
TPLP : Page 1–28. c© The Author(s), 2024. Published by Cambridge University Press. This is

an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000036

1

IASCAR: Incremental Answer Set Counting by
Anytime Refinement∗

JOHANNES K. FICHTE
Department of Computer Science (IDA), Linköping University, Linköping, Sweden

(e-mail: johannes.fichte@liu.se)

SARAH ALICE GAGGL
TU Dresden, Dresden, Germany

(e-mail: sarah.gaggl@tu-dresden.de)

MARKUS HECHER
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(e-mail: hecher@mit.edu)

DOMINIK RUSOVAC
TU Dresden, Dresden, Germany

(e-mail: dominik.rusovac@tu-dresden.de)

submitted 23 January 2023; revised 14 November 2023; accepted 08 January 2024

Abstract

Answer set programming (ASP) is a popular declarative programming paradigm with various
applications. Programs can easily have many answer sets that cannot be enumerated in practice,
but counting still allows quantifying solution spaces. If one counts under assumptions on literals,
one obtains a tool to comprehend parts of the solution space, so-called answer set navigation.
However, navigating through parts of the solution space requires counting many times, which
is expensive in theory. Knowledge compilation compiles instances into representations on which
counting works in polynomial time. However, these techniques exist only for conjunctive nor-
mal form (CNF) formulas, and compiling ASP programs into CNF formulas can introduce an
exponential overhead. This paper introduces a technique to iteratively count answer sets under
assumptions on knowledge compilations of CNFs that encode supported models. Our anytime
technique uses the inclusion–exclusion principle to improve bounds by over- and undercount-
ing systematically. In a preliminary empirical analysis, we demonstrate promising results. After
compiling the input (offline phase), our approach quickly (re)counts.

KEYWORDS: ASP, answer set counting, knowledge compilation

∗ Research was funded by the BMBF, Grant 01IS20056 NAVAS, by ELLIIT funded by the Swedish gov-
ernment, by the Austrian Science Fund (FWF) grants J4656, P32830, and Y1329. The authors grate-
fully acknowledge the GWK support for funding this project by providing computing time through
the Center for Information Services and HPC (ZIH) at TU Dresden. Additional computations were
enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden
(NAISS) at Linköping partially funded by the Swedish Research Council through grant agreement no.
2022-06725.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068424000036
mailto:johannes.fichte@liu.se
https://orcid.org/0000-0003-2425-6089
mailto:sarah.gaggl@tu-dresden.de
https://orcid.org/0000-0003-0131-6771
mailto:hecher@mit.edu
mailto:dominik.rusovac@tu-dresden.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000036&domain=pdf
https://doi.org/10.1017/S1471068424000036


2 J. K. Fichte et al.

1 Introduction

Answer set programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999; Brewka

et al. 2011) is a widely used declarative problem modeling and solving paradigm with

many applications in artificial intelligence (AI) such as knowledge representation, plan-

ning, and many more (Baral 2003; Pontelli et al. 2012). It is widely used to solve dif-

ficult search problems while allowing compact modeling (Gebser et al. 2012). In ASP,

a problem is represented as a set of rules, called logic program, over atoms. Models of

a program under the stable semantics (Gelfond and Lifschitz 1988, 1991) form its solu-

tions, so-called answer sets. Beyond the search for one solution or an optimal solution,

an increasingly popular question is counting answer sets, which provides extensive appli-

cations for quantitative reasoning. For example, counting is crucial for probabilistic logic

programming, c.f., Fierens et al. (2015), Wang and Lee (2015), Lee and Wang (2015) or

encoding Bayesian networks and their inference (Sang et al. 2005).

Interestingly, counting also facilitates more fine-grained reasoning modes between brave

and cautious reasoning. To this end, one examines the ratio of an atom occurring in

answer sets over all answer sets, which yields a notion of plausibility of an atom. When

considering sets of literals, which represent assumptions, one obtains a detailed tool

to comprehend search spaces that contain a large number of answer sets (Fichte et al.

2022b), for example, for configuration problems (Dimopoulos et al. 1997; Lifschitz 1999;

Nogueira et al. 2001). However, already for ground normal programs, answer set counting

is #·P-complete (Fichte et al. 2017), making it harder than decision problems. Recall

that brave reasoning is just NP-complete, but by Toda’s Theorem we know that PH ⊆
P#·P (Toda 1991) where

⋃
k∈N

ΔP
k = PH and NP ⊆ ΔP

2 = PNP (Stockmeyer 1976).

Approximate counting is in fact easier, that is, approx-#·P ⊆ BPPNP ⊆ ΣP
3 (Lautemann

1983; Sipser 1983; Stockmeyer 1983), and approximate answer set counters have very

recently been suggested (Kabir et al. 2022). Still, when navigating large search spaces,

we need to count answer sets many times rendering such tools conceptually ineffective.

There, knowledge compilation comes in handy (Darwiche 2004).

In knowledge compilation, computation is split in two phases. Formulas are compiled in

a potentially very expensive step into a representation in an offline phase and reasoning

is carried out in polynomial time on such representations in an online phase. Such a con-

ceptual framework would be perfectly suited when answer sets are counted many times,

providing us with quick re-counting. While we can translate programs into propositional

formulas (Lee and Lifschitz 2003; Lee 2005; Janhunen and Niemelä 2011) and directly

apply techniques from propositional formulas (Lagniez and Marquis 2017a), it is widely

known that one can easily run into an exponential blowup (Lifschitz and Razborov 2006)

or introduce level mappings (Janhunen 2006) that are oftentimes large grids and hence

expensive for counters. In practice, solvers that find one answer set or optimal answer sets

can avoid a blowup by computing supported models, which can be encoded into propo-

sitional formulas with limited overhead, and implementing propagators on top (Gebser

et al. 2009).

In this paper, we explore a counterpart of a propagator-style approach for counting

answer sets. We encode finding supported models as a propositional formula and use a

knowledge compiler to obtain, in an offline phase, a representation, which allows us to

construct a counting graph that in turn can be used to compute the number of supported

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 3

models efficiently. The resulting counting graph can be large but evaluated in parallel.

Counting supported models only provides an upper bound on the number of answer sets.

Therefore, we suggest a combinatorial technique to systematically improve bounds by

over- and undercounting while incorporating the external support, whose absence can

be seen as the cause of overcounting in the first place. Our technique can be used to

approximate the counts but also provides the exact count on the number of answer sets

when taking the entire external support into account.

Contributions. Our main contributions are as follows.

1. We consider knowledge compilation from an ASP perspective. We recap features

such as counting under assumptions, known as conditioning, that make knowledge

compilations (sd-DNNFs) quite suitable for navigating search spaces. We suggest

a domain-specific technique to compress counting graphs that were constructed for

supported models using Clark’s completion.

2. We establish a novel combinatorial algorithm that takes an sd-DNNF of a com-

pletion formula and allows for systematically improving bounds by over- and un-

dercounting. The technique identifies not supported atoms and compensates for

overcounting on the sd-DNNF.

3. We apply our approach to instances tailored to navigate incomprehensible answer

set search spaces. While the problem is challenging in general, we demonstrate

feasibility and promising results on quickly (re-)counting.

Related Works. Previous work (Bogaerts and den Broeck 2015) considered knowledge

compilation for logic programs. There an eager incremental approximation technique in-

crementally computes the result whereas our approach can be seen as an incremental lazy

approach on the counting graph. Moreover, the technique by Bogarts and Broeck focuses

on well-founded models and stratified negation, which does not work for normal programs

in general without translating ASP programs into conjunctive normal forms (CNFs) di-

rectly. Note that common reasoning problems on answer set programs without negation

can be solved in polynomial time (Truszczyński 2011). Model counting can significantly

benefit from preprocessing techniques (Lagniez et al. 2016; Lagniez and Marquis 2014),

which eliminate variables. Widely used propositional knowledge compilers are c2d (Dar-

wiche 2004) and d4. Very recent works consider enumerating answer sets (Alviano et al.

2023), which can be beneficial for counting if the number of answer sets is sufficiently low.

More advanced enumeration techniques have also recently been studied for propositional

satisfiability (Masina et al. 2023; Spallitta et al. 2023).

Prior Work. This paper extends the conference publication (Fichte et al. 2022a). The

paper contains more elaborate examples and proofs that have been omitted in the prelim-

inary version. We now provide an empirical evaluation on relevant instances and instances

that have been used for counting in previous works. We formulate detailed questions and

hypotheses for our algorithm’s implementation and evaluation. Now, our evaluation in-

corporates two instance sets containing a large number of instances, and we compare our

approach to state-of-the-art model counters.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


4 J. K. Fichte et al.

2 Preliminaries

We assume familiarity with propositional satisfiability (Kleine Büning and Lettmann

1999), graph theory (Bondy and Murty 2008), and propositional ASP (Gebser et al.

2012). Recall that a cycle C on a (di)graph G is a (directed) walk of G where the first

and the last vertex coincide. For cycle C, we let VC be its vertices and cycles(G) :=

{VC | C is a cycle of G}. We consider propositional variables and mean by formula a

propositional formula. By � and ⊥ we refer to the variables that are always evaluated to

1 or 0 (constants). A literal is an atom a or its negation ¬a, and vars(ϕ) denotes the set

of variables that occur in formula ϕ. The set of models of a formula ϕ is given byM(ϕ).

Below, we introduce the necessary background and notation used in the paper for ASP,

and knowledge compilation.

Answer Set Programming. Let us recall basic notions of ASP, for further details we refer

to standard texts (Gebser et al. 2012). In the context of ASP, we usually say atom instead

of variable. A (propositional logic) program Π is a finite set of rules r of the form

a0 ← a1, . . . , am,¬am+1, . . . ,¬an
where 0 ≤ m ≤ n and a0, . . . , an are atoms and usually omit � and ⊥. For a rule r, we

define H(r) := {a0} called head of r. The body consists of B+(r) := {a1, . . . , am} and

B−(r) := {am+1, . . . , an}. The set at(r) of atoms of r consists of H(r) ∪B+(r) ∪B−(r).
Let Π be a program. Then, we let the set at(Π) :=

⋃
r∈Π at(r) of Π contain its atoms. Its

positive dependency digraph DP(Π) = (V,E) is defined by V := at(Π) and E := {(a1, a0) |
a1 ∈ B+(r), a0 ∈ H(r), r ∈ Π}. The cycles of Π are given by cycles(Π) := cycles(DP(Π)).

Π is tight, if DP(Π) is acyclic. An interpretation of Π is a set I ⊆ at(Π) of atoms.

I satisfies a rule r ∈ Π if H(r) ∩ I �= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅.
I satisfies Π, if I satisfies each rule r ∈ Π. The GL-reduct ΠI is defined by ΠI :=

{H(r)← B+(r) | I ∩B−(r) = ∅, r ∈ Π}. I is an answer set, sometimes also called stable

model, if I satisfies ΠI and I is subset-minimal. The completion (Clark 1978) of Π is the

propositional formula

comp(Π) :=
∧

a∈at(Π)

a↔
∨

r∈Π,H(r)=a

BF (r)

where

BF (r) :=
∧

b∈B+(r)

b ∧
∧

c∈B−(r)

¬c.

where, as usual, the conjunction for an empty set is understood as � and the empty

disjunction as ⊥. An interpretation I is a supported model (Apt et al. 1988) of Π, if it is a

model of the formula comp(Π). Let S(Π) be the set of all supported models of Π. It holds

that AS(Π) ⊆ S(Π) (Marek and Subrahmanian 1992), but not vice-versa. If Π is tight,

then AS(Π) = S(Π) (Fages 1994). In practice, we use the completion in CNF, thereby

introducing auxiliary variables and still preserving the number of supported models.

Example 1

Let Π1 = {a ← b; b ←; c ← c}. We see that DP(Π1) is cyclic due to rule c ← c. Thus,

Π1 is not tight and its respective answer sets AS(Π1) = {{a, b}} and supported models

S(Π1) = {{a, b}, {a, b, c}} differ. �

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 5

Assumptions. We define ¬L := {¬a | a ∈ L} for a set L of literals and assume that

¬¬a stands for a. Let Π be a program and L(Π) := at(Π) ∪ ¬at(Π) be its literals. An

assumption is a literal � ∈ L(Π) interpreted as rule ic(�) := {⊥ ← ¬�}. For set L of

assumptions of Π, we say that L is consistent, if there is no atom a ∈ L for which ¬a ∈
L. Throughout this paper, by L we refer to consistent assumptions. Furthermore, we

define ic(L) :=
⋃

�∈L ic(�) and let Π[L] := Π ∪ ic(L).

Example 2

Consider program Π1 from Example 1, with AS(Π1) = {{a, b}}. For L1 ⊆ {a, b,¬c},
we obtain the same answer sets, that is, AS(Π1) = AS(Π1[L1]). However, for any L2 �⊆
{a, b,¬c} we obtain AS(Π1[L2]) = ∅. �

Knowledge Compilation and Counting on Formulas in sd-DNNF. Let ϕ be a formula, ϕ is

in negation normal form (NNF) if negations (¬) occur only directly in front of variables

and the only other operators are conjunction (∧) and disjunction (∨) (Robinson and

Voronkov 2001). NNFs can be represented in terms of rooted directed acyclic graphs

(DAGs) where each leaf node is labeled with a literal, and each internal node is labeled

with either a conjunction (∧-node) or a disjunction (∨-node).
We use an NNF and its DAG interchangeably. The size of an NNF ϕ, denoted by |ϕ|,

is given by the number of edges in its DAG. Formula ϕ is in DNNF, if it is in NNF and

it satisfies the decomposability property, that is, for any distinct subformulas ψi, ψj in a

conjunction ψ = ψ1 ∧ · · · ∧ ψn with i �= j, we have vars(ψi) ∩ vars(ψj) = ∅ (Darwiche

2004). Formula ϕ is in d-DNNF, if it is in DNNF and it satisfies the decision property,

that is, disjunctions are of the form ψ = (x∧ψ1)∨ (¬x∧ψ2). Note that x does not occur

in ψ1 and ψ2 because of decomposability. ψ1 and ψ2 may be conjunctions. Formula ϕ

is in sd-DNNF, if all disjunctions in ψ are smooth, meaning for ψ = ψ1 ∨ ψ2 we have

vars(ψ1) = vars(ψ2).

Determinism and smoothness permit traversal operations on sd-DNNFs to count mod-

els of ϕ in linear time in |ϕ| (Darwiche 2001). The traversal takes place on the so-called

counting graph of an sd-DNNF. The counting graph G(ϕ) is the DAG of ϕ where each

node N is additionally labeled by val(N) := 1, if N consists of a literal; labeled by

val(N) := Σival(Ni), if N is an ∨-node with children Ni; labeled by val(N) := Πival(Ni),

if N is an ∧-node. By val(G(ϕ)) we refer to val(N) for the root N of G(ϕ). Function val

can be constructed by traversing G(ϕ) in post-order in polynomial time.

It is well-known that val(G(ϕ)) equals the model count of ϕ. For a set L of literals,

counting of ϕL := ϕ ∧ ∧
�∈L � can be carried out by conditioning of ϕ on L (Darwiche

1999). Therefore, the function val on the counting graph is modified by setting val(N) =

0, if N consists of � and ¬� ∈ L. This corresponds to replacing each literal � of the

NNF ϕ by constant ⊥ or �, respectively. From now on, we denote by ΦΠ[L] an equivalent

sd-DNNF of comp(Π[L]) and its counting graph by GΠ[L]. Note that Π[L] = Π for L = ∅.
The conditioning of GΠ on L is denoted by (GΠ)L.

3 Counting supported models

In our applications mentioned in the introduction, we are interested in counting multiple

times under assumptions. In other words, we count the total number of answer sets and

the number of answer sets under various changing assumptions. Therefore, we extend

known techniques from knowledge compilation (Darwiche and Marquis 2002).

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


6 J. K. Fichte et al.

x3 ¬c ¬x3 c

1 1 1 0

∧ ∧

¬x1 ¬x2 ¬x5 b a

1 1 1 1 1

∧

∨

∧

Fig. 1. Counting graph G(ϕ ∧ ¬c) labeled with literals and their respective value.

The general outline for a given program Π is as follows: (i) we construct the for-

mula comp(Π) that can (ii) be compiled in a computationally expensive step into a

formula Φcomp(Π) in a normal form, so-called sd-DNNF by existing knowledge compilers.

Then, (iii) on the sd-DNNF Φcomp(Π) counting can be done in polynomial time in the

size of Φcomp(Π). We can even count under a set L of propositional assumptions by the

technique known as conditioning.

However, this approach yields only the number of supported models under assumptions

and we overcount compared to the number of answer sets. To this end, in Section 4, (iv) we

present a technique to incrementally reduce the overcount.

In the following, we recall how knowledge compilation can be used to count formu-

las under assumptions by assuming that a formula is in sd-DNNF and constructing a

counting graph.

Example 3

Consider the sd-DNNF ϕ1 = ((x3∧¬c)∨(¬x3∧c))∧(¬x1∧¬x2∧¬x5∧a∧b). We observe

in Figure 1 that its rooted DAG has 14 nodes, 7 variables, and 13 edges. In consequence,

we have that |ϕ1| = 13. By conditioning of ϕ on L = {¬c}, each variable in L will be

removed from G(ϕ1) and we obtain ϕ1 ∧ ¬c = ((x3 ∧ ¬⊥) ∨ (¬x3 ∧ ⊥)) ∧ (¬x1 ∧ ¬x2 ∧
¬x5 ∧ a ∧ b). From Figure 1, we observe that the model count val(G(ϕ ∧ ¬c)) of formula

ϕ ∧ ¬c is 1. �
Using the techniques as described above, we can compile the formula comp(Π) into an

sd-DNNF Φcomp(Π) and count the number |S(Π)| of supported models. We illustrate this

in the following example.

Example 4

Consider Π1 from Example 1. When constructing comp(Π1) in CNF, we obtain 10 clauses

with 4 new auxiliary variables x1, x2, x3, and x5. We can compile it into an sd-DNNF ΦΠ1

which is logically equivalent to comp(Π1). For illustration purposes, we chose formula ϕ1

from Example 3 such that ΦΠ1
is equivalent to ϕ1. Hence, we can obtain the num-

ber |S(Π1)| of supported models from val(GΠ1
). �

3.1 Counting supported models under assumptions

Since assumptions of formulas and programs behave slightly differently due to the GL

reduct, it is not immediately clear that we can use conditioning to obtain the number of

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 7

supported models of a program under given assumptions. In the following we will show

that supported models of Π under assumptions L coincide with models of ΦΠ[L].

Observation 1

Let Π be a program and L assumptions. Then,M(ΦΠ[L]) = S(Π[L])

For any program Π the conditioning (ΦΠ)
L on assumptions L allows us to identify sup-

ported models of a program Π[L].

Lemma 3.1

Let Π be a program and L be assumptions. Then,M((ΦΠ)
L) = S(Π[L]).

Proof

We first establish the following claim:

comp(Π[L]) = comp(Π ∪ ic(L)) = comp(Π) ∧
∧

�∈L

� (1)

By definition, we have that comp(Π[L]) = comp(Π ∪ ic(L)). This further evaluates to

comp(Π) ∪ ic(L). Since ⊥ evaluates to false always and

comp({⊥ ← B(r)+,¬B(r)− | r ∈ Π, H(r) = ⊥}) = ⊥ ↔
∨

r∈Π,H(r)=⊥
BF (r),

we obtain that

M(⊥ ↔
∨

r∈Π,H(r)=⊥
BF (r)) =M(

∧

r∈Π,H(r)=⊥
⊥ ↔ BF (r)), (2)

=M(
∧

r∈Π,H(r)=⊥
¬BF (r)). (3)

As a result,

M(comp(Π[L] \ ic(L)) ∪ ic(L)) =M(comp(Π[L] \ ic(L)) ∪
⋃

�∈L

comp(ic(�)) (4)

=M(comp(Π) ∧
∧

�∈L

comp(ic(�))) (5)

=M(comp(Π) ∧
∧

�∈L

¬BF (ic(�))) (6)

=M(comp(Π) ∧
∧

�∈L

�). (7)

In consequence, equation (1) holds. It remains to show that conditioning (ΦΠ)
L in the

sd-DNNF ΦΠ preserves all models according to Π under the set L of assumptions. By

definition of conditioning, it holds thatM((ΦΠ)
L) =M(ΦΠ∧

∧
�∈L �). By assumption, it

is true thatM(ΦΠ∧
∧

�∈L �) =M(comp(Π)∧∧�∈L �). From equation (1), we obtain that

M(comp(Π)∧∧�∈L �) =M(comp(Π[L])). By definition,M(comp(Π[L])) = S(Π[L]). In

consequence, we established thatM((ΦΠ)
L) = S(Π[L]). Hence, the Lemma sustains.

Immediately, we obtain that we can count the number of supported models by first

compiling the completion into an sd-DNNF and then applying conditioning. For tight

programs, this already yields the number of answer sets.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


8 J. K. Fichte et al.

Algorithm 1 Counting Graph Compression

In: sd-DNNF ΦΠ, L(Π)

Out: Compressed counting graph τ(GΠ)
1: initialize array t and traverse nodes N ∈ ΦΠ bottom-up such that

2: if N contains a literal � ∈ L(Π) then label N with val(N)

3: else if N contains a literal � /∈ L(Π) then mark N as ignored

4: else check the number of children of N that are not marked as ignored

5: if N has no remaining children then mark N as ignored

6: else if N has one remaining child C then N ← C and mark N as ignored

7: else v ← val(N) w.r.t. t and remaining children of N and label N with v

8: add N to t

9: remove all nodes marked with ignored from t

10: return t

Corollary 1

Let Π be a program and L be assumptions. Then,

val((GΠ)L) = |M((ΦΠ)
L)| = |S(Π[L])|.

If Π is tight, also val((GΠ)L) = |AS(Π[L])| holds. Furthermore, counting can be done in

time linear in |ΦΠ|.

Example 5

Consider program Π1 from Example 1, which has two supported models {a, b} and

{a, b, c}. Without setting val(c) to 0 in Figure 1, we would obtain 2, which corresponds

to these two models. By assumption ¬c, we set val(c) to 0, which results in a total count

of 1 as the ∧-node gives only one count in the subgraph. �

3.2 Compressing counting graphs

When computing the counting graph of the completion of a program Π, in practice, we

usually construct a CNF of the completion by introducing so-called nogoods (Gebser

et al. 2012) similar to Tseitin’s transformation (Tseytin 1983). It is well-known that

there is a one-to-one correspondence, however, auxiliary variables are introduced, see, for

example, Kuiter et al. (2023). For counting, the one-to-one correspondence immediately

allows to establish a bijection between the models of the CNF and the supported models

making it practicable on CNFs.

However, from Corollary 1, we know that the runtime counting models on (GΠ)L de-

pends on the size of ΦΠ. In consequence, introducing auxiliary variables affects the run-

time of our approach. To this end, we introduce a compressing technique in Algorithm 1

that takes a counting graph GΠ and produces a compressed counting graph (CCG) τ(GΠ),
thereby removing auxiliary variables that have been introduced by the Tseitin transfor-

mation. The algorithm takes as input an sd-DNNF ΦΠ, and literals L(Π); and returns

the CCG τ(GΠ). In Line 3, we check whether the literal node consists of an auxiliary

variable, and if so, it will be ignored. The case distinction in Lines 5–7 distinguishes how

many not ignored children a non-literal node still has. Remember that each non-literal

node is either an ∧-node or an ∨-node. In Line 5, the node can be removed, as it has no

child. In Line 6, the node needs to be absorbed, as it has only one child meaning that

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 9

the node ultimately becomes its child. In all other cases (Line 7), the node needs to be

evaluated on the CCG t such that the ignored nodes are treated as neutral element of the

respective sum or product. Ignored nodes are then removed from t. It remains to show

that compressing GΠ leaves val unchanged, which is the topic of the following statement

and subsequent proof.

Lemma 3.2

Let Π be a program, ΦΠ an sd-DNNF of comp(Π) after a transformation that preserves

the number of models, but introduces auxiliary variables, and GΠ its counting graph.

Then, val(τ(GΠ)) = val(GΠ) and τ(GΠ) can be constructed in time O(2 · |ΦΠ|).

Proof

Let GΠ be the counting graph of an sd-DNNF that is equivalent to the CNF that has

been constructed from comp(Π) using a transformation that preserves the number of

models, which usually is the Tseitin transformation. We show that the value val(N) of

each node N of GΠ, which is not removed in τ(GΠ), does not change, since for N and its

respective children children(N) in Algorithm 1 we modify only literals that occur in the

program Π. By Nτ ∈ τ(GΠ) we denote the modified version of N , and by childrenτ (N)

we denote the children of N in τ(GΠ). We distinguish the cases:

1. Suppose N is a literal node. Let � denote the corresponding literal. If � �∈ L(Π),

then N is removed in τ(GΠ), thus by contraposition, we know that, if N is not

removed in τ(GΠ), then � ∈ L(Π). Assume � ∈ L(Π). Then N = Nτ . Therefore,

val(N) = val(Nτ ) ∈ {0, 1}.
2. Suppose N is not a literal node. Then, since N is an ∧- or an ∨-node, we know that

|children(N)| ≥ 2. However, in general 0 ≤ |childrenτ (N)| ≤ |children(N)|.
(a) Assume |childrenτ (N)| = 0. Then, in Algorithm 1, N will be ignored and thus

not belong to τ(GΠ).
(b) Assume |childrenτ (N)| = 1. Then, in Algorithm 1, N will be absorbed by its

only child. Thus, N does not belong to τ(GΠ).
(c) Assume |childrenτ (N)| ≥ 2. Then in Algorithm 1, N will be evaluated on

childrenτ (N), which means Nτ will be contained in τ(GΠ). We now need to

show that val(N) on children(N) corresponds to val(N) on childrenτ (N), that

is, val(N) = val(Nτ ). By assumption (number of models is preserved), we

have a bijection between M(ΦΠ) and S(Π) which ignores auxiliary variables.

Therefore, we can simply set the values of children children(N) that have been

removed or absorbed due to Cases 2a, 2b, or 2c – as a consequence of removing

auxiliary variables – to the corresponding neutral element of the value of N .

i Assume N is an ∧-node. Accordingly, in Algorithm 1, N will be evaluated

on childrenτ (N) such that in the product corresponding to val(N), the

value of each removed branch (removed child), due to removing auxiliary

variables, corresponds to the neutral element of multiplication, that is, 1.

Therefore, we conclude that val(N) = val(Nτ ).

ii Assume N is an ∨-node. Again, accordingly, in Algorithm 1, N will be

evaluated on childrenτ (N) such that in the sum corresponding to val(N),

the value of each removed branch (removed child), due to removing aux-

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


10 J. K. Fichte et al.

c a b d

Fig. 2. The positive dependency graph of Π2.

iliary variables, corresponds to the neutral element of addition, that is, 0.

Therefore, val(N) = val(Nτ ), which concludes the proof.

Inspecting Algorithm 1, we see that we require two traversals of the original counting

graph, one from Lines 3–8 and another one in Line 9 where we remove the nodes that

do not belong to the CCG. Runtime follows from the fact that we need to traverse ΦΠ

twice.

Corollary 2

Let Π be a tight program, then val(τ(GΠ)) = |AS(Π)|.

4 Incremental counting by inclusion–exclusion

In the previous section, we illustrated how counting on tight programs works and intro-

duced a technique to speed up practical counting. To count answer sets of a non-tight

program, we need to distinguish supported models from answer sets on τ(GΠ), which can

become quite tedious. Therefore, we use the positive dependency graph DP(Π) of Π. A set

X ⊆ at(Π) of atoms is an answer set, whenever it can be derived from Π in a finite number

of steps. In particular, the mismatch between answer sets and supported models is caused

by atoms C ∈ cycles(Π) involved in cycles in DP(Π) that are not supported by atoms

from outside the cycle. We call those supporting atoms of C the external support of C.

Definition 1

Let Π be a program and r ∈ Π. An atom a ∈ B+(r) is an external support of C ∈
cycles(Π), whenever H(r) ⊆ C and B+(r) ∩ C = ∅. By ES (C) we denote the set of all

external supports of C.

Next, we illustrate the effect of external supports on the answer sets derivation.

Example 6

Let Π2 = {a ← b; b ← a; a ← c; c ← ¬d; d ← ¬c}. The positive dependency graph of

Π2 is given in Figure 2. We obtain a cycle C = {a, b} due to rules a ← b and b ← a

with external support ES (C) = {c} due to rule a ← c. However, due to rules c ← ¬d
and d← ¬c, we see that whenever d is true, c is false, so that d deactivates the support

of C, which means that {a, b, d} cannot be derived from Π2 in a finite number of steps.

Accordingly, we have S(Π2) = {{a, b, c}, {a, b, d}, {d}}, but AS(Π2) = {{a, b, c}, {d}}.�
Note that external supports are sets of atoms. However, we can simulate such a set by

introducing an auxiliary atom; hence one atom, as in this definition, is sufficient (Gebser

et al. 2012).

Example 7

Let a ← b, b ← a, and b ← c,¬d be rules. Then the external support of atoms {a, b},
which are involved in cycles, is {c}. If instead of b ← c,¬d we use two alternative rules

br ← c,¬d and b← br, we have ES ({a, b}) = {br}. �

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 11

c a b g e f d

Fig. 3. The positive dependency graph of Π3 from Example 8.

To approach the answer set count of a non-tight program under assumptions, we

employ the well-known inclusion–exclusion principle, which is a counting technique to

determine the number of elements in a finite union of finite sets X1, . . . , Xn. Therefore,

first the cardinalities of the singletons are summed up. Then, to compensate for potential

overcounting, the cardinalities of all intersections of two sets are subtracted. Next, the

number of elements that appear in at least three sets are added back, that is, the cardi-

nality of the intersection of all three sets – to compensate for potential undercounting –

and so on. As an example, for three sets X1, X2, X3 the procedure can be expressed as

|X1∪X2∪X3| = |X1|+ |X2|+ |X3|− |X1∩X2|− |X1∩X3|− |X2∩X3|+ |X1∩X2∩X3|.
This principle can be used to count answer sets via supported model counting.

Next we define a notion that is useful to identify or prune supported models that are

not stable.

Definition 2

We define the unsupported constraint for a set C = {c0, . . . , cn} ∈ cycles(Π) of atoms

involved in cycles and its respective external supports ES (C) = {s0, . . . , sm} by the rule

λ(C) := ⊥ ← c0, . . . , cn,¬s0, . . . ,¬sm.

The unsupported constraints as defined here, (i) are inspired by loop formulas (Lin and

Zhao 2004; Ferraris et al. 2006); and (ii) contain the whole set C, which is slightly weaker

than constraints (nogoods) defined in related work (Gebser et al. 2012), but sufficient for

characterizing answer sets.

Lemma 4.1

Let Π be a program with cycles cycles(Π) = {C1, . . . , Cn}, then
AS(Π) = S(Π ∪ {λ(C1), . . . , λ(Cn)}).

Proof

Recall that AS(Π) ⊆ S(Π). However, supported models – in particular those that are

not answer sets – might contain a cycle C = {c0, . . . , cm} ∈ cycles(Π) without external

support from ES (C) = {s0, . . . , sk}, which are precisely those supported models we

exclude by adding a rule

⊥ ← c0, . . . , cm,¬s0, . . . ,¬sk
in the form of unsupported constraints λ(C) to Π for each C ∈ cycles(Π). This ensures

that atoms involved in cycles are not present without external support in any supported

model, which provides us with supported models that are answer sets.

Example 8

Let Π3 = Π2 ∪{b← g; f ← g; e← f ; f ← e}, which has two cycles C0 = {a, b} and C1 =

{e, f}. Their corresponding external supports are ES (C0) = {c, g} and ES (C1) = {g}.
Accordingly, we have unsupported constraints λ(C0) = ⊥ ← a, b,¬c,¬g and λ(C1) =

⊥ ← e, f,¬g. Figure 3 illustrates the positive dependency graph of program Π3. �

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


12 J. K. Fichte et al.

Before we discuss our approach on incremental answer set counting, we need some

further notation. From now on, by Λd(Π) := {{λ(C1), . . . , λ(Cd)} | {C1, . . . , Cd} ⊆
cycles(Π)} we denote the set of all combinations of unsupported constraints of cycles

that occur in any subset of cycles(Π) with cardinality 0 ≤ d ≤ n, where n := |cycles(Π)|.
Further, we define body literals of a set of unsupported constraints Γ by B(Γ) :=⋃{B(λ(C)) | λ(C) ∈ Γ}.
Example 9 (Continued)

Consider program Π3 from Example 8. We have Λ0(Π3) = ∅, Λ1(Π3) =

{{λ(C0)}, {λ(C1)}} and Λ2(Π3) = {{λ(C0), λ(C1)}}. �
Now, we define the incremental count of |AS(Π[L])| by aLd , using the combinatorial

principle of inclusion–exclusion as follows:

aLd :=

d∑

i=0

(−1)i
∑

Γ∈Λi(Π)

|S(Π[L ∪B(Γ)])| (8)

= |S(Π[L])| −
∑

Γ∈Λ1(Π)

|S(Π[L ∪B(Γ)])| (9)

+
∑

Γ∈Λ2(Π)

|S(Π[L ∪B(Γ)])| − · · ·+ (−1)d
∑

Γ∈Λd(Π)

|S(Π[L ∪B(Γ)])| (10)

By subtracting |S(Π[L]) \ S(Π[L ∪B(Γ)])| for each Γ ∈ Λ1(Π) we subtract the number

of supported models that are not answer sets under assumptions L with respect to each

cycle C ∈ cycles(Π). However, we need to take into account the interaction of cycles

and their respective external supports under assumptions L. Thus we enter the first

alternation step, where we proceed by adding back |S(Π[L]) \ S(Π[L ∪ B(Γ)])| for each

Γ ∈ Λ2(Π), which means that we add back the number of supported models that were

mistakenly subtracted from |S(Π[L])| in the previous step, and so on, until we went

through all Λi where 0 ≤ i ≤ d. Note that therefore in total we have d alternations. In

general, we show that aLn = |AS(Π[L])| as follows.
Theorem 1

Let Π be a program, cycles(Π) = {C1, . . . , Cn}, and further U := {λ(C1), . . . , λ(Cn)} be
the set of all unsupported constraints of Π. Then, for assumptions L,

|S(Π[L] ∪ U)| =
n∑

i=0

(−1)i
∑

Γ∈Λi(Π)

|S(Π[L]) \ S(Π[L ∪B(Γ)])|

Proof

We proceed by induction on |cycles(Π)|.

Induction Base Case: We assume that |cycles(Π)| = 0. Then, since Π admits no positive

cycle in DP(Π), we have AS(Π[L]) = S(Π[L]), and therefore |AS(Π[L])| = |S(Π[L])|.

Induction Hypothesis (IH): We assume that the proposition holds for every program Π

with a number of cycles |cycles(Π)| < m.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 13

Induction Step: We need to show that the result holds for a program Π with |cycles(Π)| =
m + 1. Let C ′ ∈ cycles(Π) be a cycle. We define Um := {λ(C1), . . . , λ(Cm)} for

any {C1, . . . , Cm} ⊆ cycles(Π) such that |Um| = m with Ci �= C ′ for Ci ∈ {C1, . . . , Cm}.
Then, by IH, we have that

x := |S(Π[L ∪B(Um)])| =
m∑

i=0

(−1)i
∑

Γ∈Λi(Π),λ(C′)/∈Γ

|S(Π[L]) \ S(Π[L ∪B(Γ)])|

To x, the formula
∑m+1

i=0 (−1)i ∑Γ∈Λi(Π) |S(Π[L]) \ S(Π[L∪B(Γ)])| adds |S(Π∪ λ(C ′))|.
However, this formula then subtracts supported models satisfying both constraints

{λ(C ′), λ(C ′′)} with one of the cycles λ(C ′′) ∈ Um twice, which require to be added

back. Thus, we proceed by adding back supported models satisfying unsupported con-

straints of C ′ with two other cycles, which again have to be subtracted in the next step.

In turn, the application of the inclusion–exclusion principle ensures that

m+1∑

i=0

(−1)i
∑

Γ∈Λi(Π)

|S(Π[L]) \ S(Π[L ∪B(Γ)])|

= x+

m+1∑

i=0

(−1)i
∑

Γ∈Λi(Π),λ(C′)∈Γ

|S(Π[L]) \ S(Π[L ∪B(Γ)])|.

Finally, one can count answer sets correctly.

Corollary 3

Let Π be a program, L assumptions, and n = |cycles(Π)|. Then, aLn = |AS(Π[L])|.
In fact, we can characterize aLn with respect to alternation depths. If there is no change

from one alternation to another, the point is reached where the number of answer sets is

obtained, as the following lemma states.

Lemma 4.2

Let Π be a program and L be assumptions. If aLi = aLi+1 for some integer i ≥ 0, then

aLi = |AS(Π[L])|.

Proof

Suppose aLi = aLi+1, then
∑

Γ∈Λi+1(Π) |S(Π[L])\S(Π[L∪B(Γ)])| = 0. We can observe that

therefore no further combination of unsupported constraints with set L of assumptions

where we combine unsupported constraints of cycles that occur in subsets of cycles(Π)

with cardinality j > i+1 points to any supported model. In other words, we have for all

j > i that
∑

Γ∈Λj(Π) |S(Π[L]) \ S(Π[L ∪B(Γ)])| = 0, which concludes the proof.

Using our approach on computing aLn , we end up with 2n (supported model) counting

operations where n := |cycles(Π)| on the respective compressed counting graph τ(GΠ),
which, since counting is linear in k := |τ(G(Π))|, gives us that incremental answer set

counting under assumptions is by 2n · k exponential in time. However, we can restrict

the alternation depth to d such that 0 ≤ d < n in order to stop after Λd(Π). Then

we need to count n times for each cycle and its respective unsupported constraints and

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


14 J. K. Fichte et al.

Algorithm 2 Incremental Counting by Anytime Refinement

In: Program Π; assumptions L; compressed counting graph τ(GΠ); alternation depth d

Out: Incremental count aLd
1: count← val(τ(GΠ)L) and c← 0

2: if d is odd then d← d+ 1

3: for every 1 ≤ i ≤ d
4: if c = count then break else c← count

5: for every 1 ≤ j ≤ i
6: c′ ← val(τ(GΠ)L∪L′

) where L′ is the set of literals appearing in Γj ∈ Λi(Π)

7: if i is odd then count← count− c′ else count← count+ c′

8: return count

another
(
n
i

)
times for 1 < i ≤ d, that is, for each number of subsets of cycles and

their respective unsupported constraints with cardinality i. These considerations yield

the following result.

Theorem 2

Let Π be a program, L be assumptions, and 0 ≤ d ≤ n with n := |cycles(Π)|. We can

compute aLd in time O(m · |τ(G(Π))|) where m =
∑

i≤d

(
n
i

)
.

Note that if we choose an even d, we will stop on adding back, potentially overcounting,

and otherwise we will stop on subtracting, potentially undercounting. Algorithm 2 ensures

that we end on an add-operation to avoid undercounting in Line 2. Furthermore, it uses

Lemma 4.2 as a termination criterion in Line 4.

Example 10

Consider program Π3 from Example 8, which has 6 supported models, namely, {{d},
{d, e, f}, {a, b, d}, {a, b, c}, {a, b, c, e, f}, {a, b, d, e, f}} of which {d} and {a, b, c} are an-

swer sets. Suppose we want to determine a
{d}
1 , then:

a
{d}
1 = |S(Π[{d}])| − |S(Π[{d} ∪B(λ(C0))])| − |S(Π[{d} ∪B(λ(C1))])|

= |S(Π[{d}])| − |S(Π[{d, a, b,¬c,¬g}])| − |S(Π[{d, e, f,¬g}])|
= 4− 2− 2 = 0.

We see that restricting the alternation depth to 1, leads to undercounting. However, not

restricting the depth leads to the exact count as:

a
{d}
2 = a

{d}
1 + |S(Π[{d} ∪B({λ(C0), λ(C1)})])| = a

{d}
1 + |S(Π[{d, a, b, e, f,¬c,¬g}])|

= 0 + 1 = 1 = |AS(Π3[{d}])|.
�

Preprocessing Cycles. When computing the incremental count aLi , we can implement

a simple preprocessing step. Recall that an unsatisfiable propositional formula remains

unsatisfiable when adding additional clauses (Kleine Büning and Lettmann 1999). Hence,

if the conjunction of an unsupported constraint and assumption leads to an unsatisfiable

formula, we can immediately obtain the resulting supported model count.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 15

a b

cde f

g h

Fig. 4. The positive dependency graph of program Π4 from Example 11.

Example 11

Consider program Π4 given as follows:

Π4 = {a← b, b← a, b← c, c← b,

a← d, d← a, c← d, d← c,

a← g, b← ¬h, c← f, d← ¬e,
e← ¬g, g ← ¬e, f ← ¬h, h← ¬f}.

The supported models of Π4 are S(Π4) = { {e, h}, {a, b, c, d, g, h}, {a, b, c, d, f, g},
{a, b, c, d, e, h}, {a, b, c, d, e, f}}. The answer sets of Π4 are AS(Π4) = S(Π4) \
{{a, b, c, d, e, h}}. The program Π4 admits eight cycles, which are illustrated in Figure 4

by the positive dependency graph of Π4. Hence, the unsupported constraints of Π4 are

λ(C0) = ⊥ ← a, b,¬c,¬d,¬g, λ(C1) = ⊥ ← b, c,¬a,¬d,¬f,
λ(C2) = ⊥ ← c, d,¬a,¬b,¬f, λ(C3) = ⊥ ← a, b, c,¬d,¬f,¬g,
λ(C4) = ⊥ ← a, b, d,¬c,¬g, λ(C5) = ⊥ ← a, c, d,¬b,¬f,¬g,
λ(C6) = ⊥ ← b, c, d,¬a,¬f, λ(C7) = ⊥ ← a, b, c, d,¬f,¬g.

According to Corollary 3, we have that |AS(ΠL
4 )| = aL8 . Regarding the preprocess-

ing for cycles. Assume that we have L = {¬a, b}. Then, we can restrict Λd(Π) =

{λ(C0), . . . , λ(C7)} to U = {λ(C1), λ(C6)}. In consequence,

|S(Π[L] ∪ U)| = |S(Π[L])| − |S(Π[L ∪B(λ1)])| − |S(Π[L ∪B(λ6)])|
+ |S(Π[L ∪B({λ1, λ6})])|

= 0− 0− 0 + 0 = 0 = |AS(Π4[L])|.
�

5 Empirical evaluation

To demonstrate the capability of our approach, we implement the functionality into a

tool that we call iascar (incremental answer set counter with anytime refinement and

counting graph compressor). Our prototypical system is publicly available.1 Below, we

outline implementation details and illustrate the results of a series of practical experi-

ments, which aim at evaluating the feasibility of our approach and its limitations. We

explain the design of experiments, our expectations, and examine our expectations within

a set of instances originating in an AI problem, a prototypical ASP problem, standard

combinatorial puzzles, and graph problems.2

1 The latest version can be found on github at https://github.com/drwadu/iascar .
2 Experimental data, including a Linux binary and the source code of the evaluated version of iascar,
is available at https://doi.org/10.5281/zenodo.10091992 (Fichte et al. 2023).

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://github.com/drwadu/iascar
https://doi.org/10.5281/zenodo.10091992
https://doi.org/10.1017/S1471068424000036


16 J. K. Fichte et al.

Design of Experiments. We design an empirical evaluation to study the questions:

1. Can we obtain sd-DNNFs for supported model counting by modern knowledge

compilers?

2. Are these resulting sd-DNNFs feasible for our incremental answer set counting?

3. How does incremental counting on sd-DNNFs compare to translating ASP instances

into CNFs and run state-of-the-art model counters?

4. Since our technique aims at improving counting multiple times and under vary-

ing assumptions, do we benefit from the potentially expensive construction of sd-

DNNFs when counting multiple times?

5. What are the qualitative effects of the inclusion–exclusion-based approach to reduce

the over-counting that initially occurs when only supported models are constructed

but reduced gradually?

Implementation Details. Our system iascar is written in Rust and builds upon well-

established tools, namely, gringo for constructing ground instances (Gebser et al. 2011),

the Aalto ASP Tools for converting extended rules (Bomanson et al. 2016) and construct-

ing Clark’s completion (Gebser et al. 2011), and c2d to compile CNFs into a DNNF

(Darwiche 2004, 1999). In more detail, we implement Algorithms 1 and 2, which first

construct a CCG and then count based on the inclusion–exclusion technique. We assume

the input program to be ground, if not we use gringo to construct a propositional in-

stance (Gebser et al. 2011). To obtain a CCG from a propositional program, we first

convert extended rules of the ground input program into normal rules using the tool

lp2normal (Bomanson et al. 2016). Then, we construct a positive dependency graph

from the propositional program and encode simple cycles, that is, only the first and

last vertex repeat, as unsupported constraints. According to Corollary 3, we need to

take all cycles into account to obtain the exact number of answer sets of an instance.

Separately, we store the completion of the resulting program as a CNF using lp2sat (Jan-

hunen 2006). Afterward, we compile the resulting CNF into an (sd-D)NNF by employing

c2d (Darwiche 2004, 1999).

Model Counters for Comparison. Later, we compare our system to existing tools for

counting. Natural approaches for counting are: (a) We employ answer set counters. (b) We

enumerate answer sets by a recent answer set solver. (c) Alternatively, we translate the

propositional input program into a propositional formula and run state-of-the-art pre-

processors and model counters on the resulting formula. We require a one-to-one corre-

spondence between the answer sets and the satisfying assignments for the translation.

Unfortunately, existing answer set counters focus on extended functionality like prob-

abilistic reasoning (Fichte et al. 2022c), algebraic semi-rings (Eiter et al. 2021), or are

tailored toward approximate counting (Kabir et al. 2022) or certain structural restric-

tions of the instance (Fichte et al. 2017). Therefore, we omit tools listed in (a) from an

evaluation. For (b), we use the answer set solver clingo (Gebser et al. 2009) to enumer-

ate answer sets. To speed up solving, we do not output the answer sets. Since there have

been recent advances on enumerating answer sets (Alviano et al. 2023), we also include

the solver wasp, where we state only the number of answer sets and report only one

configuration, since we observe no notable difference.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 17

For repeated counting with clingo, one could store the enumerated answer sets and

implement fast data structures to test whether an element belongs to a set (Bloom

1970; Weaver et al. 2012) or count (Meel et al. 2018). To our knowledge, there is no

implementation that follows this direction and we did not implement it ourselves. For

(c), we turn the input program into a propositional program using gringo, convert

extended rules (Bomanson et al. 2016) into normal rules (lp2normal), construct Clark’s

completion (Gebser et al. 2011) (lp2sat), and add level mappings (lp2atomic). Then,

we apply bipartition and elimination as a preprocessing step using b+e (Lagniez and

Marquis 2017b) and evaluate leading solvers of the model counting competition (Fichte

and Hecher 2023; Fichte et al. 2021a) using different conceptual techniques. Therefore, we

take c2d (Darwiche 2004), d4 (Lagniez and Marquis 2017a), and sharpsat-td (Korhonen

and Järvisalo 2021). Each solver counts satisfying assignments on propositional formulas

given as CNF. We consider approximate counting (Chakraborty et al. 2014), which is

interesting for projected counting or settings where we cannot expect a solution from

exact model counters. Since we observe no notable performance gain in this setting, we

omit it below.

Platform, Measure, and Restrictions. We evaluated our system on two platforms (a)

laptop for a user-tailored evaluation on instances with more detailed interest and (b) a

systematic evaluation on a larger set of benchmark instances. For (a), we ran the experi-

ments on an 8-core intel I7-10510U CPU 1.8 GHz with 16 GB of RAM, running Manjaro

Linux 21.1.1 (Kernel 5.10.59-1-MANJARO). For (b), we used a high-performance cluster

consisting of 12 nodes. Each node of the cluster is equipped with two Intel Xeon E5-

2680v3 CPUs, where each of these 12 physical cores runs at 2.5 GHz clock speed and

has access to 64 GB shared RAM. Results are gathered on Linux RHEL 7 powered on

kernel 3.10.0-1127.19.1.el7 with hyperthreading disabled. Transparent huge pages are set

to system default (Fichte et al. 2020). We follow standard guidelines for empirical evalu-

ations (van der Kouwe et al. 2018; Fichte et al. 2021b) and measure runtime using perf

and enforce limits using runsolver (Roussel 2011). We mainly compare wall clock time.

Run times larger than 900 s count as timeout and main memory (RAM) was restricted

to 8 GB. We chose a small timeout due to the interest in fast counting and fast counting

multiple times as outlined in the design of experiments. We ran jobs exclusively on one

machine, where solvers were executed sequentially with exclusive access and at most four

other runs were executed on the same node.

Instances. For our experiment, we select instances that result in varying NNF sizes,

CCG sizes, and the number of simple cycles, answer sets, and supported models. We

expect prototypical problems for counting multiple times to be found in probabilistic

settings. However, this area is entirely unexplored for ASP. Gradually investigating the

search space of an ASP instance, so-called navigation is an application for counting mul-

tiple times on the same instance under assumptions. Nevertheless, there are no standard

ASP benchmark sets and ASP competitions (Gebser et al. 2017; Dodaro et al. 2019)

are either tailored for modeling problems or solving decision or optimization problems.

Therefore, we consider different types of instances. Set (S1) contains 242 instances that

solve a problem in AI. Set (S2) consists of 936 instances of a prototypical ASP problem.

Set (S3) includes a very small set of instances of combinatorial problems. The instances

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


18 J. K. Fichte et al.

in sets (S1) and (S2) have been used in previous works on ASP and counting (Eiter et al.

2021; Besin et al. 2021; Hecher 2022). Set (S1) encodes finding extensions of an argu-

mentation framework (Fichte et al. 2022b; Dvořák et al. 2020; Gaggl et al. 2020). While

there have been various iterations of the argumentation competition ICCMA, we focused

on instances from 2017 (Gaggl et al. 2020), and encode conflict-free sets of abstract argu-

mentation instances. These instances have a relatively high number of answer sets and are

cycle-free. In contrast, the 2019 instances are easy to enumerate (Bistarelli et al. 2020).

The 2021 instances have only a relatively small number of solutions (Mailly et al. 2021).

The ASP encoding for conflict-free sets originates in the abstract argumentation system

ASPARTIX (Dvořák et al. 2020). More insights on counting and abstract argumentation

frameworks and their varying semantics are available in the literature (Dewoprabowo

et al. 2022). Set (S2) consists of instances that encode a prototypical ASP domain with

reachability and use of transitive closure containing cycles. While the previous set can

be done by encoding ASP instances into SAT without the use of level mappings, this

set provides us with a domain to distinguish the effect of cycles. Reachability on these

instances is considered on quite large real-world graphs of public transport networks from

all over the world, Dell et al. (2017). We select graphs that either incorporate no partic-

ular means of public transport or all of them. Further, we omit unsatisfiable instances

thereof. Set (S3) contains the well-known n-queens problem for n ∈ {8, 10, 12}; a sudoku

sub-grid (3x3 grid) that has to be filled uniquely with numbers from 1 to 9; the 3-coloring

problem on a graph (3 coloring) and an encoding that ensures arbitrary 2-coloring for

the same graph (arb 2 coloring). These instances admit no simple cycles.

Setup. Since instances from the sets (S1) and (S2) contain many instances, we evalu-

ate these on a cluster and summarize the details in Table 1. In addition, we report on

interesting instances in more detail in Table 2. There, we omit (S1) due to absence of

cycles. For counting under assumptions, we select from the given instance uniform at

random three atoms and set them randomly to true or false. By setting few assumptions,

we ensure that only few solutions are cut. For considered solvers, we count answer sets

and supported models and repeat two times counting under up to three random assump-

tions. For iascar we run varying alternation depth until we reach a fixed-point as by

Lemma 4.2.

Expectations. Before we state the results, we formulate expectations from the design of

experiment and our theoretical understanding.

(E1.1): When counting multiple times, iascar outperforms existing systems.

(E1.2): When counting once, iascar is notably slower due to the overhead caused by

compilation and compression.

(E1.3): Compiling sd-DNNFs from formulas that encode answer sets takes much longer

than when compiling supported models. Most of the time is spend on the com-

pilation for iascar if the number of cycles is small.

(E2.1): Compressing the counting graph can significantly reduce its size and works fast.

(E2.2): The runtime of iascar depends on the number of cycles and size of the CCG

due to the structural parameter of the underlying algorithm.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 19

Table 1. Comparing runtimes of different solvers when directly counting answer sets

by enumeration (clingo, wasp), counting answer sets on a translation to SAT (c2d,

sharpsat-td, d4), using incremental answer-set counting (iascar), or using incremen-

tal answer-set counting (iascar-d2) of depth two. iascar* and iascar-d2* refer to

runs where, regardless of the timeout, a bound (anytime count) was obtained. We omit

iascar-d2 due to relevance for (S1) and (S3). (S1) consists of 242 instances, (S2) of

936 instances, and (S3) of 6 instances. # refers to the number of solved instances within

the timeout of 900 s. The average time of the compilation phase for solved instances com-

prises both sd-DNNF[s] (average time for translating into CNF and sd-DNNF compila-

tion) and ccg[s] (average time for counting graph compression and encoding unsupported

constraints). a[s] refers to the average runtime of the counting step. #AS contains the

count in log10 notation, which equals the number of answer sets for all solvers except

iascar-d2, iascar* and iascar-d2*.

Set Solver # sd-DNNF[s] ccg[s] a[s] #AS

S1 sharpsat-td 183 – – 33.6 104.4
c2d 182 – – 41.5 104.9
iascar 180 24.1 32.0 0.1 106.0
d4 174 – – 8.3 30.8
clingo 96 – – 4.4 4.3
wasp 78 – – 12.7 3.7

S2 clingo 397 – – 21.2 2.2
d4 352 – – 70.1 1.6
iascar* 343 5.7 33.4 524.2 12.7
iascar-d2* 343 5.7 32.1 266.6 13.0
wasp 341 – – 9.3 1.5
sharpsat-td 330 – – 66.5 1.6
c2d 318 – – 105.2 1.5
iascar-d2 241 3.1 2.3 46.5 6.5
iascar 131 0.9 2.8 14.8 0.2

S3 iascar 6 30.0 29.8 0.2 10.8
d4 6 – – 8.8 10.8
sharpsat-td 6 – – 45.8 10.8
c2d 6 – – 15.8 10.8
clingo 4 – – 2.9 3.6
wasp 3 – – 12.5 3.0

(E2.3): If the instance has few cycles, counting works fast. Otherwise, depth restriction

makes our approach utilizable.

(E3): There are instances on which simple cycles are not sufficient for counting answer

sets.

Observations and Results. We summarize our results in Tables 1 and 2. We exclude (S1)

from Table 2 due to absence of cycles. Experimental data and instances are publicly

available (Fichte et al. 2023).

(O1): In Tables 1 and 2, we see that iascar can compute the answer sets fast if the

number of cycles is small or only few cycles are present. When taking a look onto

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


20
J
.
K
.
F
ich

te
et

a
l.

Table 2. For selected interesting instances from the considered sets, we compare runtimes of iascar for compiling the input program to an

NNF when directly counting answer sets (cnf), counting supported models (sup), converging to the answer set count (A) under assumptions

with specified alternation depth (d) of several instances with varying numbers of simple cycles (#SC), compressing counting graphs (T), and

supported models (#S), sd-DNNF sizes (sd-DNNF size) and CCG sizes (CCG size). Depths marked with * indicate restricting alternation

depths to the corresponding value.

Set Instance cnf[s] sup[s] A[s] T[s] #S #AS #SC d sd-DNNF size CCG size

S2 nrp autorit 6.6 0.4 0.0 0.0 1.6× 1001 4.0× 1001 5 5 166 123
S2 nrp hanoi 280.2 4.1 0.3 0.0 1.0× 1014 3.2× 1012 77 *2 4119 3128
S2 nrp berkshire 311.3 2.7 5.0 0.0 1.2× 1013 0.0× 1000 206 *2 10,626 7914
S2 nrp bart 105.1 2.1 0.1 0.0 2.3× 1007 5.8× 1006 46 *2 1645 1223
S2 nrp aircoach 253.8 3.2 1.6 0.0 8.6× 1011 0.0× 1000 130 *2 8874 6667
S2 nrp kyoto 0.0 0.0 0.0 0.0 2.0× 1000 0.0× 1000 2 2 57 38
S3 8 queens 5.2 4.5 0.0 0.0 9.2× 1001 0.0× 1000 0 0 48, 791 3490
S3 10 queens 9.7 6.9 0.0 0.0 7.2× 1002 1.2× 1001 0 0 532, 645 31, 172
S3 12 queens 95.6 46.0 0.1 0.7 1.4× 1004 7.5× 1001 0 0 12,529,332 649,354
S3 3x3 grid 5.7 4.5 0.0 0.1 3.6× 1005 7.2× 1002 0 0 788, 711 210, 893
S3 3 coloring 8.5 7.2 0.0 0.0 1.0× 1017 3.0× 1016 0 0 6677 2839
S3 arb 2 coloring 0.4 0.4 0.0 0.0 5.2× 1033 6.5× 1032 0 0 1061 446

https://doi.org/10.1017/S1471068424000036 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 21

Table 2, we see that instances such as 3 coloring or arb 2 coloring can be solved

fast despite the high number of solutions. This confirms our Expectation (E1.1).

(O2): We observe in Table 1 that while the ASP solver clingo suffers as soon as the

number of instances is high, dedicated model counters can compute the number

of answer sets quite fast on the considered instances. In fact, the overall time is

faster than the overall time for iascar, which confirms our Expectation (E1.2).

When inspecting the number of cycles as well, it confirms our Expectation (E2.3).

(O3): In Table 1, we can see that iascar spends a notable time during the phase of

constructing sd-DNNFs of a CNF if the instance has few or no cycles. Interestingly,

in our experiments we have seen that constructing an sd-DNNF of a CNF can

vary notably ranging from 0.1 s to 472.0 s for (S1) and ranges within a few seconds

for (S2). When we encode answer sets instead of supported models into a CNF,

we obtain significantly higher runtimes for compiling the CNF into sd-DNNF.

In contrast, iascar might allow fast compilation, but can result in extremely

high runtimes when applying the inclusion–exclusion principle. This only partially

confirms our Expectation (E1.3). Table 2 provides a more detailed observation for

selected instances. We see that on smaller instances such as 8 queens, 3x3 grid, or

arb 2 coloring, we can compile and count answer sets in reasonable time. Whereas

on instances such as nrp hanoi or nrp berkshire we observe a high runtime; in

particular, there we see that sd-DNNFs can become quite large.

(O4): In Table 2 column T[s], we can see that there are instances where compressing

the counting graph can significantly reduce its size. On many instances, we see

a reduction by one order, for example, 10 queens by factor 17.1 and 12 queens

by 19.3. Still, for 3x3 grid, we see a reduction by 3.7. This confirms Expecta-

tion (E2.1), but there we cannot necessarily expect an improvement, which is not

unsurprising due to the nature of this simplification step. In fact, compressing

instances with a large number of cycles, such as nrp berkshire, is less effective

than on those with a small number of cycles, such as nrp kyoto and 12 queens.

(O5): By correlating Observation (O3) with column #SC in Table 2, we can see that

instances, which can be solved fast, have no simple cycles. This pattern still holds,

if we take a look on Table 1 for more instances. When considering only a few cy-

cles as in iascar-d2, which considers only depth two, we can see that instances

for (S2) result in significantly more solved instances, but a high over-count. This

matches with our expectation (E2.2) and the knowledge on how CNFs are gener-

ated from a program as cycles are a primary source of hardness in ASP. Unsurpris-

ingly, compiling CNFs without level mappings/loop formulas, as stated in column

sup[s], works much faster. This is particularly visible for instances nrp hanoi,

nrp berkshire, nrp bart, or nrp aircoach.

(O6): From columns #SC, depth, and A[s] in Table 2, we can see that the runtime on the

illustrated instances depends on both parameters. A medium number of simple

cycles and depth effects the runtime; similar to high number of simple cycles and

small depth. Still, with a high number of simple cycles and a small depth, we

can obtain the count under assumption sufficiently fast. This partially confirms

our Expectation (E2.2). Interestingly, the size of the CCG itself has a much less

impact than anticipated, see instance 12 queens.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


22 J. K. Fichte et al.

(O7): Consider Table 2. The runtime, as stated in column A[s], indicates that we can

still obtain a reasonable count for instances, which ran with restricted depth,

marked by *; see for example nrp hanoi, nrp aircoach, or nrp berkshire.

(O8): Finally, note that in Table 2 there is one instance, namely, nrp autorit, for which

we over-counted by 3 when restricting to simple cycles, which confirms Expecta-

tion (E3). However, on all other instances, we obtained the exact count.

Summary. The evaluation indicates that our approach clearly pays off on instances con-

taining reasonably many cycles. In particular, we see promising results when counting

under assumptions, clearly benefiting from knowledge compilation. Compression of the

counting graph works reasonably fast and can significantly reduce its size. Overall, the

drawn experiments allowed us to confirm our expectations we stated before running the

experiments. However, we see that our approach shows only benefits if the number of

cycles is sufficiently small and whenever we are interested in counting multiple times.

We expect that additional preprocessing pays off, if we can either exclude cases where

there are no answer sets possible or where we can reduce the instance size notably, as

with preprocessing of propositional formulas. Further, since knowledge compilation might

consume larger parts of our overall runtime, we immediately expect better performance

with the availability of improved and optimized knowledge compilers.

6 Conclusion

We establish a novel technique for counting answer sets under assumptions combining

ideas from knowledge compilation and combinatorial solving. Knowledge compilation

and known transformations of ASP programs into CNF formulas already provide a basic

toolbox for counting answer sets. However, compilations suffer from overhead when con-

structing CNFs. Our approach is similar to propagation-based solving when searching for

one solution. We construct compilations that allow reasoning for supported models and

apply a combinatorial principle to count answer sets. Our approach gradually reduces

the over-counting we obtain when considering supported models. Further, we introduce

domain-specific simplification techniques for counting graphs.

We expect our technique to be useful for navigating answer sets or answering prob-

abilistic questions on ASP programs, requiring repeated counting questions under as-

sumptions. Thereby, we see particular potential of our quantitative technique in the

study and analysis of existing solving approaches and heuristics, especially through the

lense of answer set navigation, where we expect synergies. For instance, feasible repeated

counting might yield useful counting-based metrics in the context of searching diverse an-

swer sets (Böhl et al. 2023; Böhl and Gaggl 2022). Another interesting application could

be to augment visual representations of answer sets (Dachselt et al. 2022; Hahn et al.

2022) with designated quantitative characteristics, such as relative frequencies obtained

by repeated counting under assumptions.

For future work, we plan to investigate techniques to reduce the size of compilations for

supported models, which can, in fact, already be a bottleneck due to the added clauses

modeling the support of an atom. There, domain-specific preprocessing or an alternative

compilation could be promising. Furthermore, fast identification of unsatisfiable cases by

incremental SAT solving could be interesting to evaluate. From the practical side, it is

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 23

seems also be interesting whether we can speed up counting by GPUs (Fichte et al. 2021c)

or database technology (Fichte et al. 2022e) in the ASP navigation setting. From the

theoretical side, questions on the effectiveness of knowledge compilations in ASP might

be interesting and similar to considerations for formulas (Darwiche and Marquis 2002).

Finally, we believe that verifiable results would also be interesting when exact bounds

are required, similar to techniques that have recently been developed in propositional

counting (Fichte et al. 2022d; Beyersdorff et al. 2023; Bryant et al. 2023).

References

Alviano, M., Dodaro, C., Fiorentino, S., Previti, A. and Ricca, F. 2023. ASP and subset
minimality: Enumeration, cautious reasoning and MUSes. Artificial Intelligence, 320, 103931,
1–25.

Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming. Elsevier, 89–148.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge, UK.

Besin, V., Hecher, M. and Woltran, S. 2021. Utilizing treewidth for quantitative reasoning
on epistemic logic programs. Theory and Practice of Logic Programming, 21, 5, 575–592.

Beyersdorff, O., Hoffmann, T. and Spachmann, L. N. 2023. Proof Complexity of Propo-
sitional Model Counting. In Proceedings of the 26th International Conference on Theory and
Applications of Satisfiability Testing (SAT’23), M. Mahajan and F. Slivovsky, Eds. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 271. Dagstuhl Publishing, 2:1–2:18.

Bistarelli, S., Kotthoff, L., Santini, F. and Taticchi, C. 2020. A first overview of
iccma’19. In Proceedings of the Workshop on Advances in Argumentation in Artificial Intel-
ligence 2020 co-located with the 19th International Conference of the Italian Association for
Artificial Intelligence (AIxIA’20), B. Fazzinga, F. Furfaro and F. Parisi, Eds. CEURWorkshop
Proceedings, vol. 2777. CEUR-WS.org, 90–102.

Bloom, B. H. 1970. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7), 7, 422–426.

Bogaerts, B. and den Broeck, G. V. 2015. Knowledge compilation of logic programs using
approximation fixpoint theory. Theory and Practice of Logic Programming, 15, 4-5, 464–480.

Böhl, E. and Gaggl, S. A. 2022. Tunas - fishing for diverse answer sets: A multi-shot trade up
strategy. In Proceedings of the 16th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’22), G. Gottlob, D. Inclezan and M. Maratea, Eds. Lecture
Notes in Computer Science, vol. 13416. Springer, 89–102.

Böhl, E., Gaggl, S. A. and Rusovac, D. 2023. Representative answer sets: Collecting some-
thing of everything. In Proceedings of the 26th European Conference on Artificial Intelligence
(ECAI’23), K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein and R. Radulescu, Eds. FAIA, vol.
372. IOS Press, 271–278.

Bomanson, J., Gebser, M. and Janhunen, T. 2016. Rewriting optimization statements in
answer-set programs. In Technical Communications of the 32nd International Conference
on Logic Programming (ICLP’16), M. Carro, A. King, N. Saeedloei and M. D. Vos, Eds.
OpenAccess Series in Informatics (OASIcs), vol. 52, Dagstuhl, Germany. Dagstuhl Publish-
ing, 5:1–5:15.

Bondy, J. A. and Murty, U. S. R. 2008. Graph Theory. Graduate Texts in Mathematics.
Springer.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM, 54, 12, 92–103.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


24 J. K. Fichte et al.

Bryant, R. E., Nawrocki, W., Avigad, J. and Heule, M. J. H. 2023. Certified knowledge
compilation with application to verified model counting. In Proceedings of the 26th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT’23), M. Mahajan
and F. Slivovsky, Eds. Leibniz International Proceedings in Informatics (LIPIcs), vol. 271.
Dagstuhl Publishing, 6:1–6:20.

Chakraborty, S., Fremont, D. J., Meel, K. S., Seshia, S. A. and Vardi, M. Y. 2014.
Distribution-aware sampling and weighted model counting for SAT. In Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14), C. E. Brodley and P. Stone,
Eds., Québec City, QC, Canada. The AAAI Press, 1722–1730.

Clark, K. L. 1978. Negation as failure. In Logic and Data Bases. Springer, 293–322.

Dachselt, R., Gaggl, S. A., Krötzsch, M., Méndez, J., Rusovac, D. and Yang, M. 2022.
NEXAS: A visual tool for navigating and exploring argumentationsolution spaces. In Proceed-
ings of the 9th International Conference on Computational Models of Argument (COMMA’22),
F. Toni, Ed. FAIA, vol. 220146. IOS Press, 116–127.

Darwiche, A. 1999. Compiling knowledge into decomposable negation normal form. In Pro-
ceedings of the 16th International Joint Conference on Artificial Intelligence, (IJCAI’99),
T. Dean, Ed. Morgan Kaufmann, 284–289.

Darwiche, A. 2001. On the tractable counting of theory models and its application to truth
maintenance and belief revision. Journal of Applied Non-Classical Logics, 11, 1-2, 11–34.

Darwiche, A. 2004. New advances in compiling CNF to decomposable negation normal form.
In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04), R. López
De Mántaras and L. Saitta, Eds., Valencia, Spain. IOS Press, 318–322.

Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

Dell, H.,Komusiewicz, C., Talmon, N. andWeller, M. 2017. The pace 2017 parameterized
algorithms and computational experiments challenge: The second iteration. In Proceedings
of the 12th International Symposium on Parameterized and Exact Computation, IPEC’17,
D. Lokshtanov and N. Nishimura, Eds. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl Publishing, 30:1—30:13.

Dewoprabowo, R., Fichte, J. K., Gorczyca, P. J. and Hecher, M. 2022. A practical
account into counting dung’s extensions by dynamic programming. In Proceedings of the 16th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’22),
G. Gottlob, D. Inclezan and M. Maratea, Eds. Springer, 387–400.

Dimopoulos, Y., Nebel, B. and Koehler, J. 1997. Encoding planning problems in nonmono-
tonic logic programs. In Proceedings of the 4th European Conference on Planning (ECP’97),
S. Steel and R. Alami, Eds. Springer, 169–181.

Dodaro, C., Redl, C. and Schüller, P. 2019. The answer set programming challenge.
https://sites.google.com/view/aspcomp2019/.

Dvořák, W., Gaggl, S. A., Rapberger, A., Wallner, J. P. and Woltran, S. 2020. The
ASPARTIX system suite. In Proceedings of the 8th International Conference on Computational
Models of Argument (COMMA’20), H. Prakken, S. Bistarelli, F. Santini and C. Taticchi, Eds.
FAIA, vol. 326. IOS Press, 461–462.

Eiter, T., Hecher, M. and Kiesel, R. 2021. Treewidth-aware cycle breaking for alge-
braic answer set counting. In Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’21), M. Bienvenu, G. Lakemeyer and
E. Erdem, Eds. IJCAI Organization, 269–279.

Fages, F. 1994. Consistency of clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science, 1, 1, 51–60.

Ferraris, P., Lee, J. and Lifschitz, V. 2006. A generalization of the lin-zhao theorem. Annals
of Mathematics and Artificial Intelligence, 47, 79–101.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://sites.google.com/view/aspcomp2019/
https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 25

Fichte, J. K., Gaggl, S. A., Hecher, M. and Rusovac, D. 2022a. IASCAR: Incremental an-
swer set counting by anytime refinement. In Proceedings of the 16th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’22), G. Gottlob, D. Inclezan
and M. Maratea, Eds. Lecture Notes in Computer Science, vol. 13416. Springer, 217–230.

Fichte, J. K., Gaggl, S. A., Hecher, M. and Rusovac, D. 2023. IASCAR: Incremental
answer set counting by anytime refinement (experiments).

Fichte, J. K., Gaggl, S. A. and Rusovac, D. 2022b. Rushing and strolling among answer
sets – navigation made easy. In Proceedings of the 36th AAAI Conference on Artificial Intel-
ligence (AAAI’22). AAAI Press, 5651–5659.

Fichte, J. K. and Hecher, M. 2023. The model counting competitions 2021–2023. https://
mccompetition.org/past_iterations.

Fichte, J. K., Hecher, M. and Hamiti, F. 2021a. The model counting competition. ACM
Journal of Experimental Algorithmics, 26a, 1–26.

Fichte, J. K., Hecher, M., McCreesh, C. and Shahab, A. 2021b. Complications for com-
putational experiments from modern processors. In Proceedings of the 27th International Con-
ference on Principles and Practice of Constraint Programming, (CP’21), L. D. Michel, Ed.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 210. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 25:1–25:21.

Fichte, J. K., Hecher, M., Morak, M. and Woltran, S. 2017. Answer set solving with
bounded treewidth revisited. In Proceedings of the 14th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 132–145.

Fichte, J. K., Hecher, M. and Nadeem, M. A. 2022c. Plausibility reasoning via projected
answer set counting - a hybrid approach. In Proceedings of the 31st International Joint Confer-
ence on Artificial Intelligence, (IJCAI’22), L. D. Raedt, Ed. International Joint Conferences
on Artificial Intelligence Organization, 2620–2626.

Fichte, J. K., Hecher, M. and Roland, V. 2021c. Parallel model counting with CUDA: Al-
gorithm engineering for efficient hardware utilization. In Proceedings of the 27th International
Conference on Principles and Practice of Constraint Programming (CP’21), L. D. Michel,
Ed. Leibniz International Proceedings in Informatics (LIPIcs), vol. 210. Dagstuhl Publishing,
24:1–24:20.

Fichte, J. K., Hecher, M. and Roland, V. 2022d. Proofs for Propositional Model Counting.
In Proceedings of the 25th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT’22), K. S. Meel and O. Strichman, Eds. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 236, Dagstuhl, Germany. Dagstuhl Publishing, 30:1–30:24.

Fichte, J. K., Hecher, M., Thier, P. and Woltran, S. 2022e. Exploiting database manage-
ment systems and treewidth for counting. Theory and Practice of Logic Programming, 22e,
1, 128–157.

Fichte, J. K.,Manthey, N., Schidler, A. and Stecklina, J. 2020. Towards faster reasoners
by using transparent huge pages. In Proceedings of the 26th International Conference on
Principles and Practice of Constraint Programming (CP’20), H. Simonis, Ed. Lecture Notes
in Computer Science. Springer, 304–322.

Fierens, D., den Broeck, G. V., Renkens, J., Shterionov, D. S., Gutmann, B., Thon, I.,
Janssens, G. and Raedt, L. D. 2015. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of Logic Programming, 15, 3, 358–401.

Gaggl, S. A., Linsbichler, T., Maratea, M. and Woltran, S. 2020. Design and results
of the second international competition on computational models of argumentation. Artificial
Intelligence, 279, 103193.

Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In
Proceedings of the 11th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’11), J. P. Delgrande and W. Faber, Eds. Springer, 345–351.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://mccompetition.org/past_iterations
https://mccompetition.org/past_iterations
https://doi.org/10.1017/S1471068424000036


26 J. K. Fichte et al.

Gebser, M., Kaufmann, B. and Schaub, T. 2009. The conflict-driven answer set solver clasp:
Progress report. In Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), E. Erdem, F. Lin and T. Schaub, Eds. Springer,
509–514.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187-188, 52–89.

Gebser, M., Maratea, M. and Ricca, F. 2017. The design of the seventh answer set program-
ming competition. In Proceedings of the 14th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Janhunen, Eds. Springer,
3–9.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference and Symposium on Logic Programming
(ICLP/SLP’88), R. A. Kowalski and K. A. Bowen, Eds., vol. 2. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 3/4, 365–386.

Hahn, S., Sabuncu, O., Schaub, T. and Stolzmann, T. 2022. Clingraph: ASP-based vi-
sualization. In Proceedings of the 16th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’22), G. Gottlob, D. Inclezan and M. Maratea, Eds. Lec-
ture Notes in Computer Science, vol. 13416. Springer, 401–414.

Hecher, M. 2022. Treewidth-aware reductions of normal ASP to SAT – Is normal ASP harder
than SAT after all? Artificial Intelligence, 304, 103651.

Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics, 16, 1-2, 35–86.

Janhunen, T. and Niemelä, I. 2011. Compact translations of non-disjunctive answer set pro-
grams to propositional clauses. In Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning – Essays Dedicated to Michael Gelfond on the Occasion of His 65th
Birthday, M. Balduccini and T. Son, Eds. Lecture Notes in Artificial Intelligence, vol. 6565.
Springer, 111–130.

Kabir, M., Everardo, F. O., Shukla, A. K., Hecher, M., Fichte, J. K. and Meel, K. S.

2022. ApproxASP – a scalable approximate answer set counter. Proceedings of the 36th AAAI
Conference on Artificial Intelligence (AAAI’22), 5755–5764.

Kleine Büning, H. and Lettmann, T. 1999. Propositional Logic – Deduction and Algorithms.
Cambridge Tracts in Theoretical Computer Science, vol. 48. Cambridge University Press.

Korhonen, T. and Järvisalo, M. 2021. Integrating tree decompositions into decision heuris-
tics of propositional model counters. In Proceedings of the 27th International Conference on
Principles and Practice of Constraint Programming (CP’21), L. D. Michel, Ed. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 210, Dagstuhl, Germany. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 8:1–8:11.

Kuiter, E., Krieter, S., Sundermann, C., Thüm, T. and Saake, G. 2023. Tseitin or not
tseitin? the impact of cnf transformations on feature-model analyses. In Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering (ASE’22),
Rochester, MI, USA. ACM.

Lagniez, J., Lonca, E. and Marquis, P. 2016. Improving model counting by leveraging
definability. In Proceedings of 25th International Joint Conference on Artificial Intelligence
(IJCAI’16), S. Kambhampati, Ed., New York City, NY, USA. The AAAI Press, 751–757.

Lagniez, J. and Marquis, P. 2014. Preprocessing for propositional model counting. In Pro-
ceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’14), C. E. Brodley
and P. Stone, Eds., Québec City, QC, Canada. The AAAI Press, 2688–2694.

Lagniez, J. and Marquis, P. 2017a. An improved decision-DDNF compiler. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), C. Sierra, Ed.,
Melbourne, VIC, Australia. The AAAI Press, 667–673.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036


IASCAR: Incremental answer set counting by anytime refinement 27

Lagniez, J. and Marquis, P. 2017b. On preprocessing techniques and their impact on propo-
sitional model counting. Journal of Automated Reasoning, 58b, 4, 413–481.

Lautemann, C. 1983. Bpp and the polynomial hierarchy. Information Processing Letters, 17,
4, 215–217.

Lee, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’05), L. P. Kaelbling and A.
Saffiotti, Eds., vol. 19, Edinburgh, Scotland, UK. Professional Book Center, 503–508.

Lee, J. and Lifschitz, V. 2003. Loop formulas for disjunctive logic programs. In Proceedings
of the 19th International Conference on Logic Programming (LP’03), C. Palamidessi, Ed.
Lecture Notes in Computer Science, vol. 2916, Mumbai, India. Springer, 451–465.

Lee, J. and Wang, Y. 2015. A probabilistic extension of the stable model semantics. In 2015
AAAI Spring Symposia, Stanford University. AAAI Press.

Lifschitz, V. 1999. Action languages, answer sets, and planning. In The Logic Programming
Paradigm. Springer, 357–373.

Lifschitz, V. and Razborov, A. 2006. Why are there so many loop formulas? ACM Trans-
actions on Computational Logic, 7, 2, 261–268.

Lin, F. and Zhao, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157, 1-2, 115–137.

Mailly, J., Lonca, E., Lagniez, J. and Rossit, J. 2021. The fourth interna-
tional competition on computational models of argumentation (ICCMA’21). http://

argumentationcompetition.org/2021/index.html.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm: A 25-Year Perspective, K. R.
Apt, V. W. Marek, M. Truszczyński and D. S. Warren, Eds. Artificial Intelligence. Springer,
375–398.

Marek, W. and Subrahmanian, V. 1992. The relationship between stable, supported, default
and autoepistemic semantics for general logic programs. Theoretical Computer Science, 103,
2, 365–386.

Masina, G., Spallitta, G. and Sebastiani, R. 2023. On CNF Conversion for Disjoint SAT
Enumeration. In Proceedings of the 26th International Conference on Theory and Applications
of Satisfiability Testing (SAT’23), M. Mahajan and F. Slivovsky, Eds. Leibniz International
Proceedings in Informatics (LIPIcs), vol. 271, Alghero, Italy. Dagstuhl Publishing, 15:1–15:16.

Meel, K. S., Shrotri, A. A. and Vardi, M. Y. 2018. On hashing-based approaches to approx-
imate DNF-counting. In Proceedings of the 37th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’17), S. Lokam and R. Ra-
manujam, Eds., Leibniz International Proceedings in Informatics (LIPIcs), vol. 93, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 41:1–41:14.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25, 3-4, 241–273.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R. and Barry, M. 2001. An
a-prolog decision support system for the space shuttle. In Proceedings of the 3rd International
Symposium on Practical Aspects of Declarative Languages (PADL’01), I. V. Ramakrishnan,
Ed., Las Vegas, Nevada, USA. Springer, 169–183.

Pontelli, E., Son, T., Baral, C. and Gelfond, G. 2012. Answer set programming and
planning with knowledge and world-altering actions in multiple agent domains. In Correct
Reasoning – Essays on Logic-Based AI in Honour of Vladimir Lifschitz, E. Erdem, J. Lee, Y.
Lierler and D. Pearce, Eds. Lecture Notes in Computer Science, vol. 7265. Springer, 509–526.

Robinson, J. A. and Voronkov, A., Eds. 2001. Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press.

Roussel, O. 2011. Controlling a solver execution with the runsolver tool. Journal on Satisfia-
bility, Boolean Modeling and Computation, 7, 139–144.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

http://argumentationcompetition.org/2021/index.html
http://argumentationcompetition.org/2021/index.html
https://doi.org/10.1017/S1471068424000036


28 J. K. Fichte et al.

Sang, T., Beame, P. and Kautz, H. 2005. Performing Bayesian inference by weighted model
counting. In AAAI’05, Pittsburgh, Pennsylvania, USA. The AAAI Press.

Sipser, M. 1983. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (STOC’83), Boston, Massachusetts, USA,
330–335.

Spallitta, G., Sebastiani, R. and Biere, A. 2023. Enumerating disjoint partial models with-
out blocking clauses. CoRR, abs/2306.00461.

Stockmeyer, L. 1983. The complexity of approximate counting. In Proceedings of the 15h An-
nual ACM Symposium on Theory of Computing (STOC’83), New York, NY, USA. Association
for Computing Machinery, 118–126.

Stockmeyer, L. J. 1976. The polynomial-time hierarchy. Theoretical Computer Science, 3, 1,
1–22.

Toda, S. 1991. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20, 5, 865–877.

Truszczyński, M. 2011. Trichotomy and dichotomy results on the complexity of reasoning with
disjunctive logic programs. Theory and Practice of Logic Programming, 11, 881–904.

Tseytin, G. S. 1983. On the Complexity of Derivation in Propositional Calculus. Springer
Berlin Heidelberg, Berlin, Heidelberg, 466–483.

van der Kouwe, E., Andriesse, D., Bos, H., Giuffrida, C. and Heiser, G. 2018. Bench-
marking crimes: An emerging threat in systems security. CoRR, abs/1801.02381, 1–17.

Wang, Y. and Lee, J. 2015. Handling uncertainty in answer set programming. In Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), B. Bonet and S. Koenig,
Eds., Austin, TX, USA. The AAAI Press, 4218–4219.

Weaver, S. A., Ray, K. J., Marek, V. W., Mayer, A. J. and Walker, A. K. 2012.
Satisfiability-based set membership filters. Journal on Satisfiability, Boolean Modeling and
Computation, 8, 3-4, 129–148.

https://doi.org/10.1017/S1471068424000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000036

	Introduction
	Preliminaries
	Counting supported models
	Counting supported models under assumptions
	Compressing counting graphs

	Incremental counting by inclusion–exclusion
	Empirical evaluation
	Conclusion
	References

