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The purpose of the present paper Is to review all asteroid diameter measure-
ments, current through mid-1976, and to combine them in a consistent way to give
the best available estimates for a sample totalling 187 objects. From these
diameters it 1s possible to determine the size-distributions of minor planets
down to diameters of 50 km in the inner belt and 100 km in the outer belt. The
associated albedos further indicate the distribution of objects of the C, S,
and M classes throughout the belt.

A basic datum for the physical study of a minor planet is diameter. In
combination with the mass, the diameter yields the density, which is diagnostic
of bulk composition. In combination with the photometric brightness, the diam-
eter yields the geometric albedo, which, together with spectrophotometric color,
places constraints on surface composition. This paper is an extended summary of
the complete work, which is being published in Icarus (Morrison 1977b).

Before 1970, diameter estimates, largely based on visual micrometer measure-
ments, were available for only five asteroids: Ceres, Pallas, Juno, Vesta, and
Eros {cf. Dollfus 1971). Since the apparent disks were, in all cases, near the
limit of resolution, the uncertainties in these measurements were substantial;
in the case of Pailas, for instance, different observers obtained diameters that
disagreed by a factor of two. When Hertz (1968) measured the first asteroid
mass {for Vesta), the standard diameter of 390 km (Barnard 1902) yielded the
remarkably high density of ~8 g em3, suggesting a metallic composition and pos-
sible relationship with the iron-nickel meteorites. However, it was virtually
impossible to judge the uncertainty in this density.

In about 1970 two new techniques were introduced for the measurement of
asteroid sizes and albedos. The first is based on an empirical relation, ini-
tially recognized by Widorn (1967) and KenKnight et al. (1967), between the
linear polarization of reflected light, observed as a function of phase angle,
and the reflectance of a dusty or rough surface. The first derivation of an
asteroid albedo by this method was published by Veverka (1971). Once the geo-
metric albedo is found, of course, the diameter can be computed from the photo-
metric brightness. The second new method yields diameter more directly. First
developed by Allen (1970) and Matson (1972), it involves the measurement of
thermally emitted radiation from an asteroid. Some fraction of the incident
sunlight is reflected, and the complementary fraction is absorbed and reradiated
in the infrared. If it is assumed that the surface of an asteroid is in equilib-
rium with the sunlight, or alternatively if a detailed thermal model for the
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surface is developed, it is possible to derive both albedo and diameter from
combined infrared and visual photometry.

The primary sources of radiometric diameters and albedos are Cruikshank and
Morrison (1973), Morrison (1974, 1976a, 1977a), Morrison and Chapman (1976),
Hansen (1976), Morrison, Gradie, and Rieke (1976), and Cruikshank (1976). All
of these observations have been combined and interpreted uniformly on the model
of Morrison (1973) and Jones and Morrison (1974), as described in Morrison
(1977b). The polarimetric data come primarily from Zellner, Gehrels, and Gradie
(1974) and Zellner and Gradie (1976), and include both measurements of polari-
metric albedo for 53 and estimates of albedo for 17 other objects not included in
the other data sets from their minimum linear polarization (Ppin). The polari-
metric albedos have been transformed to the radiometric scale; for py > 0.05,
the transformation involves a simple 20% decrease, but for darker objects the
polarimetric values appear to saturate and a more complicated transformation is
vequired (cf. Morrison 1977b). The final, synthesized and averaged list of 187
measured diameters and albedos is presented in Table I, together with the values
of V(1,0) derived from the new listing by Gehrels (1977) and of semi-major
axis for each object. The final column gives a quality code (1 = marginal,

2 = secure; 3 = excellent) for the diameter and albedo.

The frequency distribution of measured asteroid albedos is illustrated .in
Figure 1. The bimodality in albedo has been recognized for several years, but
less complete compilations tended to favor bright, high-albedo objects and there-
fore did not show so clearly the size and shape of the low-albedo peak. Addi-
tionally, the higher accuracy in many albedos in Table I, resulting from averag-
ing observations from several sources and the use of the new absolute magnitudes,
yields narrower and better defined peaks in the albedo distribution.

The major peak centered at a geometric albedo of about 0.035 represents the
dominant C-class asteroids. The probable uncertainty in an individual albedo is
about #20%; thus much of the width of the low-albedo peak may be due to observa-
tional dispersion, and in particular there is no compelling evidence for albedos
substantially lower than 0.025. 65 Cybele (0.022) and 596 Scheila (0.019) are
the only objects with quality code 2 that have lower albedos, and quite plausi-
ble errors in either V(1,0) or the radiometric observations could shift these
to higher albedos. On the other hand, a real dispersion is indicated between
numerous high-quality determinations (e.g., 19 Fortuna, 52 Europa, 324 Bamberga)
of albedos near 0.030 and the well established albedos of about 0.050 for such
asteroids as 1 Ceres. The probable spread in albedos among the C asteroids is
thus at least a factor of two, and perhaps as high as a factor of three. The
median value is about 0.035.

There is a real dearth of objects with albedos of 0.06-0.07. The S class
of asteroids dominates the distribution toward higher albedo, with a peak at
pv = 0.15. Also included in this region of Figure 1 are the M objects, with
albedos between 0.08 and 0.15 (Morrison 1977a). At albedos above 0.20, however,
several additional groups appear (cf. Chapman et al. 1975; Bowell et al. 1977).
At py = 0.25 lie 4 Vesta and 349 Dembowska, the only known basaltic asteroid
and the type member of the O (for ordinary chondrite) class of objects, respec-
tively (cf. Morrison 1977a; Bowell et al. 1977) . The highest albedos are those
of the three members of class E - 44 Nysa, 64 Angelina, and 434 Hungaria -
suggested by Zellner (1975) and Zellner et al. (1977) to be similar in composi-
tion to the enstatite achondrite meteorites.

The presence of several classes of high-albedo asteroids with spectral and
color properties that are distinct from those in the S class is well established
(Bowell et al. 1977), although very few members of these classes have been iden-
tified to date. Because of selection effects that favor the observations of
bright asteroids, equally rare classes with very low albedo would probably not
be recognized from existing data.

The list of asteroids with measured diameters and albedos is essentially
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Figure 1. Frequency distribution of measnred asteroid albedos.

TABLE 1T

ALL ASTEROIDS WITH D > 250 KM

NAME DIAMETER CLASS NAME DIAMETER CLASS

1 Ceres 1003 C 65 Cybele 309 C

2 Pallas 608 U 52 Europa 289 C

4 Vesta 538 u 451 Patientia 276 C
10 Hygiea 450 C 15 Eunomia 272 S
31 Euphrosyne 370: C 16 Psyche 250 M
704 Interamnia 350 C pec. 48 Doris 250: C
511 Davida 323 C 92 Undina 2507 c?
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Figure 2. Size-frequency distribution of C and S asteroids.

complete down to a diameter limit of 250 km. Table II lists the 14 largest
asteroids in order of size. At smaller sizes, however, corrections must be
made for selection effects in the observations that tend to favor objects with
high albedo and small semimajor axes. These corrections, which involve a
normalization based on the MDS and PLS asteroid surveys (van Houten et al.
1970; van Houten 1971), are described in detail in Morrison (1977b). The
remainder of this paper discusses the conclusions that can be reached from the
corrected sample.

The size-frequency distribution of C and S asteroids for the whole asteroid
belt (2.0 - 3.5 AU) is illustrated in Figure 2. This analysis extends to a
diameter of 80 km for both populations, and to 40 km for the S objects alone.
There are only four S asteroids with diameters above 200 km, an insufficient
number for statistical analysis. However, from 170 to 80 km, the total ratio
C:S in the belt remains remarkably constant at (7 = 2):1. 1In terms of the ana-
lysis by Chapman et al. (1975), the ratio C / (C+S) is 0.88 + 0.04, to be com-
pared with a ratio of about 0.7 derived by Chapman et al. for a much smaller
sample. Thus the present analysis confirms that C objects are much more common
than S in the size range from 100 km up, but increases the imbalance in
favor of the C objects by about a factor of two. The M population, indicated
by the symbol M in Figure 2, is much smaller, amounting to only about 5% of the
asteroid population at diameters of 80 km or larger.

Figure 3 illustrates the distribution of C and S asteroids with semimajor
axis, down to a cutoff diameter of 100 km. Again, the large preponderance of
dark C objects is evident. The fraction of C's increases with increasing a, un-
til therc are almost no S's beyond 3.0 AU. The total number of asteroids also
increases outward; for D > 100 km, half of all the asteroids are at a > 3.0 AU.
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These were overlooked in the past because of their large distances and low al-
bedos, but they are in fact the main component of the asteroid population.

It is possible to calculate the mass of all asteroids with D > 80 km, and
to estimate the mass down to D = 20 km. If the mean density is 3.0 g cm'z, the
mass for 600 < D < 20 is 3.1 x 1024 g. The measured mass of Ceres, for com-
parison, is 1.2 x 1024 g (Schubart 1974).
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Figure 3. (Top) Fraction of C astercids with semi-major axis.
(Middle) Distribution of C asteroids with semi-major axis.
(Bottom) Distribution of § astercids with semi-major axis.
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DISCUSSION

BRECHER: From the various papers we heard this morning, it appears that spec-
troscopic data indicate only two major classes of asteroids: C and S. On the
other hand, Gaffey's and McCord's data show a continuum of surface compositions
for asteroids, similar to the meteorite continuum. Are the discrete populations
an artifact of an arbitrary cutoff, or do they tell us something about the type
(composition) of condensate, as a function of heliocentric distance?

MORRISON: I have discussed only two taxonomic groups: C and S - because they
constitute at least 90% of all asteroids with diameters larger than 50 km. How-
ever the present suite of photometric, spectrophotometric, polarimetric, and
radiometric data clearly define not only thece two classes, but in addition four
or five others with smaller populations (see paper by Zellner and Bowell in this
volume). In terms of the observed parameters, (e.g., B-V, U-B,Ppin, albedo,
etc.) these classes are indeed distinct. Between two classes there are real
gaps in (usually) several of these parameters; it is on the basis of these
observed discrete groupings that the classes were defined. This is not to say
all members of any class are homogeneous, for they certainly are not. McCord
and Gaffey (in this volume) have discussed the substantial variety of mineral-
ogical and petrological types that can be identified within the C or S groups.
But the observed separation between C and S is real, and they do not simply
represent end members of a continuum of surface properties.

HANSEN: Some readers may be aware of a 20% discrepancy between Morrison's
radiometric size scale and that used by Hansen (1976). I have now resolved that
discrepancy in favor of Morrison's values by introducing a rough sphere model
for interpreting the radiometric data. The details of this model, which differs
from the model used by Morrison, can be found in a forthcoming issue of Icarus.

MORRISON: I am pleased that Dr. Hansen's new calibration of radiometrically-
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derived diameters and albedos is in such good agreement with my own. However,

I think it is worth repeating that there is a basic uncertainty in all of these
measurements amounting to about 20% in albedo or 10% in diameter, and that the
fact that our two models now are in agreement should not blind us to this funda-
mental uncertainty or to the differences that still exist between albedos
measured from radiometry and those obtained from polarimetry.
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