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Characters of Depth-Zero,
Supercuspidal Representations
of the Rank-2 Symplectic Group
Clifton Cunningham

Abstract. This paper expresses the character of certain depth-zero supercuspidal representations of the rank-2
symplectic group as the Fourier transform of a finite linear combination of regular elliptic orbital integrals—
an expression which is ideally suited for the study of the stability of those characters. Building on work of
F. Murnaghan, our proof involves Lusztig’s Generalised Springer Correspondence in a fundamental way, and
also makes use of some results on elliptic orbital integrals proved elsewhere by the author using Moy-Prasad
filtrations of p-adic Lie algebras. Two applications of the main result are considered toward the end of the
paper.
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Introduction

This paper describes a simple linear relationship between two families of distributions:
characters of admissible representations of a p-adic group G and the Fourier transform of
orbital integrals on its Lie algebra g. When π is an admissible representation of G, it de-
fines a trace-class operator π on the space C∞c (G) of locally constant, compactly supported
function on G; in this case, the trace Tr π of π is defined, and if we letΘπ be the locally inte-
grable function representing Tr π, thenΘπ is locally constant on the set of regular elements
in G, called the character of π. On the other hand, each X in g defines a linear functional
on the space C∞c (g) of locally constant, compactly supported functions on g; if we write
IG(X, φ) for the orbital integral of φ at X, and µ̂X for the locally integrable function rep-
resenting the Fourier transform of the distribution IG(X, ·), then µ̂X is locally constant on
the set of regular elements in g.
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Although received wisdom states that these two families of distributions are closely re-
lated, explicit information relating characters and orbital integrals is rare. The local charac-
ter expansion is a striking example of a such a relationship; it shows that the space of distri-
butions spanned by germs of characters of admissible representations is finite-dimensional
by expressing each such character (composed with the exponential map) as a linear com-
bination of the Fourier transform of nilpotent orbital integrals. However, the coefficients
appearing in this expansion are notoriously difficult to calculate for reasons that are not
likely to be resolved soon. And even in the few cases when it is known how to calculate
these coefficients in principle, it is still difficult to answer questions about stability of the
character from this expression.

Here, we produce a relationship similar to the local character expansion, but different
in some rather important respects. Specifically, when G is the rank-2 p-adic symplectic
group, we find a finite set of regular elliptic orbits in g with representatives E0 such that
that, for certain depth-zero supercuspidal representations π of G,

Θπ(expY ) =
∑

X∈E0

eX(π)µ̂X(Y ),

for all Y in a large subset V of the topologically nilpotent elements in g, defined in 5.5. The
coefficients in this expansion, which we dub the elliptic character expansion and present as
Proposition 6.4, are easily calculated integers. Our proof of the elliptic character expansion
is constructive: we produce the finite set E0 and then calculate the integers eX(π) for each
X in E0, for certain supercuspidal representations π. In some sense, the orbits represented
by E0 are naturally associated to depth-zero representations.

The fact that the coefficients eX(π) are easily calculated distinguishes the elliptic charac-
ter expansion from the local character expansion. More importantly, the fact that we are
dealing with regular elliptic orbits means that J.-L. Waldspurger’s recent results on stabil-
ity on the Fourier transform in [Wa.2] can be used to study the stability of the character.
This line of thought is briefly explored in Section 7, where we show that certain sums of
characters are stable on the set of topologically unipotent elements in G.

More often than not, the elliptic character expansion requires only one non-zero coef-
ficient, in which case we say that the representation is Kirillov, borrowing nomenclature
from F. Murnaghan who studied such representations extensively in [Mu]. In Section 3 of
this paper we study Kirillov representations using Springer’s Hypothesis [K] together with
Waldspurger’s connection between certain anisotropic tori defined over a finite field and
unramified tori defined over a p-adic field [Wa.1]. Surprisingly, even though Section 3
actually carries over to any classical group, none of these results help with the elliptic char-
acter expansion for non-Kirillov representations. Sections 4 and 5 introduce ideas which,
roughly speaking, take the role played by Waldspurger [Wa.1] in Section 3: Section 4 is
inspired by Spaltenstein’s treatment [Sp] of Kazhdan and Lusztig’s notion of induction of
nilpotent orbits using affine Springer fibres [KL]; Section 5 introduces a truncation func-
tor which is inspired by the so-called open sets also found in [KL]. In Section 6, Lusztig’s
Generalised Springer Correspondence [L.2] is added to the brew—its importance cannot
be understated for the present work, neither theoretically nor computationally.

As remarked above, most depth-zero supercuspidal representations are Kirillov. How-
ever, as germs, most of these representations have identical characters. In fact, the charac-
ters of depth-zero Kirillov representations account for a minority of germs of characters of
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depth-zero representations. For example, from the 16 germs of charactersΘπ produced as
π ranges over the set of all depth-zero supercuspidal representations of the rank-2 symplec-
tic group, only 5 come from Kirillov representations. This phenomenon is not special to
low-rank groups—if we consider higher rank symplectic groups, the characters of Kirillov
representations account for a minority of the germs of characters of all depth-zero super-
cuspidal representations. For this reason, we believe that any comprehensive theory of the
characters of supercuspidal representations must include non-Kirillov representations in a
significant way. It is for these representations that the elliptic character expansion has been
designed.
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0 Notation and Preliminaries

Let F be a p-adic field with ring of integers O, prime ideal p and residue field Fq. Pick a
generator � for p in O and a non-square unit ε in O.

Henceforth, G will denote Sp4 as an algebraic group over F and g will denote its Lie
algebra. We will represent G as elements g of GL4 such that gt Jg = J, where J has anti-
diagonal entries 1, −1, 1, −1 and 0 elsewhere. Following standard convention, we write G
for the group of F-rational points of G, and g for the F-rational points of g.

The reader is referred to [MP] for a definition of the subsets Gx,r and Gx,r+ of G, where
x is any point in the building for G and r is a real number. We write Mx for Gx,0/Gx,0+ and
ρx : Gx → Mx for the quotient map. We also recall the definition of the lattices gx,r and
gx,r+ in g. We write mx,r for gx,r/gx,r+ and ρx,r : gx,r → mx,r for the quotient map. There is
a natural action of Mx on mx,r . For any function ϕ : mx,r → C, let ϕx,r denote the function
on g defined as ϕ ◦ ρx,r on gx,r and equal to 0 elsewhere. We call ϕx,r the function produced
by inflation from ϕ.

Let Funr be an unramified closure of F. All the notions of the preceding paragraph make
sense for G(Funr). In particular, if x is any point in the building for G(Funr), then the quo-
tient group Mx := G(Funr)x,0/G(Funr)x,0+ is an algebraic group defined over the algebraic
closure of Fq; moreover, Mx = Mx(Fq). Likewise, mx,r := g(Funr)x,r/g(Funr)x,r+ is defined
over the algebraic closure of Fq; moreover, mx,r = mx,r(Fq). The group Mx acts naturally
on mx,r.

To every point x in the building for G there is a function dx : greg → R defined as follows:
if X ∈ g is regular, then dx(X) is the largest real number such that X ∈ gx,dx(X). We refer to
this as the depth of X with respect to x.

Let {a1, a2} be a basis for the root system for G (with respect to the torus of diagonal ele-
ments in G) such that the Borel subgroup of G determined by this basis is upper triangular.
Let α1 be the affine root (a1, 0), let α2 be the affine root (a2, 0) and let α0 = (−d, 1), where
d is the dominant root. The Iwahori subgroup I of G determined by the basis {α0, α1, α2}
for the affine root system for G (with respect to the torus of diagonal elements in G), is
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called the standard Iwahori subgroup. Vertices in the chamber of the building for G cor-
responding to I are called standard vertices and will be denoted x0, x1 and x2 so as to
correspond to the roots above and also to the vertices in the Dynkin diagram for G (this
imposes a condition on a1 and a2). Thus, x0 and x2 are special vertices and Gx0 and Gx2 are
hyperspecial maximal parahoric subgroups of G.

When T is a tamely ramified torus in G, the building for T may be identified with a
subset of the building for G; in this case, we refer to that subset as “the building for T in G”.
The reader is referred to [AD] for details.

Let ΨF be an additive character of F which is trivial on p but not trivial on O. Let ΨFq

be an additive character of Fq such thatΨF(a) = ΨFq (ā) for all a ∈ O, where ā is the image
of a under the linear map O → Fq with kernel p. Let 〈·, ·〉 : g × g → F be a Killing form
on g and define Ψg(·, ·) : g × g → C by Ψg(X,Y ) := ΨF(〈X,Y 〉). The Fourier transform

on the space C∞c (g) of locally constant, compactly supported functions is defined by φ̂ of
φ ∈ C∞c (g) where

φ̂(X) :=

∫
g

φ(Y )Ψg(X,Y ) dY.

For each regular elliptic X in g equip the centraliser GX(F) of X in G with a normalised
Haar measure and write

IG(X, φ) :=

∫
GX\G

φ
(
Ad(g)−1X

)
dX(g),

for the orbital integral of φ ∈ C∞c (g) at X, where dX(g) is the quotient measure. (By
‘normalised’ we mean unit total measure.) As in the introduction, write µ̂X for the the
locally integrable function on g representing the Fourier transform of the linear functional

IG(X, ·), as defined by φ �→ IG(X, φ̂).
In this paper, we suppose that p is large. Among other consequences of this assumption,

it follows that the exponential map is a diffeomorphism from the set gtn of topologically
nilpotent elements in g onto the set Gtu of topologically unipotent elements of G. Let
C∞c (Gtu) be the set of functions in C∞c (G) supported by topologically unipotent elements
in G. Likewise, let C∞c (gtn) be the set of functions in C∞c (g) supported by topologically
nilpotent elements in g.

The only non-standard definition in this section in the following: for any two functions
φ1 and φ2 in C∞c (g), let

DG(φ1, φ2) :=

∫
G

∫
g

φ1(Y )φ2

(
Ad(g)Y

)
dY dg.

This definition is purely formal since the integral is often divergent.

1 Depth-Zero Representations and Their Characters

Definition 1.1 A representation π of G is depth-zero if there is a point x in the building for
G such that such that the space of vectors fixed by Gx,0+ is non-trivial.
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Definition 1.2 When σ is a representation of Mx, define

πx(σ) := cIndG
Gx

(σ ◦ ρx).

Proposition 1.3 An irreducible supercuspidal representation of G is depth-zero if and only if
it is equivalent to πx(σ), where x is a vertex in the building for G and where σ is an irreducible
cuspidal representation of Mx.

Proof For a proof in a notation close to ours, the reader is referred to Section 6.8 of [MP],
from which 1.3 follows.

The simple inducing data for a depth-zero supercuspidal representation guaranteed by
Proposition 1.3 makes this class of representations easy to study—they are all equivalent to
the representations πx(σ), where σ is an irreducible cuspidal representation of Mx, and x
is a standard vertex, so x = x0, x1 or x2. In fact, this paper is concerned with the character
Θπx(σ) on a large subset of the topologically unipotent elements in G, which makes for a
further simplification, as the rest of this section shows.

Proposition 1.4 Let σ be an irreducible cuspidal representation of Mx. Then, for every f ∈
C∞c (G),

Tr πx(σ)( f ) =

∫
G

∫
Gx

(Tr σ ◦ ρx)(y) f (g yg−1) dy dg,

where the measure of Gx with respect to dy and dg is 1.

Proof This is the standard Frobenius form for the character of an induced representation,
so, with apologies, the proof is omitted.

The next result shows that if f is supported by topologically unipotent elements, then
the behavior of Tr σ off the unipotent set in Mx is irrelevant to the distribution. Besides
simplifying the inducing data required to describe depth-zero supercuspidal representa-
tions even further, this also moves the whole problem to the Lie algebra g.

Proposition 1.5 Let σ be an irreducible cuspidal representation of Mx and define ϕ :

mx,0 → C by ϕ(Y) := (Tr σ ◦ exp)(Y) on m
nilp
x,0 and 0 elsewhere. Then,

Tr πx(σ)( f ) = DG(ϕx,0, φ),

where f is any element of C∞c (Gtu) and φ : g→ C is defined by φ(Y ) := ( f ◦ exp)(Y ) on gtn

and 0 elsewhere.

Remark The measures on G and g appearing in the definition of DG are specified in the
proof.

Proof In light of Proposition 1.4, it is enough to show that

DG(ϕx,0, φ) =

∫
G

∫
Gx

(Tr σ ◦ ρx)(y) f (g yg−1) dy dg,(1.5.1)
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with the measures as in 1.4. Fix g in G and y in Gx and consider the integrand of the right-
hand side of (1.5.1). Since the support of f is contained in Gtu, we may assume without loss
of generality that g yg−1 is topologically unipotent, or equivalently, that y is topologically
unipotent. Recall that the exponential map defines a diffeomorphism from gtn to Gtu (since
p is large). From the definition of Gx and gx,0 we see that this restricts to a diffeomorphism
from gtn ∩ gx,0 to Gtu ∩ Gx. Thus,∫

Gx

(Tr σ ◦ ρx)(y) f (g yg−1) dy =

∫
Gtu∩Gx

(Tr σ ◦ ρx)(y) f (g yg−1) dy

=

∫
gtn∩gx,0

(Tr σ ◦ ρx)(expY ) f (g exp Y g−1) dY.

(Note the condition on dY .) We make use of the following elementary statements which
follow from the definitions above: ρx(exp Y ) = exp ρx,0(Y ); f (g expY g−1) = φ

(
Ad(g)Y

)
for all Y ∈ gtn; and Tr σ(exp Y) = ϕ(Y) for all Y ∈ m

nilp
x,0 . Thus,∫

gtn∩gx,0

(Tr σ ◦ ρx)(exp Y ) f (g exp Y g−1) dY =

∫
g

ϕx,0(Y )φ
(

Ad(g)Y
)

dY,

and therefore∫
G

∫
Gx

(Tr σ ◦ ρx)(y) f (g yg−1) dy dg =

∫
G

∫
g

ϕx,0(Y )φ
(

Ad(g)Y
)

dY.

Since the integral on the right-hand side is DG(ϕx,0, φ), this proves the proposition.

Definition 1.6 Let C0(Mx) denote the set of characters of irreducible cuspidal represen-
tations of Mx and let C0(Muni p

x ) denote the image of C0(Mx) under the map induced by
restriction from Mx to Muni p

x .

According to Proposition 1.5, the character of any depth-zero, supercuspidal represen-
tation π evaluated f ∈ C∞c (Gtu) is of the form DG(ϕx,0, φ), with x = x0, x1 or x2, and

whereϕ◦ log is an element of C0(Muni p
x ), and φ := f ◦ exp is an element of C∞c (gtn). Using

Tables 8.1 and 8.2 we find there are 16 characters of irreducible, depth-zero, supercuspidal
representations on Gtu: 5 characters are induced from Gx0 , 6 characters are induced from
Gx1 and 5 characters are induced from Gx2 .

2 The Fourier Transform of Elliptic Orbital Integrals

The material in this section, together with the proofs omitted here, will be found in [Cu].
Throughout this section, x denotes an arbitrary point in the building for G and r denotes
any real number.

We introduce a Fourier transform sending functions on mx,r to functions on mx,−r and
then relate that notion to the usual Fourier transform on g by way of inflation of functions,
as defined in Section 0.
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Definition 2.1 Let C(mx,r) be the space of Mx-invariant functions on mx,r . (That is,
ϕ : mx,r → C is an element of C(mx,r) if ϕ(m · X) = ϕ(X), for all m ∈ Mx and X ∈ mx,r .)
Let Ψx,r be a pairing of mx,r with mx,−r defined by Ψx,r(X,Y) := Ψg(X,Y ), where X is any
element of ρ−1

x,r (X) and Y is any element of ρ−1
x,−r(Y). We define a map from C(mx,r) to

C(mx,−r) by ϕ �→ ϕ̂, where

ϕ̂(Y) :=
∑

Z∈mx,r

Ψx,r(Z,Y)ϕ(Z).

In fact, some work is required to see that Definition 2.1 makes sense. That lacuna is
filled by the following proposition.

Proposition 2.2 Fix X ∈ mx,r and Y ∈ mx,−r. Then

Ψg(X1,Y1) = Ψg(X2,Y2),

for all X1,X2 ∈ ρ−1
x,r (X) and for all Y1,Y2 ∈ ρ

−1
x,−r(Y).

Proof See [Cu]. The work necessary to prove this simple result may also be found in [AD].

The following result, closely related to 2.2, shows that the Fourier transform (properly
interpreted) commutes with inflation, up to a multiple.

Proposition 2.3 For all ϕ ∈ C(mx,r), ϕ̂x,r = vol(gx,r+ ) ϕ̂x,−r.

Proof This follows easily from 2.1 and 2.2, as presented in [Cu]. (Here, vol refers to the
Haar measure on Y.)

Definition 2.4 For any X ∈ mx,r(X), let OMx (X) be the orbit of X under the action of Mx

on mx,r. Define ψX ∈ C(mx,r) by

ψX(Y) =

{
|OMx (X)|−1, if Y ∈ OMx (X);

0, otherwise.

Proposition 2.5 Let T be a maximal torus in G, defined over F. Suppose that X ∈ Lie T is
regular and that x is a point in the building for T in G. Set r = dx(X) and X = ρx,r(X). Then,
for all Y in the G-orbit of gx,−r,

(ψ̂X)x,−r(Y ) =

∫
Gx

Ψg

(
Ad(h)X,Y

)
dh.

Here, the measure on Gx has been normalised.
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Proof This is the main result of [Cu], where it is proved in the context of any connected
reductive group G.

Remark It is important to notice that the left-hand side depends only on X ∈ mx,r and
therefore that the value taken by the right-hand side would remain unaltered if X were
replaced by any regular, elliptic X ′ in ρ−1

x,r (X). That fact provides a very useful characteri-
sation of the “mesh size” of the distribution µ̂X on the G-orbit of gx,r, as described in [Cu],
by way of the following result.

Proposition 2.6 Let T be an elliptic maximal torus in G, defined over F. Let X, x, r and X be
as in Proposition 2.5. If φ ∈ C∞c (g) is supported by the G-orbit of gx,r, then

IG(X, φ̂) = DG

(
(ψ̂X)x,−r, φ

)
.

Proof This follows easily from 2.5 and is proved in [Cu]. Recall from Section 0 that the
measure of the centraliser of X in G appearing in the definition of IG(X, φ) has been nor-
malised.

3 The Characters of Uniform Depth-Zero Representations

This section presents F. Murnaghan’s formula, as found in [Mu], giving a Kirillov theory for
certain depth-zero representations of G. Throughout this section, x denotes any standard
vertex of the building for G.

Definition 3.1 A representation of Mx is Deligne-Lusztig if it is equivalent to RMx
T,θ, for some

maximal torus T defined over Fq, and for some character θ of T(Fq). (Necessarily, T must
be anisotropic over Fq and θ must be in general position.)

Proposition 3.2 Suppose that RMx
Tw,θ

is an irreducible, cuspidal representation and let π =

πx(RMx
Tw ,θ

). There is a regular elliptic Xπ such that, for all topologically nilpotent Y in g,

Θπ(expY ) = q− rank Mx |Mx| |Tw(Fq)|−1µ̂Xπ (Y ).

Remark As an equality of germs, this is a special case of the main result in [Mu], proved
using Springer’s Hypothesis and L. Morris’ lattice chains. We briefly re-cast her work here
using 2.5, 2.6 and [Wa.1], in part to fit the proof into the framework required for Section 6,
but also to show that the equality holds for all topologically nilpotent Y in g.

Proof Using [Wa.1], find the conjugacy class of elliptic unramified maximal tori in G as-
sociated to Tw. Straightforward calculations show that the building for any such torus is
conjugate to {x}; choose one such torus so that its building in G is {x} and let h be its Lie
algebra. Let Xw be any strongly regular element from Lie Tw(Fq) and let Xπ be any regu-
lar element in the ρ−1

x,0 (Xw) ∩ h. (From [Wa.1] we see that this intersection is non-empty.
Notice also that dx(Xπ) = 0 and ρx,0(Xπ) = Xw.) By 2.6,

IG(Xπ, φ̂) = DG

(
(ψ̂Xw )x,0, φ

)
.(3.2.1)
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for all φ ∈ C∞c
(
OG(gx)

)
. By Springer’s Hypothesis [K],

|Mx| |Tw(Fq)|−1ψ̂Xw (Y) = qrank(Mx)QMx
Tw

(exp Y),

for all nilpotent Y in mx,0. Thus,

q− rank(Mx)|Mx| |Tw(Fq)|−1DG

(
(ψ̂Xw )x,0, φ

)
= DG

(
(QMx

Tw
◦ exp)x,0, φ

)
.(3.2.2)

Now suppose that φ is supported by the G-orbit of gx,0. Notice that this set contains gtn. Let
f be defined by f ◦ exp = φ. (Recall that p is large, so these conditions uniquely define f .)
By 1.4,

DG

(
(QMx

T ◦ exp)x,0, φ
)
= Tr π( f ),(3.2.3)

where the measure on G appearing in the definition of DG has been normalised as in 1.4.
Putting equations (3.2.1), (3.2.2) and (3.2.3) together gives

Tr π( f ) = q− rank(Mx)|Mx| |Tw(Fq)|−1IG(Xπ, φ̂).(3.2.4)

Since φ is supported by gtn, equation (3.2.4) may be re-written as

Θπ(expY ) = q− rank(Mx)|Mx| |Tw(Fq)|−1µ̂Xπ (Y ),

for all Y ∈ gtn.

Definition 3.3 Suppose that X ∈ mx,0 is strongly regular, semi-simple, and that its cen-
traliser in Mx is an anisotropic torus. Let o denote the Mx-orbit of X in mx,0. We say that
Lie T is induced from o if T is in the conjugacy class of elliptic unramified maximal tori in
G associated to the centraliser of X in Mx by [Wa.1], and if the building for T is in the stan-
dard chamber. We also say that an adjoint orbit O in g is induced from an adjoint orbit ϑ
in o(Fq) if the intersection of O with ρ−1

x (ϑ)∩ Lie T is not empty, where T is induced from
o. We choose a representative for each orbit induced from a strongly regular, semi-simple,
anisotropic orbit defined over Fq, and gather these to form the set Ess

x,0.

Remark The elements in Ess
x,0 are not uniquely defined by this definition, although the or-

bits they represent are. The reader is referred to Tables 8.3 and 8.4 for an explicit description
of one realisation of Ess

x,0.

Definition 3.4 Let C(Muni p
x ) denote the space of Mx-invariant functions with unipotent

support. A function in C(Muni p
x ) is uniform if it is a linear combination of Green’s polyno-

mials QMx
Tw

, where Tw indicates the split torus twisted by the element w from the Weyl group

for Mx. The vector space of uniform functions is denoted C(Muni p
x )uni f .

Remark A basis for C(Muni p
x )uni f is the set of all QMx

Tw
, where w runs over a set of represen-

tatives for the conjugacy classes in the Weyl group for Mx. We will use that basis in 3.6.
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Proposition 3.5 If σ is an irreducible cuspidal representation of Mx and if the restriction of
Tr σ to Muni p

x is uniform, then,

Θπx(σ)(expY ) =
∑

Xw∈Ess
x,0

eXw

(
πx(σ)

)
µ̂X� (Y ),

for all for all topologically nilpotent Y in g, where

eXw

(
πx(σ)

)
= q− rank Mx cw|Mx| |Tw(Fq)|−1,

where cw is given by (3.5.1).

Proof Define ϕ : mx,0 → C by ϕ(Y) = Tr σ(exp Y) for all nilpotent Y in mx,0 and 0 else-

where. Since the restriction of Tr σ to Muni p
x is uniform, there are uniquely defined complex

numbers cw such that

ϕ(Y) =
∑

w∈(W )

cwQMx
Tw

(exp Y),(3.5.1)

for all nilpotent Y in mx,0, where the summation is over a set of representatives for conju-
gacy classes in W . Since σ is cuspidal, cw is zero unless w is elliptic in W , in which case Tw is
anisotropic. From Springer’s Hypothesis [K] recall that for any anisotropic maximal torus
Tw there is a strongly regular Xw in Lie Tw(Fq) such that

QMx
Tw

(exp Y) = q− rank Mx |Mx| |Tw(Fq)|−1ψ̂Xw (Y),(3.5.2)

for all nilpotent Y in mx,0. As in the proof of Proposition 3.2 we find that

DG

(
(ψ̂Xw )x,0, φ

)
= IG(Xw, φ̂),(3.5.3)

where the orbit of Xw in g is induced from the orbit of Xw in mx,0. By equation (3.5.1),

ϕ(Y) = q− rank Mx |Mx|
∑

w∈(W )

cw|Tw(Fq)|−1ψ̂Xw (Y).(3.5.4)

Without worrying about convergence for the moment, it follows from (3.5.4) that

DG(ϕx,0, φ) = q− rank Mx |Mx|
∑

w∈(W )

cw|Tw(Fq)|−1DG

(
(ψ̂Xw )x,0, φ

)
,(3.5.5)

where φ is any element of C∞c (gtn). By equation (3.5.3),

DG(ϕx, φ) = q− rank Mx |Mx|
∑

w∈(W )

cw|Tw(Fq)|−1IG(Xw, φ̂),(3.5.6)

which shows that any concerns concerning convergence of the terms in (3.5.5) were un-
founded. By Proposition 1.5 and equation (3.5.6), it follows that
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Tr πx(σ)( f ) = q− rank Mx |Mx|
∑

w∈(W )

cw|Tw(Fq)|−1IG(Xw, φ̂),(3.5.7)

where f ∈ C∞c (Gtu) is defined by f (expY ) = φ(Y ) for all Y ∈ gtn and 0 elsewhere. Since
Ess

x,0 is precisely the set of all Xw as w runs over a set of representatives for the conjugacy
classes of elliptic elements in the Weyl group for Mx, equation (3.5.7) may be re-written as

Tr πx(σ)( f ) =
∑

Xw∈Ess
x,0

q− rank Mx cw|Mx| |Tw(Fq)|−1IG(Xw, φ̂),

which proves the proposition.

Remark The coefficients eXw

(
πx(σ)

)
are listed in the first three rows of Tables 8.9 and 8.10,

when x is a standard special vertex.

4 Nilpotent Orbits and Induced Cartan Subalgebras

In Section 3 we saw that certain regular elliptic orbits in g are naturally associated to
strongly regular semi-simple anisotropic orbits in mx,0, using ideas from [Wa.1]. In this
section, we see that certain elliptic orbits in g are naturally associated to nilpotent orbits
in mx,0, using [KL] and [Sp]. Throughout this section, x denotes a standard vertex in the
building for G.

All the claims made by the fourth paragraph of Section 0 hold when Funr is replaced
by any non-Archimedean field. For example, if we were to replace Funr with formal power
series C((�)) in a variable � with coefficients in C, then Mx (respectively, mx,0) would be
an algebraic group (respectively, a Lie algebra) defined over C. In this context, Kazhdan
and Lusztig [KL] used affine Springer fibres above topologically nilpotent elements in mx,0

to define, for each vertex in the building for G
(

C((�))
)

, a map from nilpotent orbits in
mx,0 to conjugacy classes of Cartan subalgebras in G

(
C((�))

)
. This section is motivated

by Spaltenstein’s combinatorial description of that map, as it applies to symplectic groups
defined over any complete discrete valuation field with algebraically closed residue field,
such as Funr .

Definition 4.1 Let o be a nilpotent orbit in mx,0. We say that an elliptic Cartan h is induced
from o if h(Funr) is the Lie algebra of a maximal torus associated to the centraliser of X in
Mx by [Sp], and if the building of that torus is a subset of the standard chamber in the
building for G. We also say that an orbit O in g is induced from an adjoint orbit ϑ in o(Fq)
if the intersection of O with ρ−1

x,0 (ϑ)∩h is not empty, where h is induced from o. We choose
a representative for each orbit induced from a nilpotent orbit in mx,0 and gather these to

form the set E
nilp
x,0 . The set of elements in E

nilp
x,0 which are induced from nilpotent orbits not

appearing in the (classical) Springer correspondence is denoted E
nilp
x,0

′
.

Remark Although the elements in E
nilp
x,0 are not uniquely defined by this definition, al-

though the orbits they represent are. The reader is referred to Tables 8.5 and 8.6 for an

explicit description of one realisation of E
nilp
x,0

′
.
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Definition 4.2 For any subset U of m
nilp
x,0 , define

Ex,0(U ) := E
nilp
x,0 ∩ ρ

−1
x,0 (U ).

Definition 4.3 For each nilpotent orbit o in mx,0, the building for the centraliser of X in G
is one and the same point for every X in Ex,0

(
o(Fq)

)
. Since this point is naturally associated

to o and x, we denote this point by yo,x. Likewise, for each nilpotent orbit o in mx,0, the
number dyo,x (X) is the same for every X in Ex,0

(
o(Fq)

)
. Since this number is naturally

associated to o and x, we call it so,x.

Remark For each standard vertex x, we have defined a map sending a nilpotent orbit o to
the point yo,x, so,s in the building for G crossed with R; Tables 8.7 and 8.8 record the values
of that map when x is special. Moreover, this map does not depend on the choices we made

in the definition of E
nilp
x,0 . In fact this map admits a simple combinatorial description, for

any connected reductive group, which can be used to define E
nilp
x,0 without ambiguity, and

also to characterise the “open subsets” of [KL], without reference to affine Springer fibres
or to the Newton polygons of [Sp]. That perspective will be explored elsewhere.

5 Some Technical Results

This section carries most of the weight of this paper. With apologies to the reader, we use
musical notation to define what is essentially a truncation functor. For each function φ in
C∞c (gtn) we define a new function φ� in C∞c (gtn). The main result is Proposition 5.8, which
compares the Fourier transform of φ� with the Fourier transform of φ, when φ is produced
by inflation from the characteristic function of a local system on mx,0. In this section, x is
a special standard vertex in the building for G.

Definition 5.1 To simplify notation somewhat, when o is a nilpotent orbit it mx,0 and
when X is induced from o, we write y(X) for yo,x, s(X) for so,x and X̄ for ρy(X),s(X)(X). For
each φ ∈ C∞c (gtn), define φ� ∈ C∞c (gtn) by

φ�(Y ) =
∑

X∈E(m
nilp
x,0 )

φ(X) vol(gy(X),s(X)+ )−1(ψX̄)y(X),s(X)(Y ).

Here, vol refers to the Haar measure on Y.

Remark The fact that each X ∈ E
nilp
x,0 is induced from exactly one nilpotent orbit in mx,0

follows, with a small amount of work, from the definition of E
nilp
x,0 . Also, recall the definition

of ψX̄ ∈ C(m
nilp
x,0 ) from 2.4.

Definition 5.3 Let N(mnilp
x,0 ) denote the set of Mx-equivariant, irreducible l-adic étale local

systems on m
nilp
x,0 , where l is a fixed prime not dividing p. Also, let N(mnilp

x,0 )uni f denote

the set of Mx-equivariant, irreducible local systems on m
nilp
x,0 which appear in the (classical)
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Springer correspondence. Finally, let N(mnilp
x,0 ) ′ denote the complement of N(mnilp

x,0 )uni f in

N(mnilp
x,0 ).

Remark In the case at hand, there are exactly two such local systems Lreg and Lmin in in

N(mnilp
x,0 ) ′: Lmax is the non-constant local system supported by the nilpotent orbit omax

corresponding to the symplectic partition (4), and Lmin is the non-constant local system
supported by the nilpotent orbit omin corresponding to the symplectic partition (2, 12).

Definition 5.4 For each L in N(mnilp
x,0 ), let [L] denote the characteristic function of L with

respect to an Fq-rational structure chosen according to Section 25 of [L], composed with a
fixed embedding Ql ↪→ C.

Definition 5.5 Let V be the set of all topologically nilpotent regular semi-simple Y in g

such that the affine Springer fibre above Y contains a line of type α0, as defined in [KL].

Proposition 5.6 If ϕ is the characteristic function of a local system in N(mnilp
x,0 ) ′, then

supp(ϕ̂�x,0) ∩ V ⊆ gx,0.

Proof We will suppose that Y ∈ V is not an element of gx,0 and show that ϕ̂�x,0(Y ) �= 0
leads to a contradiction. We suppose that x is the special vertex x0—the argument given
below adapts easily to the case of any other special standard vertex.

Let ϕ be the characteristic function of L, and let o be the support of L. Set y = yo,x

and s = so,s. From Definition 5.5 and values in Table 8.7, it can be seen that V is a subset of
OG(gy,−s), in each case considered below. Then, from Proposition 2.3 and Definitions 4.3
and 5.1, it follows that

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)(ψ̂X̄)y,−s(Y ),(5.6.1)

where X̄ = ρy,s(X). Since we have assumed that ϕ̂�x,0(Y ) �= 0, from (5.6.1) it follows that Y
must be an element of gy,−s. Let Y = ρy,−s(Y ); then

ψ̂X̄(Y) = |My|
−1
∑

m∈My

Ψy,s(m · X̄,Y).(5.6.2)

Below, we describe this sum for each local system in N(mnilp
x,0 ) ′, and then use that descrip-

tion to evaluate ϕ̂�x,0(Y ).
Suppose that ϕ is the characteristic function of Lmax. The support of ϕ is the support of

Lmax, which is o(Fq), where o is the nilpotent orbit in mx,0 corresponding to the symplectic
partition (4). (Note that o(Fq) is a union of two nilpotent orbits in mx,0.) Let y = yo,x and
let s = so,x. From Table 8.5 we find eight elements in Ex,0

(
o(Fq)

)
:

Xi, j
(4) =


0 x 0 0
0 0 xεi 0
0 0 0 x

x�ε j 0 0 0

 + X ′,(5.6.3)
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where i = 0, 1 and j = 0, 1, 2 or 3. Without loss of generality, set x = 1. Note that in
the case at hand, ϕx(Xi, j

(4)) = sign(εi) = (−1)i . Recall y from Table 8.7; the filtration of g

associated to y is the period-4 lattice chain

· · · ⊃ gy,0 ⊃ gy, 1
4
⊃ gy, 1

2
⊃ gy, 3

4
⊃ gy,1 = �gy,0 ⊃ · · ·

where

gy,0 =




O O O O

p O O O

p p O O

p p p O


 , gy, 1

4
=




p O O O

p p O O

p p p O

p p p p


 ,

gy, 1
2
=




p p O O

p p p O

p p p p

p2 p p p


 , gy, 3

4
=




p p p O

p p p p

p2 p p p

p2 p2 p p


 .

(From this and (5.6.3) we see that s = 1
4 ; cf. Table 8.7.) Write

My =




t1 0 0 0
0 t2 0 0
0 0 t−1

2 0
0 0 0 t−1

1


 and Y =


0 0 0 �−1u
v1 0 0 0
0 v2 0 0
0 0 v1 0

 ,(5.6.4)

where t1, t2, v1, v2 and u are elements of Fq. From the fact that Y ∈ V and Y �= gx,0 it

follows that u �= 0 and v1v2 = 0. If X = Xi, j
(4) is any element in Ex,0

(
o(Fq)

)
(cf. (5.6.3)),

then

ψ̂X̄(Y) = (q− 1)−2
∑

t1,t2∈Fq
×

ΨFq (2v1t1t−1
2 + εiv2t2

2 + ε jut2
1 ).(5.6.5)

To evaluate ϕ̂�x,0(Y ), consider the following cases separately: i) v1 �= 0 and v2 = 0; ii) v1 =
0 and v2 �= 0.

i) Suppose v1 �= 0 and v2 = 0. Then, combining (5.6.1) and (5.6.1) gives

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)ψ̂X̄(Y)

= (q− 1)−2
∑

i, j

(−1)i
∑

t1,t2∈Fq
×

ΨFq (2v1t1t−1
2 + ε jut2

1 )

= (q− 1)−2
∑
i=0,1

(−1)i
∑
j,t1,t2

ΨFq (2v1t1t−1
2 + ε jut2

1 )

= 0.

This is the desired contradiction for this case.
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ii) Suppose v1 = 0 and v2 �= 0. From the description of the lattice chain above, it is
clear that Y must lie in

M :=


O O O �−1O∗

p O O O

p O∗ O O

p p p O

 ∩ g,

which is itself contained in the maximal parahoric gx1,0. Since Y is topologically nilpotent,
its image under ρx1,0 must be nilpotent. Since ρx1,0(Y ) is regular nilpotent, there must be
some k ∈ Gx1 such that Ad(k)Y is actually an element of

M ′ :=


p O O �−1O∗

p p p O

p O∗ p O

p2 p p p

 ∩ g.

Now we see that there is a w ∈W such that Ad(nw) sends M ′ to

M ′′ :=


p O O O

p p O∗ O

p p p O

�O∗ p p p

 ∩ g,

which is a subset of the standard Iwahori subalgebra of g. Let Y ′ ′ denote the image of Y
under Ad(nwk). Use the line bundles from Section 4 of [KL] to see that the affine Springer
fibre above Y ′ ′ does not contain the projective line P1

α0
, in the notation of [KL]. Thus, the

affine Springer fibre above Y does not contain this line, which contradict the assumption
that Y ∈ V (cf. 5.5). This is the desired contradiction in this case.

Next, suppose that ϕ is the characteristic function of Lmin. The support of ϕ is the
support of Lmin, which is o(Fq), where o is the nilpotent orbit in mx,0 corresponding to
the symplectic partition (2, 12). (Note that o(Fq) is a union of two nilpotent orbits in mx,0.)
From Table 8.5 we find four elements in Ex,0

(
o(Fq)

)
:

Xi, j
(2,12) =


0 0 0 xεi

0 0 y 0
0 yε 0 0

x�ε j 0 0 0

 + X ′,(5.6.6)

where i = 0, 1 and j = 0, 1 and y ∈ �O× is arbitrary. Without loss of generality, set x = 1.
Note that in the case at hand, ϕx(Xi, j

(2,12)) = sign(εi) = (−1)i . Recall y from Table 8.7; the
filtration of g associated to y is the period-4 lattice chain

· · · ⊃ gy,0 ⊃ gy, 1
4
⊃ gy, 1

2
⊃ gy, 3

4
⊃ gy,1 = �gy,0 ⊃ · · ·
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where

gy,0 =




O O O O

p O O O

p O O O

p p p O


 , gy, 1

4
=




p O O O

p p p O

p p p O

p p p p


 ,

gy, 1
2
=




p p p O

p p p p

p p p p

p p p p


 , gy, 3

4
=




p p p p

p p p p

p p p p

p2 p p p


 .

(From this and (5.6.6) it is clear that so,x =
1
2 ; cf. Table 8.7.) Write

My =




t 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 t−1


 and Y =


0 0 0 �−1u
0 0 0 0
0 0 0 0
v 0 0 0

 ,(5.6.7)

where t , u and v are elements of Fq. (The inner, starred matrix is an element of SL2(Fq).)
From the fact that Y ∈ V and Y is not an element of gx,0, it follows that u �= 0 and v = 0.

If X = Xi, j
(2,12) is any element in Ex,0

(
o(Fq)

)
(cf. (5.6.6)), then

ψ̂X̄(Y) = (q− 1)−1
∑

t∈Fq
×

(−1)iΨFq (εivt2 + ε jut−2).(5.6.8)

Combining (5.6.1) and (5.6.8) we have

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)ψ̂X̄(Y)

= (q− 1)−1
∑

i, j=0,1

(−1)i
∑

t∈Fq
×

ΨFq (ε jut−2)

= (q− 1)−1
∑
i=0,1

(−1)i
∑
j=0,1

∑
t∈Fq

×

ΨFq (ε j ut−2)

= 0.

This is the desired contradiction for this case.

Definition 5.7 For each φ ∈ C∞c (gtn), define φ� ∈ C∞c (gtn) by

φ� =

∫
Gx

φ�
(

Ad(k)Y
)

dk.

(Recall the definition of φ� from 5.1.)

Proposition 5.8 If ϕ is the characteristic function of a local system in N(mnilp
x,0 ) ′, then, for all

Y ∈ V,

ϕ̂x,0(Y ) = | supp ϕ| |Ex,0(supp ϕ)|−1 ϕ̂�x,0(Y ).
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Proof Begin with an elementary observation: for any φ ∈ C∞c (gtn) and any Z ∈ g,

φ̂�(Z) =

∫
Gy

φ̂�
(
Ad(k)Z

)
dk.(5.8.1)

Now suppose that φ = ϕx and also that Y ∈ V. Let ϕ be the characteristic function of L,
and let o be the support of L, so the support of ϕ is o(Fq). Set y = yo,x and s = so,x as in
the proof of Proposition 5.6. Observe that ϕx,0(X) = 0, unless X ∈ Ex,0

(
o(Fq)

)
. By (5.9.1)

and (5.6.1),

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)

∫
Gx

(ψ̂X̄)y,−s

(
Ad(k)Y

)
.(5.8.2)

Using Proposition 2.5,

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)

∫
Gx

∫
Gy

Ψg

(
Ad(h)X,Ad(k)Y

)
dh dk.(5.8.3)

From Table 8.6 we find that Gy is a subgroup of Gx. Thus, (5.8.3) becomes

ϕ̂�x,0(Y ) =
∑

X∈Ex,0(o(Fq))

ϕx,0(X)

∫
Gx

Ψg

(
Ad(k)X,Y

)
dk.(5.8.4)

(Recall that the measure on Gy was normalised.) From 5.6, recall that the intersection of
V with the support of the Fourier transform of ϕ�x,0 is contained in gx,0. Since Gx stabilises

gx,0, it follows from the definition of ϕ�x,0 that the intersection of V with the support of

the Fourier transform of ϕ�x,0 is contained in gx,0. To prove the proposition it is sufficient,

therefore, to study the Fourier transform of ϕ�x,0 on gx,0. Henceforth, Y ∈ gx,0. Thus,∫
Gx

Ψg

(
Ad(k)X,Y

)
dk = |Mx|

−1
∑

m∈Mx

Ψmx,0

(
m · ρx,0(X),Y

)
,(5.8.5)

where Y := ρx,0(Y ). Note that the right-hand side of equation (5.8.5) is ψ̂ρx,0(X)(Y). Now,
the map fibres of the map ρx,0 : Ex,0

(
o(Fq)

)
→ o(Fq) have cardinality |Ex,0

(
o(Fq)

)
|/2

(simply because o(Fq) contains two adjoint orbits of equal size), so re-write ϕx,0(X) as
ϕ
(
ρx,0(X)

)
and combine (5.8.4) and (5.8.5) to see

ϕ̂�x,0(Y ) = |Ex,0

(
o(Fq)

)
|
1

2

∑
X

ϕ(X)ψ̂X(Y),(5.8.6)

where the sum runs over a set of representatives for the adjoint orbits in o(Fq). On the
other hand, again using the fact that each adjoint orbit in o(Fq) has cardinality |o(Fq)|2−1,
we have ∑

X

ϕ(X)ψX(Y) = 2 |o(Fq)|−1ϕ(Y),(5.8.7)
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where the sum runs over a set of representatives for the adjoint orbits in o(Fq). Take the
Fourier transform of (5.8.7), and from (5.8.6) we have

ϕ̂�x,0(Y ) = |Ex,0

(
o(Fq)

)
| |o(Fq)|−1 ϕ̂(Y).

Thus,

ϕ̂x,0(Y ) = |o(Fq)| |Ex,0

(
o(Fq)

)
|−1

ϕ̂�x,0(Y ).

This proves the proposition.

6 The Elliptic Character Expansion

In this section, x denotes a standard special vertex in the building for G.

Definition 6.1 Let C(m
nilp
x,0 )uni f denote the logarithm of C(Muni p

x )uni f , as in Definition 3.4.

Let C(m
nilp
x,0 )⊥uni f denote the space of invariants orthogonal to C(m

nilp
x,0 )uni f under the usual

inner product.

Remark From the Generalised Springer Correspondence [L.1] we find that C(m
nilp
x,0 )uni f

is the complex span of the characteristic functions of L, as L runs over the elements of

N(mnilp
x,0 )uni f ; likewise, C(m

nilp
x,0 )⊥uni f is the span of the functions [L], as L runs over the

local systems in N(mnilp
x,0 ) ′.

Proposition 6.2 If ϕ ∈ C(m
nilp
x,0 )⊥uni f and φ ∈ C∞c (V), then

DG(ϕx,0, φ) =
∑

X∈E
nilp
x,0

′

eX(ϕx,0)IG(X, φ̂),

where
eX(ϕx,0) =

∑
L∈N(mnilp

x,0 ) ′

cL| supp[L]| |Ex,0(supp[L])|−1[L]x,0(X),

where cL is given by (6.2.1).

Proof The Generalised Springer Correspondence [L.1] shows that when the Fourier trans-

form (as defined in 2.1) is followed by restriction to m
nilp
x,0 , the result is an automorphism of

C(m
nilp
x,0 )⊥uni f . In fact, the Generalised Springer Correspondence does more—it shows how

to actually calculate the Fourier transform of any element in C(m
nilp
x,0 ), using Chapter V

of [L.2]. We use that fact in the calculations behind Tables 8.9 and 8.10. It follows that
there are uniquely defined complex numbers cL such that

ϕ(Y) =
∑

L∈N(mnilp
x,0 ) ′

cL[̂L](Y),(6.2.1)
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for all nilpotent Y in mx,0. Without worrying about convergence for a moment, from (6.2.1)
we have

DG(ϕx,0, φ) =
∑

L∈N(mnilp
x,0 ) ′

cLDG([̂L]x,0, φ).(6.2.2)

By Proposition 5.8,

[̂L]x,0(Y ) = | supp[L]| |Ex,0(supp[L])|−1 ̂[L]�x,0(Y ),(6.2.3)

for all Y in V. Since the support of φ is contained in V, from (6.2.2) and (6.2.3) it follows
that

DG([̂L]x,0, φ) = | supp[L]| |Ex,0(supp[L])|−1DG(̂[L]�x,0, φ).(6.2.4)

Let the support of L be o and let y = yo,x and s = so,x and X̄ = ρy,s(X). Then, by
Definitions 5.1 and 5.7, together with Proposition 2.3,

̂[L]�x,0(Y ) =
∑

X∈E
nilp
x,0

[L]x,0(X)

∫
Gx

(ψ̂X̄)y,−s

(
Ad(k)Y

)
dk,(6.2.5)

for all Y in V. (We used a similar argument in (5.6.1).) Thus,

DG(̂[L]�x,0, φ) =
∑

X∈E
nilp
x,0

[L]x,0(X)

∫
G

∫
g

∫
Gx

(ψ̂X̄)y,−s

(
Ad(k)Y

)
dkφ
(
Ad(g)Y

)
dY dg.

(6.2.6)

Since φ has compact support,∫
G

∫
g

∫
Gx

(ψ̂X̄)y,−s

(
Ad(k)Y

)
dkφ
(
Ad(g)Y

)
dY dg

=

∫
G

∫
Gx

∫
g

(ψ̂X̄)y,−s

(
Ad(k)Y

)
φ
(
Ad(g)Y

)
dY dk dg.

(6.2.7)

By a change of variables, the right-hand side of (6.2.7) is∫
G

∫
g

(ψ̂X̄)y,−s

(
Ad(k)Y

)
φ
(
Ad(g)Y

)
dY dg =: DG

(
(ψ̂X̄)y,−s, φ

)
.(6.2.8)

(Recall that the measure on Gx was normalised.) By Proposition 6.2, this equals IG(X, φ̂),
so from (6.2.6) we have

DG(̂[L]�x,0, φ) =
∑

X∈E
nilp
x,0

[L]x,0(X)IG(X, φ̂).(6.2.9)
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Combining this with (6.2.4) yields

DG([̂L]x,0, φ) = | supp[L]| |Ex,0(supp[L])|−1
∑

X∈E
nilp
x,0

[L]x,0(X)IG(X, φ̂).(6.2.10)

So, by (6.2.2),

DG(ϕx,0, φ) =
∑

L∈N(mnilp
x,0 ) ′

cL| supp[L]| |Ex,0(supp[L])|−1
∑

X∈E
nilp
x,0

[L]x,0(X)IG(X, φ̂).

(6.2.11)

This resolves any doubts we may have had about the convergence of the integrals in (6.2.2).
Re-arranging (6.2.11), we have

DG(ϕx,0, φ) =
∑

X∈E
nilp
x,0

{ ∑
L∈N(mnilp

x,0 ) ′

cL| supp[L]| |Ex,0(supp[L])|−1[L]x,0(X)
}

IG(X, φ̂),

which proves the proposition.

Definition 6.3 For any standard vertex x, let Ex,0 denote the union of Ess
x,0 and E

nilp
x,0

′
. Also,

let E0 be the unions of Ex,0, as x runs over the standard vertices.

Proposition 6.4 Let πx(σ) be a depth-zero supercuspidal representation of G. There are
integers eX

(
πx(σ)

)
such that, for all Y in V,

Θπx(σ)(expY ) =
∑

X∈Ex,0

eX

(
πx(σ)

)
µ̂X(Y ).

Proof Let ϕ be any element of C∞c (V) and define f ∈ C∞c (Gtu) by f ◦ exp = φ. We will
prove the proposition by finding the integers eX

(
πx(σ)

)
such that

Tr πx(σ)( f ) =
∑

X∈Ex,0

eX

(
πx(σ)

)
IG(X, φ̂).(6.4.1)

Define ϕ ∈ C(m
nilp
x,0 ) by ϕ(Y) = Tr σ(exp Y), for all nilpotent Y in mx,0. Then, by Proposi-

tion 1.5,

Tr πx(σ)( f ) = DG(ϕx,0, φ),(6.4.2)

where the measure on G is normalised so that Gx has measure 1. Let ϕ0 be the projec-

tion of ϕ from C(m
nilp
x,0 ) to C(m

nilp
x,0 )uni f and let ϕ ′ be the projection of ϕ from C(m

nilp
x,0 ) to

C(m
nilp
x,0 )⊥uni f . Again, without worrying about convergence for a moment, we have

DG(ϕx,0, φ) = DG(ϕ0
x,0, φ) + DG(ϕ ′x,0, φ).(6.4.3)
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As in the proof of Proposition 3.5,

DG(ϕ0
x,0, φ) =

∑
Xw∈Ess

x,0

eXw (ϕ0)IG(X, φ̂),(6.4.4)

where

eXw (ϕ0
x,0) = q− rank Mx cw|Mx| |Tw(Fq)|−1,(6.4.5)

where the complex numbers cw are given by (3.5.1), mut. mut. Likewise, by Proposition 6.2,

DG(ϕ ′x,0, φ) =
∑

X∈E
nilp
x,0

′

eX(ϕ ′x,0)IG(X, φ̂),(6.4.6)

where

eX(ϕ ′x,0) =
∑

L∈N(mnilp
x,0 ) ′

cL| supp[L]| |Ex,0(supp[L])|−1[L]x,0(X),(6.4.7)

where the complex numbers cL are given by (6.2.1), mut. mut. Gather equations (6.4.3)
through (6.4.7) to see that

DG(ϕx,0, φ) =
∑

X∈Ex,0

eX

(
πx(σ)

)
IG(X, φ̂),(6.4.8)

where

eX

(
πx(σ)

)
=

{
eX(ϕ0

x,0), if X = Xw ∈ Ess
x,0;

eX(ϕ ′x,0), if X ∈ E
nilp
x,0

′
.

Together with (6.4.2), this proves (6.4.1) and therefore proves the proposition. The fact
that each eX(ϕx) is an integer comes from a direct calculation of these numbers, as found
in Tables 8.9 and 8.10.

7 Some Applications of the Elliptic Character Expansion

This section briefly explores two applications of the elliptic character expansion. In this
section x is a special vertex of the building for G.

Proposition 7.1 For any characters θ0 and θ2 of Tc(Fq) in general position, the character of

πx0 (R
Mx0
Tc ,θ0

) + πx2 (R
Mx2
Tc ,θ2

)

is stable on the set of topologically unipotent elements in G.
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Proof Let X0 denote Xc from Table 8.3 and let X2 denote Xc from Table 8.4. The orbits
represented by X0 and X2 form a stable conjugacy class in g, thus

I(st)
G (X0, ·) := IG(X0, ·) + IG(X2, ·)

is a stable distribution on C∞c (g). By [Wa.2], the Fourier transform of this distribution is
also stable; that is,

µ̂(st)
X0

( · ) := µ̂X0 ( · ) + µ̂X2 ( · )

is a stable distribution on C∞c (g). From Tables 8.9 and 8.10 respectively,

Θ
πx0 (R

Mx0
Tc ,θ0

)
(expY ) = q2(q− 1)2(q + 1)2µ̂X0 (Y ),

Θ
πx2 (R

Mx2
Tc ,θ2

)
(expY ) = q2(q− 1)2(q + 1)2µ̂X2 (Y ),

for all topologically nilpotent Y in g. It follows that

Θ
πx0 (R

Mx0
Tc ,θ0

)
+Θ

πx2 (R
Mx2
Tc ,θ2

)

is a stable distribution on the set of all topologically unipotent elements in G.

Proposition 7.2 Let πx(σ) be a depth-zero supercuspidal representation. The coefficient of
the local character expansion corresponding to the nilpotent orbit O in g is

cO

(
πx(σ)

)
=
∑

X∈Ex,0

eX

(
πx(σ)

)
ΓO(X).

Proof Let π = πx(σ) and let

Θπ(expY ) =
∑

X∈Ex,0

eX(π)µ̂X(Y )(7.2.1)

be the elliptic character expansion for π, where Y is any element of V. The Shalika germ
expansion (augmented by Waldspurger to gtn) gives

µ̂X(Y ) =
∑
O

ΓO(X)µ̂O(Y ),(7.2.2)

where the summation is over the nilpotent orbits in g and where µ̂O is the Fourier trans-
form of the nilpotent orbital integral at O. Combining (7.2.1) and (7.2.2) we have

Θπ(exp Y ) =
∑
O

{ ∑
X∈Ex,0

eX(π)ΓO(X)
}
µ̂O(Y ).(7.2.3)

On the other hand, by the local character expansion (also augmented by Waldspurger to
gtn),

Θπ(expY ) =
∑
O

cO

(
πx(σ)

)
µ̂O(Y ).(7.2.4)

Since the µ̂O are linearly independent distributions on V (even as germs), a comparison of
(7.2.3) and (7.2.4) proves the proposition.

Remark It is interesting to note that the sum in 7.2 involves both ramified and unramified
orbits in g.
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8 Tables

Table 8.1 The elements of C0(Muni p
x ), where x is any special vertex.

QMx
Tc

This Green’s polynomial is the restriction of the Deligne-Lusztig represen-

tation RMx
Tc ,θ

to the set of unipotent elements in Mx, where θ is any character
in general position of the twist Tc(Fq) of the split torus by the Coxeter ele-
ment c in the Weyl group for Mx.

QMx
Tc2

This is the restriction of RMx
Tc2 ,θ

to the set of unipotent elements in Mx, where

θ is any character of Tc2 (Fq) in general position, and where the subscript
c2 refers to the square of the Coxeter element in the Weyl group for Mx.

1
4 (QMx

Tc
− QMx

Tc2
) This is the restriction of the cuspidal unipotent representation θ10 to the

set of unipotent elements in Mx.
χ+

Mx
and χ−Mx

These are the restrictions to the set of unipotent elements in Mx of the
two irreducible cuspidal representation which appear the Lusztig series for
RMx

Tc2 ,θ
, for certain non-trivial characters θ of Tc2 (Fq) not in general posi-

tion.

Table 8.2 The elements of C0(Muni p
x ), where x is any non-special vertex. Here we use an

isomorphism Mx
∼= Sp2× Sp2.

Q
Sp2
Tc
⊗ Q

Sp2
Tc

This is the restriction of R
Sp2
Tc ,θ1
⊗R

Sp2
Tc ,θ2

to the set of unipotent elements in Mx,
where θ1 and θ2 are characters of Tc(Fq) in general position, and where the
subscript c refers to the Coxeter element in the Weyl group for Sp2.

Q
Sp2
Tc
⊗ χ±Sp2

The functions χ±Sp2
are the restriction of the irreducible cuspidal represen-

tations which appear in the Lusztig series for R
Sp2
Tc ,θ

, where θ is a non-trivial
character

χ±Sp2
⊗ χ±Sp2

of Tc(Fq) which is not in general position.

Table 8.3 The elements in Ess
x0,0 are chosen so as to have the following form. The subscripts

c and c2 are explained in Table 8.1.

Xc =


0 x 0 0
0 0 x 0
0 0 0 x
xε 0 0 0

 + X ′
x ∈ O∗

X ′ ∈ gx0,1

Xc2 =


0 0 0 x
0 0 y 0
0 yε 0 0
xε 0 0 0

 + X ′
x, y ∈ O∗

X ′ ∈ gx0,1
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Table 8.4 The elements in Ess
x2,0 are chosen so as to have the following form. The subscripts

c and c2 are explained in Table 8.1.

Xc =


0 x 0 0
0 0 x�−1 0
0 0 0 x

xε� 0 0 0

 + X ′
x ∈ O∗

X ′ ∈ gx2,1

Xc2 =


0 0 0 x�−1

0 0 y�−1 0
0 yε� 0 0

xε� 0 0 0

 + X ′
x, y ∈ O∗

X ′ ∈ gx2,1

Table 8.5 The elements of E
nilp
x0,0

′
are chosen so as to have the following form.

Xi, j
(4) =


0 x 0 0
0 0 xεi 0
0 0 0 x

xε j� 0 0 0

 + X ′,

x ∈ O∗,
i = 1, 0

j = 0, 1, 2, 3
X ′ ∈ gx0,2

Xi, j
(2,12) =


0 0 0 xεi

0 0 y 0
0 yε 0 0

xε j� 0 0 0

 + X ′,
x ∈ O∗; y ∈ p

i, j = 0, 1
X ′ ∈ gx0,2

Table 8.6 The elements of E
nilp
x2,0

′
are chosen so as to have the following form.

Xi, j
(4) =


0 x 0 0
0 0 xεi�−1 0
0 0 0 x

xε j�2 0 0 0

 + X ′,

x ∈ O∗,
i = 1, 0

j = 0, 1, 2, 3
X ′ ∈ gx2,2

Xi, j
(2,12) =


0 0 0 xεi�−1

0 0 y�−1 0
0 yε� 0 0

xε j�2 0 0 0

 + X ′,
x ∈ O∗; y ∈ p

i, j = 0, 1
X ′ ∈ gx2,2

Table 8.7 Values of yo,x and so,x corresponding to the nilpotent orbits o in mx, when
x = x0. In these expressions, we make the apartment into a vector space by choosing x0 as
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the origin 0.

o �→ (4) yo,x =
1

2
x1 +

1

4
x2 so,x =

1

4

o �→ (22) yo,x =
1

2
x2 so,x =

1

2

o �→ (2, 12) yo,x =
1

2
x1 so,x =

1

2

o �→ (14) yo,x = x0 = 0 so,x = 0

Table 8.8 Values of yo,x and so,x corresponding to the nilpotent orbits o in mx, when
x = x2. In these expressions, we make the apartment into a vector space by choosing x0 as
the origin 0.

o �→ (4) yo,x =
1

2
x1 +

1

4
x2 so,x =

1

4

o �→ (22) yo,x =
1

2
x2 so,x =

1

2

o �→ (2, 12) yo,x =
1

2
x1 so,x =

1

2

o �→ (14) yo,x = x2 so,x = 0

Table 8.9 Coefficients eX

(
πx(σ)

)
of the elliptic character expansion when the restriction of

Tr σ to Muni p
x is an element of C0(Muni p

x ), when x = x0. (Refer to Table 8.1 for C0(Muni p
x ).)

We write χ10 for the restriction of θ10 to Muni p
x . The first row lists the elements of Ex,0 as

labeled in Tables 8.3 and 8.5. All other rows list the integers eX

(
πx(σ)

)
, where the restriction

of Tr σ to Muni p
x is given at the left-hand end of that row, and X is found at the top of the

corresponding column.

Xc Xc2 Xi, j
(4) Xi, j

(2,12)

QMx
Tc

q2(q−1)2(q+1)2

1 0 0 0

QMx
Tc2

0 q2(q−1)2(q2+1)
1 0 0

χ10
q2(q−1)2(q+1)2

4
−q2(q−1)2(q2+1)

4 0 0

χ+
Mx

q2(q−1)2(q2+1)
2 0 (−1)i q(q−1)(q4−1)

16
(−1)i+1q2(q2−1)(q4−1)

8

χ−Mx

q2(q−1)2(q2+1)
2 0 (−1)i+1q(q−1)(q4−1)

16
(−1)i q2(q2−1)(q4−1)

8

Table 8.10 Coefficients eX

(
πx(σ)

)
of the elliptic character expansion when the restric-

tion of Tr σ to Muni p
x is an element of C0(Muni p

x ), when x = x2. (Refer to Table 8.1 for
C0(Muni p

x ).) We write χ10 for the restriction of θ10 to Muni p
x . The first row lists the elements
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of Ex,0 as labeled in Tables 8.4 and 8.6. All other rows list the integers eX

(
πx(σ)

)
, where the

restriction of Tr σ to Muni p
x is given at the left-hand end of that row, and X is found at the

top of the corresponding column.

Xc Xc2 Xi, j
(4) Xi, j

(2,12)

QMx
Tc

q2(q−1)2(q+1)2

1 0 0 0

QMx
Tc2

0 q2(q−1)2(q2+1)
1 0 0

χ10
q2(q−1)2(q+1)2

4
−q2(q−1)2(q2+1)

4 0 0

χ+
Mx

q2(q−1)2(q2+1)
2 0 (−1)i q(q−1)(q4−1)

16
(−1)i+1q2(q2−1)(q4−1)

8

χ−Mx

q2(q−1)2(q2+1)
2 0 (−1)i+1q(q−1)(q4−1)

16
(−1)i q2(q2−1)(q4−1)

8

References
[AD] J. Adler and S. Debacker, Moy-Prasad filtrations and harmonic analysis. Draft, 1997.
[Cu] C. Cunningham, Some results on elliptic orbital integrals. In preparation.
[K] D. Kazhdan, Proof of Springer’s hypothesis. Israel J. Math. 28(1977), 272–286.
[KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds. Israel J. Math. (2) 62(1988),

129–168.
[L.1] G. Lusztig, Intersection cohomology complexes on a reductive group. Invent. Math. 75(1984), 205–272.
[L.2] , Character sheaves I. Adv. Math. 56(1985), 193–297; Character sheaves II. Adv. Math. 57(1985),

226–265; Character sheaves III. Adv. Math. 57(1985), 266–315; Character sheaves IV. Adv. Math.
59(1986), 1–63; Character sheaves V. Adv. Math. 61(1986), 103–155.

[Mu] F. Murnaghan, Characters of supercuspidal representations of classical groups. Ann. Sci. École Norm Sup.
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