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Abstract

Two kinds of multidimensional IFR distribution are defined by using a
partial order in R’, which is derived from a non-negative, strictly
increasing function in R”,. Some closure properties under operations and an
application to a shock model are discussed.

1. Definitions

The one-dimensional IFR class of distributions plays an important role in reliability
theory. Multidimensional IFR class of distributions should be considered when components
in a system are not independent of each other. Many definitions of multidimensional
IFR distributions have been presented by various authors; we present two of them below.

Let X =(X,, -+ -, X,) denote an n-dimensional non-negative random vector, having the
survival function

1.1 E(t, -+, t)=P{X,>t,, -, X,>t,}, =0, i=1,---,n

We define a partial order <, in R’} as follows: s, teR", s<,t if and only if every
component of s is less than or equal to the respective component of .

Definition 1.1. (a) X belongs to the first kind of n-dimensional IFR class (denoted by
X e n-IFR(Y)), if F(s + £)/F(¢) is decreasing in ¢ about the partial order <, for all s € R%;

(b) X belongs to the second kind of n-dimensional IFR class (denoted by Xen- IFR(II)) if
F(t + 8e)/F(t) is decreasing in ¢ about the partial order for all =0, where e=(1, ---, 1),
and n-IFR(I) c n-IFR(II) (see Marshall (1975)).

As in the one-dimensional case, they have a probabilistic meaning. Take X € n-IFR(I) as an
example, since

F(s+1)

F(r)
the conditional probability above is decreasing in ¢ under the partial order <,. That is, under
the condition that all components survive at time ¢, the residual life is stochastically

decreasing in each component of ¢. We give two definitions, such that the contribution of the
age X to (1.2) is not ¢, but a function of #:f(¢).

1.2) PX>s+t|X>t)=

Definition 1.2. Let f(¢) be a non-negative, strictly increasing function in R’,. We introduce
a partial order <, as follows: for ¢, ¢' € R",, if the equality f(#) = f(¢') holds, we call ¢ less than
¢’ about the function f, denoted by ¢#<,¢'. We call <, the partial order induced by f.

Remark. The partial order <, lacks the anti-symmetry property. Because this property is
not used in this paper, we also call it a partial order.
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Definition 1.3. (a) X belongs to the first kind of n-dimensional IFR class of distributions
about f (denoted by X € n-IFR(L, f)), if F(s + £)/F(¢) is decreasing in ¢ about the partial order
<;for all s e R"}, thatis for all t<;¢', seR’,

F(s+t)_F(s+¢)
F@®) — F(@)

(b) X belongs to the second kind of n-dimensional IFR class about f (denoted by
X e n-IFR(IL, f)), if F(t + de)/F(t) is decreasing in ¢ about the partial order <, for all 6 =0.

Obviously we have n-IFR(I, f) = n-IFR(IL, f).

For f(f) as defined above, the definition has a probabilistic meaning. That is, as f(¢)
increases, the conditional residual life of X is stochastically decreasing.

From ¢<,¢', we can get t<,¢', so we have n-IFR(i, f) cn-IFR(i), i =1, IIL.

2. Properties

Definition 2.1. Let h be a non-negative function on R". If for arbitrary t<,t', s<;s', we
have

h(t—s) h(t—s")]_
@D [h(t'—s) h(t’—s’)]=0'

Then we call h the first kind of Pélya function of order 2 about f, denoted by & € PF,(, f).
If (2.1) holds for s = de, s’ = 6'e, 6 =6', and arbitrary ¢<,¢', we call h the second kind of
Pélya function of order 2 about f, denoted by h € PF,(IL, f).

Theorem 2.1. If f is additive, then F € n-IFR(, f) if and only if F € PF,(i, f), i =1, 1I.

Proof. We prove only the case where i =1. The case where i =1II is similar. If 0 <,v, we

have _ _
For arbitrary t<,t', s </s’, let
u=t—s', v=t¢t—1t, w=s"—s.

From the additivity of f, we can get 0 <;v, then (2.2) shows that (2.1) holds.

Theorem 2.2. (a) If X € n-IFR(, f), i =1, II, then all components X of X are IFR.

(b) If X, X,, - - - converge weakly to X, and X, € n-IFR(J, f), then X € n-IFR(, f), i =1,
II.

(c) Iffis exchangeable and (X,, X, - - -, X,) € n-IFR(, f), then for an arbitrary permuta-
tion wof (1,2,---,n), (Xzay ***» Xy €n-IFR(, f), i =1, II.

) If fis additive and f(—s)=—f(s), X, Y are non-negative, n-dimensional random
vectors, g is the density function of ¥, and for arbitrary o <;s,

g(»)g(z +s)dydz=0.
{», z:f(»)=f(2)}

(1) If X e n-IFR(1, f) and g € PF,(I, f), then X + Y € n-IFR(1, f);.
(2) If x en-IFR(1, f) and g € PF,(IL, f), then X + Y € n-IFR(IL, f).

Proof. (a)—(c) are obvious.
(d) We prove only (1); (2) is similar.

2.3) HO)=P{X+Y>1¢) =fF(:—y)g(y)dy.

y

Let g(y) =0 if some components of y are negative. Then (2.3) can be considered as the
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integration on R". If t<,¢', s <s',

A+ 5)H(e) ~ A+ )H®) = [ [ F6=9)F - 2) = = p)Fe - lg(y +9)g(2) dy do

+
fN<f@ F>f&)

= [[ tFa-»)F -2 - F-pFa-2)
y<fz

X [g(y +5)g(z) —g(¥)g(z + )] dy dz

=0
then H(t + s)/H(¢) is decreasing in ¢ under the partial order <,.

3. Multidimensional shock model

Suppose N(t) = (Ny(#), - -+, N,(t)) is an n-dimensional shock process, where
Ni(?), - - -, N,(¢) are independent Poisson processes with parameters A,, - - -, A,. Under the
condition N(¢) = (ky, - - -, k,), the probability that the system survives till time tis P, ... , ;
then the probability that the system survives till time ¢ without failure is

6D A= 3 B, 000 G0

k- o R Ry k,!
Theorem 3.1. If P, ... , €n-IFR(L, f), where f(ky, - - -, k,) = E_, k;, then H e IFR.
Proof. We need only prove that for t <¢', x =0,
A=H(x+t)H(t')— H(x +t")H(t) Z 0.

exp (—(A+ - -+ A)).

Let A= X744, then

o

- _ M +0f  Ae(x + 1)
Hx+t)= > P,‘,,.,,k"l( St At
=0

exp (—A(x +1))

- k! !
_ - iln=o . .i;kﬁo Pt ookei, (Ax)s ll'(/lnz)",.lf :1!1 t)"1 k" !~ (A )5 exp (“AG +1))
Henee oS G G S e
AexpAlx+i+0)= n, ~~2,1"=0T o l..—!m,, . ~-2,m,.=o Ky - ~~2,k,,=o B eecom

k
Mt pknpma L g
Rtk my e m)

X Py i, .. [t5e'™ — M)

= i Gux)s () > [KeM — MK M AR A

1m0 In! L' KZm k!---k!m!---m,
X [PnI|,-»-,m,,Pk1+l|,4--,k,,+l,,_Pm|+I|,"-,m,,+l,,Pk|,‘--,k,,]
=0

where K=Y7_, k;, M=Y",m, so that A=0..
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