Lyrae stars (Deupree 1977, 1985). However, the convection zone in
these stars is narrow and its efficiency is relatively low, so that the convection
is a small perturbation to the radiative structure. In these cases, the needed
relaxation time, to follow the star thermal changes, from an initial radiative
structure to the convective one, is therefore short enough to be traced by a two-
dimensional calculation. This privilege does not exist in envelopes of AGB stars.
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Figure 3. A typical velocity field of the convective flow in a 2D cal-
culation

This problem, as will be explained below, practically eliminates the possibility
for a simple direct calculation of the final 2D convective profile starting from an
arbitrary initial configuration.

Two main time-scales are ruling the thermal relaxation of the stellar enve-
lope at the AGB phase: the convective time-scale, i.e. the time required to reach
a steady turbulence flow, which equals to several convective turnovers; and the
thermal time-scale, i.e. the time needed for achieving thermal equlibirium.

The convective time-scale, for a typical AGB envelope, (the height of a
convective cell divided by the mean convective velocity) is a few days. The
thermal time-scale, on the other hand, is more than 50 years.

A typical time-step in a 2D code is about 100 seconds (mainly imposed by
limitations of the relative energy changes). Each time-step needs about 1 second
CPU time. Thus, for a typical AGB envelope, the convective flow evolves in a few
CPU hours while the thermal relaxation takes about one year of CPU time. A
full 2D simulation for an AGB envelope is therefore unrealistic with the present
computational capabilities.

This difficulty was partially solved using the following procedure (Asida &
Tuchman 1997): two dimensional calculations were followed only for about one
year - long enough for the establishment of the convective flow, but still far
below the thermal time-scale needed for achieving full energy balance. However,
this period of time was long enough to estimate, for each calculated model,
its deviation from an accurate energy balance. Thus, using different initial
envelope models (created with different values for the mixing-length parameter),
we could approach the desired steady configuration. There is no way to ensure
the convergence of this procedure, simply because it is based on the assumption
that one of the initial models (integrated using the MLT) is indeed very close to
the final 2D structure. However, if it does converge, it will obviously lead to the
correct profile.

The typical structure of the turbulence flow is presented in Fig. 3.
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Figure 4. Outer luminosities in the 2D calculations for the different
values of A (0.,0.5,1.0,1.5 and 2.0) used in calculating the initial profile
(upper curve for minimal A, etc.)

Fig. 4 shows the surface luminosity evolution in a star of 1.2M, star,
with a core of 0.96 M), where a luminosity of 200L¢) was assumed to enter into
the envelope at its bottom. The surface luminosity evolution is shown for five
different initial models which were integrated using the mixing-length theory
with five different scale-lengths: 0, 0.5, 1., 1.5 and 2 times the local pressure
scale height. Since the luminosity that enters the envelope was constantly equal
to 200L), it is clear from Fig. 4, that in those cases where the mixing-length
parameter (A) differs from ~ 1 the envelope is far from thermal equilibrium.

In those cases, where A is smaller than 1, the outer luminosity is found to be
much above the luminosity that goes into the envelope (200L)) and the envelope
is loosing energy. In these cases one can recognize a relatively fast decrease in
the outer luminosity (Fig. 4). For the models created initially with A larger
than 1, the surface luminosity is below 200L) and the envelope is accumulating
energy. In these cases the change in the surface luminosity is too moderate to
be recognized during a period of one year.

The similarity between the integrated 1D model, with A = 1, and the ex-
plicit 2D simulation, is not restricted only to the outer luminosity but also to
its detailed structure. Fig. 5 presents, as an example, the local energy flux in
both models.

More details about the 2D calculations, methods and assumptions, can be
found in Asida & Tuchman (1997).

The main conclusions that should be drawn from these preliminary 2D
calculations are the following:

a. A static 1D model, integrated using the mixing-length theory for calcu-
lating the convective energy-flux, was found to be very similar with the exact
2D simulation. There is no proof that this result can be generalized to any
convective envelope of an AGB star. Much more work is needed to clarify this
point.
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Figure 5. The detailed radiative luminosity, as a function of mass,
for an AGB envelope, presented for the 2D converged model, compared
with the best 1D integrated profile (A = 1)(the convective luminosity=
200L ) —radiative flux)

b. The value of the mixing-length parameter ( A) which was found to provide
the best fit with the 2D calculations is one pressure scale-height. However, it
should be emphasized that according to more recent 2D calculations, with much
better space resolution, the best value for A is found to be close to 1.5 rather
than 1.

It should be pointed that the results presented above have been obtained
just for one model, at the beginning of the AGB phase. It is not clear, yet,
whether the compatibility with the mixing length theory, on the whole, and the
specific value fitted for the mixing-length parameter, are even nearly the same
for other envelopes as well. This question should be clarified in the future.

The major drawback of the procedure we used for obtaining the final 2D
configuration is that it can not be extended to dynamical calculations. Therefore,
non-linear 2D calculations of the variability in Miras are still beyond our practical
horizon.

1.3. The surface conditions

Unfortunately the modeling of pulsating LPVs is divided, for a long time, into
the dynamical simulations of the envelope, on one side, and detailed atmospheric
calculations on the other. This, unnatural, separation leads to the absence of
adequate outer surface conditions for dynamical envelope simulations, and at
the same time to a lack of reliable inner boundary conditions for the atmosphere
calculations. In both cases synthetic prescriptions are used. For the envelope
calculations one assumes a schematic dependence of the external pressure upon
the surface radius, while, for the atmosphere calculations, a rigid piston moving
with a dictated, time-dependent, velocity is assumed.

To my opinion, it is time for a combined (envelope + atmosphere) calcu-
lation. For the beginning, it might be sufficient to use very basic and simple
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methods, just in order to provide a reasonable evaluation for the mutual influ-
ence of these two adjacent media.

It is hard to guess the results of these combined calculations, but it is
not unconceivable that it will lead to some considerable changes in the present
theoretical estimates for the pulsating amplitude, spectra, mass loss and even
for the non-linear periods of Miras and Long Period Variables.

2. On the mode of pulsation in Miras - Non-linear calculations con-
fronted with radii observations (Ya’ari & Tuchman 1998)

In spite of the huge difference (a factor of two and more), between the linear
values of the fundamental mode and the first overtone in Miras, a clear identi-
fication of the dominant pulsation mode, in these stars, is still uncertain. The
problem is partially caused by observational uncertainties, as well as by our
relative ignorance in estimating the total mass of the observed variables. How-
ever, the main contribution is in modeling the convective energy transport. The
major ambiguity, in our models, is the exact value used as a scale-length in
the mixing-length method (Bohm-Vitense 1958) for calculating the convective
flux. For example, it turns out that the linear period of the fundamental mode,
calculated using the mixing length theory with one pressure scale-height as the
mixing-length parameter (), coincides with the first overtone period obtained
for the same model but with A = 1.6 pressure scale-height. This theoretical
ambiguity can be resolved if a reasonable estimate of the surface radii of these
Mira stars could be observationally determined. The reason is that unlike the
period-luminosity relation, which has been shown to be very sensitive to the de-
tails in modeling the convective flux, the period-radius relation is found to be
almost independent of the specific way convection is being treated. The new
direct measurements of Miras radii (Haniff, Scholz & Tuthill 1995; van Belle et
al. 1996; van Leeuwen et al. 1997) were very promising as a final decisive way
to determine the actual mode of pulsation in these stars. Indeed, according to
most of the investigations published since then, the first overtone is strongly
favored as the dominant mode of pulsation (i.e. Haniff, Scholz & Tuthill 1995;
Feast 1996; van Leeuwen et al. 1997).

To our opinion, all previous attempts confronting radii observations of Miras
with the theoretical predictions, in order to determine their pulsation mode, have
neglected two crucial facts that might invert their conclusions:

a. The observed data has always been compared to the theoretical linear
values. Whereas the nonlinear periods, as well as the nonlinear radii, are found
to be very different (Ya’ari & Tuchman 1996). Changes up to 30% should be
expected.

b. All previous studies have ignored the variability in the surface radius
caused by the stellar pulsation. Actually, it was assumed to be very small
(less than 10%, Haniff, Scholz & Tuthill 1995). The exact phase at which the
observation is performed was therefore ignored.

The incorrectness of this assumption is easily shown using the observed
velocities in Mira variables; if AV is the observed velocity amplitude, the cor-
responding change in the surface radius, during one period (P), can roughly
(assuming a linear approximation) be estimated to (1/2)AVP. For a typi-
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Figure 6.  Effective observed radii, as a function of period, accumu-
lated from the following sources: van Leeuwen, Feast, Whitelock &
Yudin 1997 (circles), Feast 1996 (diamonds), Haniff, Scholz & Tuthill
1995 (triangles) and van Belle, Dyck, Benson & Lacasse 1996 (squares).
The pulsational variability in the surface effective radii for the four cho-
sen calculated models (labeled A-D) is shown as well

cal Mira AV = 20 km/sec (Hinkle 1978; Hinkle, Scharlach & Hall 1984) and
P = 300 days. Thus, the whole change in the surface radius, during one pe-
riod, is about 400 solar radii. This is obviously a crude estimate but it is good
enough to demonstrate the fact that the radius variability can not be ignored
when comparing the observations with theory.

In the following, a detailed comparison between the observed radii of Mira
variables and the theoretical non-linear calculated values, taking into account
the two remarks above, is described.

Observed radii of Mira variables have been compiled from four different
sources (van Leeuwen et al. 1997; Feast 1996; Haniff, Scholz & Tuthill 1995; van
Belle et al. 1996). This data is presented in Fig. 6. Four theoretical models (with
masses between 1.2 and 1.5 M(;)) covering the relevant period range, have been
selected, to be compared with this observed data. Their pulsational variability
in the surface effective radii, minimum to maximum, are also marked in Fig. 6.

As can be seen from Fig. 6 most of the observed points are located between
the boundaries connecting the minimum and maximum theoretical nonlinear
radii of the Mira models pulsating in their fundamental mode. Only few observed
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radii are located above, but within the observational error of the theoretical
range.

We may therefore conclude, in contrast to previous works, that the radii
observations of Miras are compatible with the theoretical non-linear models pul-
sating in the fundamental mode.
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The audience during one of the lively discussions
(here with Thomas Blécker)
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