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Abstract

Two kinds of multidimensional IFR distribution are defined by using a
partial order in R:, which is derived from a non-negative, strictly
increasing function in R:. Some closure properties under operations and an
application to a shock model are discussed.

1. Definitions

The one-dimensional IFR class of distributions plays an important role in reliability
theory. Multidimensional IFR class of distributions should be considered when components
in a system are not independent of each other. Many definitions of multidimensional
IFR distributions have been presented by various authors; we present two of them below.

Let X = (Xl' ... ,Xn ) denote an n-dimensional non-negative random vector, having the
survival function

(1.1) F(t b ••• , tn) = P{X I >t1 , ••• , X; >tn}, t;~O, i = 1, ... , n.

We define a partial order <1 in R: as follows: s, t E R:, S <. t if and only if every
component of S is less than or equal to the respective component of I.

Definition 1.1. (a) X belongs to the first kind of n-dimensional IFR class (denoted by
X E n-IFR(I», if F(s + 1)/F(/) is decreasing in I about the partial order <1for all S E R:;

(b) X belongs to the second kind of n-dimensional IFR class (denoted by X E n-IFR(II», if
F(I + be)/F(/) is decreasing in I about the partial order for all b ~ 0, where e = (1, · · · , 1),
and n -IFR(I) c n- IFR(II) (see Marshall (1975».

As in the one-dimensional case, they have a probabilistic meaning. Take X E n-IFR(I) as an
example, since

F(s + t)
P{X > S + t IX > t} = F(t)

the conditional probability above is decreasing in I under the partial order < 1. That is, under
the condition that all components survive at time I, the residual life is stochastically
decreasing in each component of I. We give two definitions, such that the contribution of the
age X to (1.2) is not I, but a function of I :{(/).

Definition 1.2. Let {(t) be a non-negative, strictly increasing function in R:. We introduce
a partial order </ as follows: for I, I' E R:, if the equality {(I) ~{(/') holds, we call I less than
I' about the function t. denoted by I </ I'. We call </ the partial order induced by t-

Remark. The partial order </ lacks the anti-symmetry property. Because this property is
not used in this paper, we also call it a partial order.
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Definition 1.3. (a) X belongs to the first kind of n-dimensional IFR class of distributions
aboutf (denoted by X E n-IFR(I, f», if F(s + 1)/F(I) is decreasing in t about the partial order
</ for all S E R:, that is for all I <f I' , S E R:,

F(s + I) > F(s + I')
F(I) - F(I') .

(b) X belongs to _the second kind of n-dimensional IFR class about f (denoted by
X E n-IFR(II, f», if F(I + ~e)/F(t) is decreasing in I about the partial order <f for all ~ ~ o.

Obviously we have n-IFR(I, f) c n-IFR(II, f).
For f(l) as defined above, the definition has a probabilistic meaning. That is, as f(l)

increases, the conditional residual life of X is stochastically decreasing.
From 1<1 I', we can get '<f", so we have n-IFR(i, f) c n-IFR(i), i = I, II.

2. Properties

Definition 2.1. Let h be a non-negative function on R". If for arbitrary t «,r, s-c.s', we
have

(2.1) [h(I-S) h(I-S')]~o
h(I' - s) h(I' - s') - .

Then we call h the first kind of P6lya function of order 2 about f, denoted by h E PF2(I, f).
If (2.1) holds for s = oe, s' = b'e, ~ ~ ~', and arbitrary '<f", we call h the second kind of
P6lya function of order 2 about f, denoted by h E PF2(II, f).

Theorem 2.1. If f is additive, then FE n-IFR(i, f) if and only if FE PF2(i, f), i = I, II.

Proof We prove only the case where i = I. The case where i = II is similar. If 0 <,», we
have

(2.2)

For arbitrary I<ft', s <fs', let

F(u + w»F(u + v + w)
F(u) = F(u + v)

u=I-S', v = I' - t, w=s'-s.

From the additivity of f, we can get 0 <j», then (2.2) shows that (2.1) holds.

Theorem 2.2. (a) If X E n-IFR(i, f), i = I, II, then all components x, of X are IFR.
(b) If Xl' X 2 , ••• converge weakly to X, and X k E n-IFR(i, f), then X E n-IFR(i, f), i = I,

II.
(c) If f is exchangeable and (Xl' X 2 , ••• , Xn) E n-IFR(i, f), then for an arbitrary permuta­

tion 1'& of (1,2, ... ,n), (XJf(l), ... , XJf(n» E n-IFR(i, f), i = I, II.
(d) If f is additive and f( -s) = -f(s), X, Yare non-negative, n-dimensional random

vectors, g is the density function of Y, and for arbitrary 0 <js,

JJ g(y)g(z + s) dy dz = O.
{y, z :f(y)=f(z)}

(1) If X E n-IFR(I,f) and g E PF2(I,f), then X + Y E n-IFR(I,f);­
(2) If x E n-IFR(I, f ) and g E PF2(II,f), then X + Y E n-IFR(II, f).

Proof. (a)-(c) are obvious.
(d) We prove only (1); (2) is similar.

(2.3) H(t) = P{X + Y> t} = f. F(t - y)g(y) dy,
y

Let g(y) =0 if some components of yare negative. Then (2.3) can be considered as the

https://doi.org/10.2307/1427609 Published online by Cambridge University Press

https://doi.org/10.2307/1427609


Letters to the editor

integration on R". If i-c,r, s <ys',
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H(t + s)H(t) - H(t + s)H(t) =II [F(t - y)F(t - z) - F(t - y)F(t - z)]g(y + s)g(z) dy dz
y,z

= II + II
f(y)<f(z) f(y»f(z)

=II [F(t-y)F(t-z)-F(t-y)F(t-z)]
y<fZ

x [g(y +s)g(z) - g(y)g(z + s)] dy dz

~o

then H(I + s)/H(I) is decreasing in I under the partial order <f.

3. Multidimensional shock model

Suppose N(t) = (Nt(t), ... , Nn(t» is an n-dimensional shock process, where
Nt(t), ... , Nn(t) are independent Poisson processes with parameters Ab ••• ,An. Under the
condition N(t) = (k b ••• , kn), the probability that the system survives till time t is Pkt,"., k,,;
then the probability that the system survives till time t without failure is

_ 00 _ (Att)kt (Ant)k"
(3.1) H(t) = L Pkt, · · · , k"k' . . .-k-'- exp (-(At + ... + An)t).

k t , · · · , k,,=O t· n :

Theorem 3.1. If Pkt,"., k" E n-IFR(I,f), where f(k t, ... , kn) = E7=t k., then H E IFR.

Proof We need only prove that for t < t', x ~ 0,

A = H(x + t)H(t') - H(x + t')H(t) ~ o.
Let A = E7=o A;, then

Hence

where K = E7=t k., M = E7=t m., so that A ~ 0..
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