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In his paper [1], W. D. Munn determines the irreducible matrix
representations of an arbitrary inverse semigroup. Munn also gives a
necessary and sufficient condition upon a 0-simple inverse semigroup for
it to have a non-trivial matrix representation and for such semigroups gives
a complete account of their representations. Munn's results rest upon the
earlier work of Clifford [2] in which the representations of Brandt semigroups
were determined. An alternative account of such representations was given
by Munn in [3]. This earlier work is presented in Sections 5.2 and 5.4 of [4].

In this paper we obtain a complete determination of the matrix repre-
sentations of inverse semigroups. We restrict ourselves to inverse semigroups
with a zero, and there is clearly no loss in generality in so doing. We show
that any representation (without a null component) decomposes into what
we term primitive components. Each primitive component in turn decom-
poses into representations which are determined by representations of
certain associated Brandt semigroups. The set of Brandt semigroups in-
volved is determined by what we call the representation ideal series of the
representation.

Conversely, representation ideal series are abstractly characterized and
it is shown that starting with a representation ideal series and the Brandt
semigroups it determines then representations of these Brandt semigroups
determine, in a unique fashion, a representation of the original semigroup.

The methods used are a development of those used by Munn in [1].
The results of Munn may be easily inferred from our results.

The terminology and notation followed will be that of [4]. Certain
differences from the terminology already used by Munn in earlier work are
adopted for systematic reasons in conformity with [10]. Concepts and
terminology not in [4] will be defined.

The main theorem of this paper was announced in [13].

1. Primitive regular semigroups

It will be convenient to adopt as a shorthand phrases such as .'Let
S = S° be a semigroup' to convey that S is a semigroup, that \S\ > 1 and
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30 G. B. Preston [2]

that S has a zero element 0. This is in conformity with the meaning usually
attached to S° (cf. [4]).

A semigroup S = S° will be said to be primitive if each of its non-zero
idempotents is primitive.

A semigroup S = S° is said to be the O-direct union of its subsemigroups
Sf(i eI) if 0 e St for all i el, ii S is the union of the 5,- and if S ^ = 0 for
i # / and i, j e I. It follows that each St is a (two-sided) ideal of S and that
products in S are known once they are known for the S{. The semigroups
S{ are called summands of the O-direct union S = u {S{: i e / } .

The following theorem, fundamental for our results, was conjectured
by H. Schneider x in a letter to the author and the proof below is, but for
small changes, a copy of the proof given in the authors' reply 2. The results
have been independently proved by P. S. Venkatesan [12].

THEOREM 1. A semigroup S = S° is a primitive regular semigroup if
and only if it is the O-direct union of a set of completely 0-simple subsemigroups.
The completely 0-simple summands of a primitive regular semigroup are
uniquely determined: the summand containing the non-zero idempotent e is
SeS.

PROOF. Since S is regular, every principal left ideal is generated by an
idempotent ([4], lemma 1.13).

Suppose that L = Sf (/2 = /) is a principal left ideal which is not
0-minimal. Then L contains properly another non-zero principal left ideal
L', say, and L' = Se for some idempotent e. Since e e Sf, ef = e. Now
fe ^ f; for otherwise Sf = Sfe Q Se. Let g = fe. Then

g2 = f(ef)e = fe* = fe = g.

Furthermore, ge = fe2 = fe = g. Hence Sg = Sge Q Se. But

eg = e[fe) = {ef)e = e2 = e.

Hence Se = Seg Q Sg. Thus Se = Sg.
Now gf = (fe)f = f(ef) = fe = g, and fg = f(fe) = fe = g. Hence,

since / is primitive, g = f or g = 0. The possibility g — 0 is excluded because
Sg = Se ^ 0. Hence g = f. Thus L' = Se = Sg = Sf = L. This is a con-
tradiction. Hence, in fact, L must be 0-minimal.

Now consider M = LS. M is a two-sided ideal of S. M ^ 0, for / e M.
Furthermore, M is a completely 0-simple semigroup. For, firstly, M contains
a primitive idempotent, namely /. Secondly M is 0-simple. For let z e M\0.
Then z e Lx for some x in S, and Lx is a 0-minimal ideal of S ([4], Lemma
2.32). Thus Sz = Lx and so MzM = LSzLS = LLxLS. Now L2 = L

1 July 28, 1959.
* September 15, 1959.
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[3] Matrix representations of inverse semigroups 31

because L2 is a left ideal of S containing f = f =£ 0 and because L is 0-
minimal. Similarly, LxLx = Lx, and consequently LxL ^ 0, which gives
LxL = L. Hence LLxL = L, whence MzM = LS = M. This completes
the proof that M is completely 0-simple.

Every element of S belongs to some principal left ideal and so to some
0-minimal left ideal. Hence every element of S belongs to some ideal of S
which is completely 0-simple. Thus 5 is a union of completely 0-simple
semigroups. Let Mx and M2 be two distinct completely 0-simple ideals of S.
Then MXM2 is an ideal of 5 contained in, and therefore an ideal of, each of
Mx and M2. Since M± and M2 are 0-simple we must have MxM% = 0. Thus
S is the 0-direct union of completely 0-simple subsemigroups. That the
completely 0-simple summands are uniquely determined by S is clear, for
the above discussion shows that the summand containing the idempotent
e # 0, is SeS.

Conversely, since each non-zero idempotent of a completely 0-simple
semigroups is primitive, it easily follows that all the non-zero idempotents
of any 0-direct union of completely 0-simple semigroups are also primitive.
Since any 0-direct union of regular semigroups is itself regular, this com-
pletes the proof of the theorem.

For inverse semigroups we have the following corollary. This corollary
is an evident inference from Theorem 1 in [5]. (In [5] the term 'primitive',
as applied to inverse semigroups, was used in a wider sense than here.)

COROLLARY 2. A semigroup S = S° is a primitive inverse semigroup if
and only if it is the 0-direct union of a set of Brandt semigroups. The Brandt
semigroup summands of a primitive inverse semigroup are uniquely determined.

2. Homomorphisms onto primitive regular semigroups

In [6] W. D. Munn introduced the following conditions on a semigroup

Cl. If a, b, and c are elements of S such that abc = 0, then either
ab = 0 or be = 0.

C2. If M and N are non-zero ideals of S then so also is M n N.

I shall say that a semigroup satisfying condition Cl is categorical at
zero. When condition C2 is satisfied, I shall say (in analogy with a termi-
nology from the theory of commutative rings) that the zero (or the zero
ideal) of S is indecomposable. In the contrary case, the zero of 5 will be said
to be decomposable.

A congruence p on a semigroup S — S° will be called derestricted if {0}
is a p-class. A homomorphism <f> oi S = S° will be called d-restricted if the

https://doi.org/10.1017/S1446788700005656 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005656


32 G. B. Preston [4]

congruence <f> o <j>~x naturally induced on S by <f> is O-restricted. This termi-
nology differs from that of Munn [6] where O-restricted congruences are
termed proper congruences. We make the change (see [10]) because proper
is also used to describe representations (see [4, p. 177], [1] and below in
§ 3). A homomorphic image under a O-restricted homomorphism will be
called O-restricted homomorphic image.

Munn showed that an inverse semigroup S = S° has a Brandt semigroup
as a O-restricted homomorphic image if and only if it has an indecomposable
zero and it is categorical at zero. We shall extend this result and show that
the condition of being categorical at zero is a necessary and sufficient
condition upon an inverse semigroup S = S° for it to have a primitive
inverse semigroup as a O-restricted homomorphic image.

LEMMA 3. Let p be a O-restricted congruence on a semigroup S = S°.
Suppose that Sip is a primitive regular semigroup. Then S is categorical at
zero.

PROOF. Let abc = 0 in S. Let <f> denote the natural homomorphism of
5 u p o n S /p . T h e n (abc)<f> = a<f> • b<f> • c<f> = 0 i n Sip. If a<f>, b<j> a n d c</> d o n o t
all belong to the same completely 0-simple summand of S/p, then either
a<f> • b<f> = (ab)<f> = 0, o r b<f> • c<f> = {bc)<f> = 0 . S i n c e <j> i s O- re s t r i c t ed t h e r e f o r e
either ab = 0 or be = 0. If a<f>, b</> and c</> belong to the same completely
0-simple summand then the proof of Theorem 1.1 in [6] applies to show that
either ab = 0 or be = 0. Thus S is categorical at zero.

When a regular semigroup S = S° possesses a O-restricted homomorphic
image which is a primitive regular semigroup then there exists a maximal
such homomorphic image through which every O-restricted homomorphism
with primitive image can be factored. This is established in the following
lemma.

LEMMA 4. Let S = S° be a regular semigroup and p a O-restricted con-
gruence on S such that S/p is primitive. Then there exists a O-restricted con-
gruence 7i on S such that Sfn is primitive and such that if a is any O-restricted
congruence with Sja primitive, then TIQO.

PROOF. Let {pi:ie 1} denote the set of all O-restricted congruences
Pi on S with the property that Sjpt is primitive. By assumption this set is
non-empty. Let

n = n {pf : i e / } .

Then n is O-restricted on S, for (a, 0) e n implies that (a, 0) e pt and
hence, since pt is O-restricted, that a = 0. Also, for each i, nQpt. Thus to
complete the proof of the lemma it only remains to show that every non-zero
idempotent of Sjn is primitive.
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Let E, F be any two non-zero idempotents of Sjn such that
EF = FE = F. We have to show that E = F. Let e e E and / e F . Since
£ is idempotent, (e, e2) e w; and, similarly, (/, f) e OT. Since EF = FE — F,
also (ef, f) en and (/e, /) e n . Hence, since n Qp(, for each i, we have that
(e, e2), (/, /2), (e/, /) and (fe, f) belong to each p{. If we denote by E( and Ft

the prclasses containing e and /, respectively, then this means that E* = E{,
F* = Fit EiFi — Ft and F(Et = i7,, for each i i n / . Since, by assumption,
E and i7 are non-zero elements of Sjn and each pt is O-restricted, therefore
each Ef and F,- is non-zero. Hence, using the fact that Slpt is primitive,
it follows that Et = Ft for each i in I. Thus (e, /) e />, for each i in / , whence,
from the definition of n, (e, f) e n. This shows that E = F, and completes
the proof of the lemma.

It will have been observed that, in part, the above argument holds if
S is not regular. However, when S is not regular and possesses primitive
regular O-restricted homomorphic images it does not necessarily possess a
maximum (in the sense of the lemma) primitive regular O-restricted homo-
morphic image. For example let S be an infinite cyclic semigroup to which
a zero has been adjoined. Then the intersection of all O-restricted congruences
p such that S/p is primitive regular is the identity congruence on S.

For inverse semigroups we have the following extension of Munn's
Theorem 2.7 [6].

THEOREM 5. Let S = 5° be an inverse semigroup.

(i) 5 possesses a primitive inverse semigroup as a O-restricted homo-
morphic image if and only if S is categorical at zero.

(ii) Let S be categorical at zero. Define the relation n on S thus:

(1) n = {{x, y) e 5 x 5 : ax = ay # 0 for some « e S } u {(0, 0)}.

Then n is a O-restricted congruence on S and S/n is a primitive inverse
semigroup. Furthermore, n is the finest congruence (i.e. is contained in any
other such) on S with these properties.

PROOF, (i) The necessity of the condition follows directly from Lemma
3, for a primitive inverse semigroup is a primitive regular semigroup.
Sufficiency will follow once we have proved (ii).

(ii) In his proof of Theorem 2.7 [6] (which differs from our theorem
only in that S is assumed also to have an indecomposable zero), Munn
shows that n is a O-restricted congruence on 5. (He comments that only
the fact that 5 is categorical at zero is used in showing this.) We have to
show that every non-zero idempotent of S[n is primitive. Let E, F be
non-zero idempotents of S/n. Recall that there then exist idempotents e,
say, in E and /, say, in F ( V. V. Vagner [7J). If ef =£ 0, then e(ef) =
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shows that (ef, f) e n; and similarly it follows that (ef, e) e n. Hence
(e, f) e n. Hence EF — 0 or E = F. In other words every non-zero idem-
potent of Sjn is primitive.

Finally, that n is the unique finest congruence on S with this property
follows by a straightforward extension of the appropriate part of Munn's
proof of his Theorem 2.7 in [6].

REMARK. The lack of symmetry in the definition of n is only apparent,
for we could equally well define

JC = {(x, y) e SxS :xa = ya ^ 0 for some a e S} u {(0, 0)},

and then carry out the proof of Theorem 5 with the appropriate modifica-
tions.

3. Primitive inverse semigroups of matrices

An application of A. H. Clifford's representation theory [2] for Brandt
semigroups gives us canonical forms, to within equivalence, for Brandt
semigroups of matrices. Applying Clifford's results to the summands of
primitive inverse semigroups of matrices enables us to derive canonical
forms for these semigroups. We derive these in this section.

Let 0 be a field and n a positive integer. Then (0)n will denote the set
of all nxn matrices over 0 and will be regarded as a (multiplicative)
semigroup or as an algebra over 0 as the context demands.

By a representation of degree n over the field 0 of a semigroup S — S°
we shall mean a homomorphism F of S into the semigroup (0)n which maps
the zero of S upon the zero matrix. F will be said to be proper if it is non-null
and does not decompose into two representations, one of which is null [1].

We recall that Brandt semigroups can be characterized as semigroups
isomorphic to Rees matrix semigroups B = ^° (G; 1,1; A) over a group
with zero G°, where A is the Ixl identity matrix over G° and where G is the
structure group of B. The rank of a Brandt semigroup is defined to be the
cardinal of its set of non-zero idempotents [1]. When the Brandt semigroup
is given in the above form, thus \I\ is its rank. (See Clifford [2] or [4],
Theorem 3.9.)

When / is finite, | / | = k, say, we shall write (following Munn)
^ ° (G; k, k; Ak) instead of u?° (G; / , I; A), Ak denoting the A:Xk identity
matrix over G°.

THEOREM 6 (Clifford), (i) A Brandt semigroup admits a non-null
representation if and only if its rank is finite.

(ii) Let B = J!(o (G; k, k; Ah) be a Brandt semigroup of finite rank k.
Let 0 be a field. Let F1 be a proper representation of G° of degree I over 0 and
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let F* be a mapping of B into (&)kl defined by the rule that r*((a; i, j)) is
that kxk matrix of Ixl blocks which has F^(a) in its (i, j)-th block and zeros
elsewhere. Then F* is a proper representation of B.

(iii) Every proper representation F* of B — ^#° (G; k, k; Ak) is, to
within equivalence, constructed as in (ii) from a proper representation F* of G°.

(iv) The correspondence F* *-> 71t established in (ii) and (iii) preserves
reduction and decomposition.

We need an extension of the concept of rank from Brandt semigroups
to primitive inverse semigroups. Let S be a primitive inverse semigroup
and let E be its set of non-zero idempotents. Then the cardinal \E\ of E is
defined to be the rank of S. When S is a Brandt semigroup its rank in this
sense coincides with its rank as already defined.

Let S be a primitive inverse semigroup. Then, by Corollary 2, S is the
0-direct union of a uniquely determined set of Brandt semigroups, Bjt say,
for j e J. The rank of S is then the sum of the ranks of the Bt, j ej.

The semigroup algebra 0[S] of the semigroup S over the field 0 is the
vector space with basis S and with multiplication induced by that of
S ([4], § 5.2). If S = S°, then Z = 0[{O}], where 0 is the zero of S, is an
ideal of 0[S] and the contracted semigroup algebra is ^0[^] = ^ [ S ] / ^ . The
zero of S may be identified with that of 0O[S] and the non-zero elements
of S with a basis of 0O[S].

LEMMA 7. Let S be the 0-direct union of the semigroups Sit j e J. Then
0Q[S] is the direct sum of its two-sided ideals 0Q\_SJ~\, j e J.

PROOF. Let x e 0o[St] and y e 0o[Sk], where k # /. Then

«

for At, /JU e $, sw e 5,, sufc e Sfc. Since SjSk = S^j = 0, by assumption on
S, it follows that xy — yx = 0. Furthermore, every element of S in an
element of some Sr Hence the <P0[^]> / e J> span0o[S]. The assertion of
the lemma therefore follows.

For primitive inverse subsemigroups of (0)n we have the following
preliminary result.

LEMMA 8. Let S = S° be a primitive inverse subsemigroup of (0)nr

where 0 is a field. Let F denote the identical mapping of S, and suppose that
F is a proper representation of S in (0)n.

Then S has only a finite number of non-zero idempotents. Let elt e2, • • •, et
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be these idempotents. Let r( be the matrix rank of et, i = 1, 2, • • •, t. Then

i-l

where In is the nxn identity matrix, and there exists a representation F* of
S equivalent to F, such that

r*(*<) =

0 0
0 •

0

where the matrix on the right is partitioned in rows and columns according
to the partition n = f i + r a + • • • + / , , and where IT( denotes the rtxrf identity
matrix, situated in the (i, i)-th partition position.

PROOF. Let W be an n-dimensional vector space over 0 and, choosing
a basis for W, regard the elements of ($)„ as linear transformations of W.

Let elt e2, • • •, eu be distinct non-zero idempotents of S. Then, setting
Et = Wet, the image of W under e{, E{ is a linear subspace of W on which
et induces the identity transformation. Let w belong to Eu and also to the
subspace of W generated by Ex, E2, • • •, Eu_x. Thus

w =

where wfe Et. Since ei is the identical transformation on Eit

w =
Hence

since the product of two distinct idempotents of S is zero. Thus w = weu = 0.
By induction, it therefore follows that the subspaces E1, E2, • • •, Eu of W
generate their direct sum. Since W is of finite dimension, the number of
non-zero idempotents of S must be finite. Let them be elt e2, • • •, et.

Consider 2J_X et = e, say, an element of the algebra &0[S]- Let a be
any non-zero element of S. Since 5 is a O-direct union of Brandt semigroups,
there is a unique non-zero idempotent of S, ea, say, such that eaa = a;
for all other idempotents g of 5, ga = 0. Hence ea — a, in #0[S]- It follows
that e is the identity element of &0[S].

Since F was assumed to be proper it follows that e — In and this in
turn implies that

W = E± 0 E2 0 • • • 0 Et.
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Hence, choosing an appropriate basis for W, we obtain F*, equivalent to F,
such that F*(et), i = 1, 2, • • •, t, have the form given in the lemma.

We can now infer a canonical form for primitive inverse semigroups
of matrices.

THEOREM 9. Let S = S° be a primitive inverse subsemigroup of (0)n,
where 0 is a field. Let F denote the identical representation of S. Suppose
that F, as a mapping of S into (&)„, is a proper representation of S. Then

(i) S is of finite rank t, say;

(ii) S is the O-direct union of a uniquely determined finite set
Bx, B%, • • •, Bu, say of Brandt semigroups, so that if tt is the rank of B},
t = tx+t2-\ +tu;

(iii) the semigroup algebra 0O[S] decomposes into the direct sum of
(two-sided) ideals 0o[Bt]:

<po[S] = <PO[5I] e 0O[B2] e • • • e #„[£„];
(iv) F is equivalent to a representation

where F* is a representation of Bt, j = 1, 2, • • •, u and where each F* is of
the form given in Theorem 6 (ii);

(v) if ns is the degree of the representation Ff and if d, is the rank of
each non-zero matrix F(xi) for xte Bt, j = 1, 2, ' • •, u, then

n = «!+»2H \-nu
and

d}t{ = nit j = 1, 2, • • •, u.

PROOF, (i), (ii), and (iii) follow directly from Lemma 8, Lemma 7 and
Corollary 2. Once (iv) is established (v) is clear.

Attach subscripts to the non-zero idempotents of S, so that ex, e2, • • •, eti

are the non-zero idempotents of Bx, et+1, •••,et+f are the non-zero
idempotents of B2, and so on. The non-zero idempotents of 5 are then
e\< e2>'' '> et a n ( i t*y aPplpng Lemma 8 we obtain a representation F*, say,
of S, equivalent to F, such that each F*(ei) is a diagonal matrix of the
form given in Lemma 8, where ri denotes, as in Lemma 8, the rank of et.

Consider the elements of F*(Bj). r*(Bt) is a Brandt semigroup of
matrices equivalent to Bt and its idempotents are diagonal matrices of the
form described. If x e F*(Bi) and x # 0, then there are unique non-zero
idempotents, e and /, say, in F*(Bi), such that ex = x = xf. Let g be any
idempotent of F*(S). If g ^ e, then gx = 0; if g # /, then xg = 0. Con-
versely, if e and / are any non-zero idempotents of F*(Bj), then there exists
a non-zero element x e F*(Bt) such that ex = x = xf. It follows that each
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of the idempotent matrices -T*^), i = ^ _ x + l , • • •, ^ _ i + ^ , of r*(Bj) have
the same rank, df, say, and that each r*(x), for x e Bt, consists of a d}xdj
sub-matrix bounded by zeros.

More precisely, straightforward arguments show that if we denote by
r*(x) the submatrix of F*(x) of order n1y.nt, where ni = tidj, whose
principal diagonal is in the position occupied by the non-zero elements of

2 {r*(et) : i = t^
then F* is a proper representation ot Bs of the form described in Theorem
6 (ii). Moreover it is then clear that

r* = r* © r% © • • • © r*.

4. Maximal primitive ideals

An ideal A of a regular semigroup S = S° will be called a primitive ideal
if every non-zero idempotent of A is primitive in S. A primitive ideal is
necessarily regular, for any ideal of a regular semigroup is regular. For the
ideal A to be primitive it suffices that each of its non-zero idempotents is
primitive in A. For if e2 = e, /2 = /, ef = fe = / and e e A, then clearly,
since A is an ideal, f e A. (Note that the term primitive ideal is here used
differently from in the author's paper [5].)

LEMMA 10. Let S = S° be a regular semigroup. Suppose that S contains
a non-zero {i.e. not equal to {0}) primitive ideal. Then S contains a unique
maximal primitive ideal.

PROOF. The union of all primitive ideals of S, non-zero by assumption,
is clearly an ideal every non-zero idempotent of which is primitive in S.

The following lemma may be compared with the analogous result of
R. J. Koch [11] for (arbitrary) semigroups without zero.

LEMMA 11. Let S = S° be a regular semigroup and let e be a non-zero
idempotent of S. Then e is primitive if and only if SeS is completely 0-simple.

PROOF. If SeS is completely 0-simple then all of its idempotents are
primitive and hence, in particular, e is primitive.

Conversely, assume that e is primitive. To show that SeS is completely
0-simple, it suffices to show that it is 0-simple. That this is so was proved
in the fourth paragraph of the proof of Theorem 1.

From the preceding two lemmas combined with Theorem 1, we have

THEOREM 12. Let S = S° be a regular semigroup. Then S contains a
non-zero primitive ideal if and only if it contains a primitive idempotent.
If E, assumed non-empty, is the set of all primitive idempotents in S, then
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SES is the (unique) maximum primitive ideal of S. SES is a primitive
semigroup and its completely Q-simple summands are the semigroups SeS,
e e E.

5. 1-complete ideals

If B is a Brandt semigroup and ae B then, either a = 0, when ae = 0
for all idempotents e in B or a ^ 0, when ae ^ 0 for precisely one idempotent
e in B. The sole idempotent e for which ae # 0 is the right unit e = a~xa of a.
Similarly the left unit aa~x is the sole idempotent e in B such that ea ^ 0.
These properties of the non-zero elements of a Brandt semigroup are shared
by the non-zero elements of any 0-direct union of Brandt semigroups, i.e.
of any primitive inverse semigroup.

These observations lead us to frame a definition. We introduce it first
in a special case.

Let P be a primitive ideal of an inverse semigroup S = S°. An element
x of S will be said to be n-linked to P if xe ^ 0 for precisely n non-zero
idempotents e in P. Thus, from the above remarks, the zero of S is 0-linked
to P and each non-zero element of P is 1-linked to P .

The next lemma shows that we could equally have defined w-linked in
terms of multiplications by idempotents on the left.

LEMMA 13. Let P be a primitive ideal of an inverse semigroup S = S°.
Let x e S. Then x is n-linked to P if and only if ex # 0 for precisely n idem-
potents e in P.

PROOF. For the purposes of this proof let us call w-linked 'right w-linked'
and refer to the left-right dual of w-linked as 'left w-linked'. We have to
show that right w-linked means the same thing as left «-linked.

Suppose then that x e S and that x is right w-linked to P . Suppose that
xe ^ 0 and xf ^ 0, where e and / are idempotents in P . Let g be the left
unit of xe. Then g(xe) = xe # 0. Thus gx ^ 0 and, since g e P, gx e P.
Hence e is the sole idempotent in P such that (gx)e ^ 0. Similarly, if h is
the left unit of xf, f is the sole idempotent in P such that (hx)f ^ 0. Hence,
if e ^ /, then gx ^ hx and so g ^ h.

It follows that there are at least n distinct idempotents k of P such that
kx ^ 0. Conversely, a similar argument shows that if we assume x to be left
«-linked to P then there are at least n distinct idempotents k of P such that
xk ^ 0. Consequently, x is left w-linked to P if and only if it is right w-linked.

We now extend the concept of w-linkage to the following more general
situation. Let S = 5° be an inverse semigroup and let V and P be ideals of
S such that V C P and PjV has a O-restricted homomorphic primitive image,
i.e., in view of Theorem 5, such that PjV is categorical at zero. Let it (cf.
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Theorem 5) be the finest O-restricted congruence on P/V such that (P\V)jn
is primitive. Denote by x* the natural image in {PIV)JTI of an element x
of P (obtained by following the natural mapping of P onto PjV by the
natural mapping of P\V onto (P\V)\n). Let x eS. Then x is said to be
n-linked to P modulo V if it is possible to find n, and not more than n,
idempotents elt e2, • • •, en, say, of P such that e*, e*, • • •, e* are all distinct
and such that (zej* =£ 0 (in (P/F)/:rc) for i = 1, 2, • • •, n. We easily see
that although a choice is in general possible for ex, e2, • • •, en, the idem-
potents e*, e*, • • •, e* are uniquely determined by x. An argument similar
to that used to prove Lemma 13 shows that this definition coincides in
meaning with its left-right dual. When V = 0 and P is primitive, '^-linked
modulo V means the same as '^-linked'.

We continue to attach the above meanings to and make the above
assumptions about P, V, n, and * throughout this section. The following
lemma deals with a detail of technique required to prove the above assertions
and which we shall need again.

LEMMA 14. Let f and g be idempotents of P and let xeS. Let f* = g*.
Then (fx)* = (gx)* and {xf)* = (xg)*.

PROOF. We prove the first equation; the other follows similarly. Let
h be an idempotent of P such that h* is the right unit of (fx)*. Then

(fx)* = (fx)*h* = (fxh)* = f*(xh)*
= g*(xh)* = (gxh)*=(gx)*h*,

since the elements starred belong to P. If (fx)* is non-zero, thus
(gx)*h* =£ 0 and hence h* is the right unit of (gx)*. Thus (gx)*h* — (gx)*,
whence (fx)* = (gx)*. Similarly the equation holds if (gx)* ^ 0; which
completes the proof.

Denote by Ln(P) the set of all elements of S that are m-linked to P
modulo V for m ^ n.

LEMMA 15. For each integer n 2> 0, Ln(P) is an ideal of S.

PROOF. Let s be an element of S which is «-linked to P modulo V.
It will suffice to prove that, for any a, b e S1, asb is m-linked for some
m ^ n.

Suppose that e e P and that (asbe)* # 0. Then be e P and (be)* # 0.
Let /*, where / e P, be the left unit of (be)*. Let g*. where g e P, be the
left unit of (asbe)*. Then

(asbe)* =g*(asbe)* = (gasbe)* = (gas)* (be)*
= (gas)*f*(be)* = (gasf)*(be)* = (ga)*(sf) *(be)*,

since the starred elements all belong to P and * is a homomorphism. Thus
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(s/)* ^ 0 and so /* is one of the uniquely determined set of n idempotents
of (PjV)ln with this property. By Lemma 14, e* is uniquely determined by
/* as the right unit of (fb)*. It follows that, for a given element asb, there
can be at most n such elements e*. This completes the proof of the lemma.

The ideal P will be said to be n-complete in S modulo V if Ln(P) Q P.
If P is not 1-complete then we can extend P and V to obtain a

1-complete ideal and leave (P/V)ITZ unchanged to within isomorphism.
This is achieved in the following theorem.

THEOREM 16. Set LX(P) = Pe and L0(P) = Vc. Then Pe 2 P, Ve 2 F,
P ( D F ( , Pcl^c *s categorical at zero and, denoting by ne the finest O-restricted
congruence on PJV,. with primitive image, (PJVe)l7ic £ (PJV)ITI under the
natural mapping xn -> xnc. Moreover, Pe is 1-complete in S modulo Ve.

PROOF. It has already been observed that Pe 2 P and it is clear that
F C 2F- Since P D F and P\VQPe\Vc, therefore PeDV0. To see that
PJVe is categorical at zero, consider a, b, c in PJVe and suppose that
abc = 0. To show that PJVe is categorical at zero we must show that either
ab = 0 or be = 0.

If any of a, b, c is zero, then clearly one of these equations holds. In
the contrary case a, b, c e P^\Ve and, evaluating the product in Pe,
abc e Ve. We are to show that either ab e Ve or be eVe.

Suppose that ab $Ve. Then ab e Pe and so there exist idempotents
e* and /* in (P/F)/JT, where e and / are idempotents in P, such that
(eab)* ̂  0 and (abf)* =£ 0. The idempotents e* and /* are unique with these
properties, and by Lemma 14, (eab)* is determined by e* and (abf)* is
determined by /*. Let g* be the right unit of (eab)*, where g = g2 e P. Then

(eab)* = (eab)*g* = (eabg)* = e*(abg)*,

since * is a homomorphism. Thus (abg)* =£ 0; whence, from the uniqueness
of /*, /* = g* and, by Lemma 14, (abg)* = (abf)*. Similarly it follows
that e* is the left unit of (abf)*. It follows that

(eab)* = (eab)*f* = (eabf)* = (ea)*(bf)* # 0;

and so (ea)* ^ 0 and (bf)* ^ 0. Let h* be the right unit of (ea)* and let
k* be the left unit of (bf)*. Then

(eab)* = (ea)*(bf)* = (ea)*h*k*(bf)* ^ 0;

and so h* = k*.
If also be $ Ve then it similarly follows that there is a unique idempotent

m* in (PjV)jn, with m = m? e P, such that (bem)* ^ 0 and such that m*
is the right unit of (bem)* and also of (cm)*. Since /* is the right unit of
(bf)*, it follows that /* is the left unit of (cm)*. We now have
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{ea)*(bf)*{cm)* ^ 0
in (PfV)ln. Hence

(eabc)*m* = (eabcm)* = (eab)*(cm)*

and so (eabc)* ^ 0. Consequently, abc $ Ve. This contradicts our original
assumption. Hence either ab e Ve or be eVc, as required.

We now show that xn ->• xne is an isomorphism of (P/F)/:rc onto
(PelVe)\ne. The mapping is clearly a homomorphism into. To show that it
is one-to-one consider xlt x% in P\V such that xxnc = x2nc, i.e. such that
there exists an element a, say, in PJVe, such that xxa = x2a ^ 0. Since
xxa $ Ve, there exists an idempotent / in P, such that (a^a/)* ^ 0. Thus
xi(af) — xz{af) ¥= 0, whence, since af e P, xxn = X2TZ.

It remains to show that the mapping is onto. Let y be any element of
PJVe. If y = Ve, then yne = 0ne = On, with the usual varying interpreta-
tion of 0. If y e P^\Ve, then there exists an idempotent / in P such that
(yf)* T^ 0. Then yf e P\V and (yf)f = yf implies that ync = (yf)ne. Since
yf e P v F this shows that the mapping xn -*• xnc is onto.

To see, finally, that Pe is 1-complete in S, let x e LX(PC). If x is 0-linked
to Pc, then a; is 0-linked to P and sox eVeQ Pc.lix is 1-linked to Pe then
there exists an idempotent / in P c \ F e such that (xf)jre =£ 0 and the idem-
potent fjte of (PJVe)l7ic so determined is unique. Because of the isomorphism
established already between (PjV)jn and (PJVe)l7ic, there is an idempotent
g, say, in P such that gne = fne. Then

c = {xg)nc • gn.

Hence, using the isomorphism again, since xg e P, (xg)?i = (xg)* ^ 0.
Suppose, conversely, that h is an idempotent of P such that (xh)* ^ 0.

Then, because of the isomorphism between {PjV)ln and (PJVe)ljie,
{xh)7ie ^ 0, whence it follows that hne = jn,.. Consequently, hn = gn, i.e.
h* = g*; and this proves that x is 1-linked to P, i.e. that x e Pc. Thus
P c is 1-complete in S modulo Ve.

6. The primitive component of a representation

Let 5 = S° be an inverse semigroup and let Fbe a proper representation
of S of degree n over the field 0 (see § 3). Since a proper representation is
non-null, T(S) contains matrices other than the zero matrix T(0) = 0.
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Let r = r(F) be the minimal rank of the non-zero elements of F(S) and let
R = {x e F(S): rank of x ^ r(F)}.

LEMMA 17. R is a non-zero primitive ideal of F(S).

PROOF. R is clearly an ideal of F(S). We need to prove that each non-
zero idempotent of R is primitive.

Let e, f be non-zero idempotents with e in R and / in F(S) and suppose
that ef = fe = f. Thus also f e R and rank e = rank f — r. Let us regard,
as in the proof of Lemma 8, the elements of F(S) as linear transformations
of the vector space W. Set We = E and Wf = F. Then

F = Wf = Wfe Q We = E,

whence since the dimension of F equals that of E (= r), F = E.
Let w e W. Then wee E = F. Since / is the identity transformation

on F, therefore (we)f = we, i.e. w{ef) = we. But ef = /, by assumption.
Hence wf = we. This shows that e = f, whence e is primitive; which com-
pletes the proof of the lemma.

The above lemma enables us to apply Lemma 10 to infer that F{S)
contains a unique maximal primitive ideal, consisting of the ideal generated
by all the primitive idempotents of F(S) (Theorem 12). Throughout this
section we shall denote this maximal primitive ideal by P* = P*(F). Simple
examples show that P* may contain R properly. Further we define

P = P(F) = {xeS: F(x) e P*},

and, following Munn [1], we set

V = V(F) = {xeS: F{x) = 0},

V being the vanishing ideal of the representation F. Since P* is an ideal of
F(S)*, P is an ideal of S and clearly contains the ideal V.

We shall show that F decomposes into representations FP and AP

determined by P and that, denoting by Q the vanishing ideal of AP, Q
contains P, P contains V properly, P/V is categorical at zero, P is 1-complete
in Q and (PJV)ITC is of finite rank, where n (see below) has its earlier meaning.
FP will be shown to be determined by the restriction of F to P, and will be
termed the primitive component of F. We establish these results in a series
of lemmas.

That P contains V properly follows from the fact that P* is non-zero.
Moreover, F(P) = P* and this homomorphism F of P onto P* induces a
O-restricted homomorphism of P/V onto P*. Consequently, since P* is
primitive, Theorem 5 gives that PjV is categorical at zero. Hence, with the
notation of the previous section, there is a O-restricted congruence n, say,
on P\V, finest among the congruences on P\V which give a primitive
quotient. Equation (1) of Theorem 5, taking 5 to be PjV, defines n.
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LEMMA 18. Let x,ye P\V and (x, y) e n. Then F(x) — F(y).

PROOF. By the definition of n there exists a in P such that ax = ay £V.
Thus F{ax) = F(ay) ^ 0, i.e. F(a)F(x) = F(a)F(y) ^ 0 in P*. But P* is
primitive. Hence F(x) = F(y).

Denote by x -»• x* (x e P) the result of following the natural mapping
of P onto P\V by that of PjV onto (P/F)/TT. Because of Lemma 18, we may
define a representation F* of (P /7) /TI by F*(x*) = F{x), (xeP). We
state as a lemma, for later use, the fact that this equation also serves to
define F(x) for x in P.

LEMMA 19. Frestricted to P is determined by F*: F(x) — F* [x*)t (xe P).

PROOF. This is merely a rephrasing of the preceding lemma. For we
merely have to show that x* = y* implies that F(x) = F{y); and this
follows directly from Lemma 18.

LEMMA 20. {P\V)\n is of finite rank {equal to that of P*). F* maps the
set of Brandt semigroup summands of (P\V)\n in a one-to-one fashion onto
the set of Brandt semigroup summands of P*.

PROOF. F* is a homomorphism of (P/F)/jr onto P*. By Theorem 9, P*
is of finite rank. We shall show that {PjV)jn is of rank equal to that of P*.

Observe first that F*(x*) = 0 if and only if x* = 0 in P\V, i.e. if and
only if a; e F, because of the definition of F* and because V is the vanishing
ideal of F. Hence F* induces a non-null representation on each of the
Brandt semigroup summands of (P/V)/^ (cf. Corollary 2). By a result in
[8] the rank of a non-trivial homomorphic image of a Brandt semigroup B
is the same as the rank of B. Hence each Brandt semigroup of {PjV)fn is
of the same finite rank as its image under F*.

Let B^and B2 be two distinct Brandt semigroup summands of (P/F)/;rc.
Let ex and e2 be non-zero idempotents in Bx and B2, respectively. Then
e±ez = 0. Hence F*(e1) • F*(e2) = F*(e1e2) = 0. Consequently, since F*{e1)
and F* (e2) are each non-zero idempotents, F* (ex) ^ F* (e2). It follows that
F*(B1) n F*(Bi) = 0; whence distinct Brandt semigroup summands of
(P/F)/jr are mapped by F* onto distinct Brandt semigroup summands of
P*. This suffices to complete the proof of the lemma.

Choose idempotents et, i = 1, 2, • • •, t in P, so that e* ^ e* if i =£ j
and so that e*, e*, • • •, e* are the nonzero idempotents of (P/F)/TT, where
we suppose that the rank of (P/V)/?t, finite by Lemma 20, is t. Then, setting
e = 2*=i ef s o that e is an element of <P0[P], and regarding F as extended
to &0[S] in the usual way,

F(e) is then an identity for F(P):
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r(e)r(x) = r(x) = r(x)r(e)

for x e P; although of course, in general, F(e) $ F(P). Since F(e) is idem-
potent, there is a representation F*, say, of S, equivalent to F such that

: ) •

where 7m denotes the « x » identity matrix and where the matrix on the
right is partitioned according to n = m+(n—m). Since our aim is to deter-
mine F to within equivalence, we may assume that F* == F.

From the fact that F(e) is an identity for F(P) the next lemma now
follows.

LEMMA 21. ForxeP,

w \0 0/

where xP is an mxm matrix and the matrix on the right is partitioned
according to n = m-\-{n—m). (Note the above assumption about the replace-
ment of F, if necessary, by an equivalent representation.) The mapping x->xP

is a representation of degree m of P over 0.
We can now define FP:

FP(x) — (xe)P, xeS.

Here the representation x -> xP, x e P, of Lemma 21, has been extended
in the usual way to a representation of @0[P]'> a n ( i this gives (xe)P a meaning.

LEMMA 22. FP is a proper representation of S of degree m over 0. The
equation

FP(x) = {ex)P, x eS

may also be used to define FP.

PROOF. Let x.yeS. Then

FP(x) - FP(y) = (xe)P{ye)P

(exe)P(ye)P

(ex)PeP(ye)P

ifix)p{ye)p
{exye)P

eP(xye)P
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using frequently the fact that a -> aP is a homomorphism of
Thus FP is a representation of S, clearly of degree m. FP is proper

because rP(e) = Im.
It remains to show that (ex)P = (xe)P for x e S. This follows because

{ex)P = (ea;)p/m = {ex)PeP

= (exe)P = eP{xe)P

This completes the proof of the lemma.
We now reinterpret Lemma 19 in the form that we require it: Since

FP is determined by the restriction of F to P, Lemma 19 implies that FP is
uniquely determined by F*, the induced representation of

LEMMA 23. FP is a component of F: for x in S, if n > m, we have

(FP{x) 0 \
F{X) = (o AP{X)) •

where AP is a proper representation of S of degree n—m over 0.

PROOF. If n = m then FP = F is trivially a component of F. Suppose
that n > m and, for x in S, write

n ) = / r u (* ) ri*(*)\(} \rn(x) rn(x)J'rn(x)J
where the rows and columns of the matrix on the right are partitioned
according to the partition n = m-\- (n—m) of n. Then

F(x)F(e) = F(x)

= /AiW 0\

\rn{x) or
But F(x)F(e) = F(xe) and xe e &0[P]. Hence, by Lemma 21,

where (a;e)P is an m X w matrix. Comparing these two equations shows that
F21(x) = 0. Similarly, by Lemma 21,

from which we infer jT12(a!) = 0.
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Setting F22(x) = AP{x), the result of the lemma follows, AP being
proper because F is proper.

We call FP the primitive component of F.
We shall now determine the vanishing ideal of AP. Define

LEMMA 24. Q = V(AP), the vanishing ideal of AP.

PROOF. Let y e Q so that F{y) e F(0o[P}). Thus

for some finite sum, where <x4 e (P and xt e P. From the definition of AP and
from Lemma 21, AP(x) = 0 if x e P. Hence AP(y) — 0.

Conversely, suppose that AP(y) = 0 for y in 5. Then

_/^V(y)

= /rP(y) o\/in o\
\o o/ \o o/

But ye e 1>0[P]. Hence yeQ.
This completes the proof of the lemma.

LEMMA 25. P is contained in the ideal Q and P is 1-complete in Q
modulo V.

PROOF. Suppose that yeQ and that yeL^P). Thus there exists at
most one idempotent /*, say, of P*, such that (y/)* # 0, where, when there
is such an idempotent, we may take / to be one of the idempotents
ei> e2> ' ' '> et °f P chosen as before, so that e = 2 ei a n d £*» e*.' '', e*
are the non-zero idempotents of (P/F)/TT. By Lemma 24, AP(y) = 0 and
hence
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from the definition of F*. But at most one of the (ye^* is non-zero. Hence,
either F(y) = 0 or F(y) = r{yf), where f e P. In the former event, y eV.
In the latter event F(y) e P*, whence y e P, since P = F-1(P*). Hence in
both cases y e P; which completes the proof of the lemma.

Finally we wish to show that V(FP) = V. The proof turns on the follow-
ing well-known result on matrices.

LEMMA 26. Let h and k be idempotent matrices in (<&)„. Suppose that
h ^ k, i.e. that hk = kh = h. Then, if h =#= k, the rank of h is less than the
rank of k.

LEMMA 27. V{FP) = V.

PROOF. Clearly V g V{FP). Let x e V{FP) so that

From x~xxx~x = x~x and FP(x) = 0 we infer FP(x~x) = 0. Hence

lo
and

lo

=C
- C

Ffax-1) is an idempotent of F(S). If it is non-zero, from Lemma 26,
there is a non-zero primitive idempotent of F(S) under it. Let h be such a
primitive idempotent. By the definition of P*, he P* and h is one of the
matrices

/rP(et) o\
\o o)'

* = 1, 2, • • •, t. Hence hF(xx-1) = 0. This contradicts the assumption that
hF{xxr1) =h^0. Consequently F{xx-X) = 0 and so F{x) = 0, i.e. xeV.

This completes the proof of the lemma.

COROLLARY 28. P is Q-complete in S modulo V.

PROOF. Let x be 0-linked to P modulo V. Then (xet)* = 0, i.e. xet e V
for i = 1, 2, • • •, t. Hence F(xei) = 0 and so F(xe) = 0, where

e == ex+e2H \-et.

Thus, by definition, FP(x) = 0. Hence, by the lemma, x eV and so x e P.
We collect our results together in the following theorem.

THEOREM 29. Let S = S° be an inverse semigroup and let F be a proper
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representation of S of degree n over the field 0. Then F(S) contains a unique
maximum primitive ideal P*, say. Set P = F~1(P*) n 5. Then P is an
ideal of S properly containing the vanishing ideal V = V(F) of F. Moreover
PjV is categorical at zero and {PIV)jn the maximum O-restricted primitive
homomorphic image of P\V has finite rank equal to that of P*. Setting
Q = (r-1(r(0o[P]))) nS, Q is an ideal of S containing P, P is l-complete
in Q modulo V, and P is O-complete in S modulo V.

Let elt e2, • • •, et be idempotents of P, where t is the rank of (PjV)\n,
chosen so that {e*, e*, • • •, e*} is the set of distinct non-zero idempotents of
(PjV)\n, where x -> x*(x e P) is the natural mapping of P onto (P/F)/jr. Set

Then F is equivalent to a representation of S such that

"Ho7- :)•
where /„, is the mxm identity matrix over 0 and m ^Ln. If m = n,
F(x) = F(xe) for all x in S. In this event we define FP = F. Otherwise, if
m < n, for all x in S, F(xe) has the form

where FP is an mxm matrix; and taking this equation as defining FP(x),

r(x)-(Fp{x) ° )
F{X) ~ [o AP{x))

FP is then a proper representation of S of degree m over 0, the primitive
component of F. V is the vanishing ideal of FP and the representation F*,
say, induced on (PlV)jn by FP is O-restricted and proper. Moreover FP is
uniquely determined by F* by the equation

The component AP of F is a proper representation of S of degree n—m
over 0, and Q is its vanishing ideal.

7. Representation ideal series

Let F be a proper representation of degree n over the field 0 of the
inverse semigroup S = S°. Let FP be the primitive component of F. Then,
either F == FP or, to within equivalence,
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/FP(x) 0r<x)-(
rA

as in Theorem 29. It will be convenient now to call FP the first primitive
component of F. We may now apply Theorem 29 to the representation AP

of S, decomposing AP into its primitive component, which we shall call the
second primitive component of F and, if AP is not equal to its primitive
component, into a further component. Theorem 29 may be applied to this
latter component; and so on, the process terminating, after a finite number
r, say, of steps, when we reach a component equal to its own primitive
component, this primitive component then being called the r-th primitive
component of F.

Corresponding to this decomposition of F there is an ideal series of S,

(2) 0QV1CP1QVzCP2Q---QVrCPrQVr+1 = S,

of length 2r+l, obtained as follows. Firstly we write V± and Px for V and P,
respectively, of our earlier notation. The first primitive component of F
is then FPi. For Q of our earlier notation we write Vz so that V2 is now the
vanishing ideal of AP . FP then vanishes on V2 and is the primitive com-
ponent of APi, i.e. the second primitive component of F; and so on. Applying
Theorem 29 to each representation APf, writing F = AP , it follows that
the above ideal series satisfies the following conditions, each of which holds
for i = 1, 2, • • •, r.

Rl. PiJVi is categorical at zero.
R2. Denoting by nt the finest O-restricted congruence on PJVf from

the set of such congruences determining a primitive quotient, (P</Fi)/wj

is of finite rank.

R3. Pt is 0-complete in 5 modulo F<.
R4. Pt is 1-complete in Vi+1 modulo Vt.

We shall call an ideal series of the form (2) of length 2r+1 and satisfying
conditions Rl—R4, for i = 1,2, • • •, r, a representation ideal series for S.

The representation ideal series (2) which was determined by F will be
called the representation ideal series of F.

The »-th primitive component FP{ of F is, by Theorem 29, determined
by the representation Ff, say, induced in (PJF^/TI:,. by F. Hence, since F
decomposes into the FPf, F is determined, to within equivalence, by the
representation ideal series (2) and by the Ff, i = 1, 2, • • •, r. We now con-
sider the converse and show that a representation ideal series (2) together
with O-restricted representations of its associated (PJF^/TTJ determine in
a unique fashion a representation F with (2) as its representation ideal
series.
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THEOREM 30. Let S = S° be an inverse semigroup and let (2) be a rep-
resentation ideal series for S. Let F* be a ^-restricted proper representation of
(PiJVJlTti, of degree m{ over the field 0, for i = 1, 2, • • •, r. Denote byx-^-x*
the natural homomorphism Pt onto (PJVJfa. (Using the same notation
for each of these r homomorphisms will lead to no ambiguity, for in each case
only one interpretation will be possible.) Let t( be the rank of ( -PJFJ/TI , and let

4, j = 1, 2, • • -, tt

be idempotents of P>\Vit for i = 1, 2, • • •, r, such that («,)*, / = 1, 2, • • •, tit

are the ti distinct non-zero idempotents of (PJFJ/n^. For each i, set

et = 2 {4 • i = i . 2 . • • •.'«}.
an element of #0 [-?*<]•

For x e S define Ft(x) thus:

/ » = rt(xet)*,
where Ff and the homomorphism * are regarded as extended in the natural
way to ^0[(^

>*/^*)/3ri] and ^o[-P<]» respectively. Now define F, thus:

(AGO o • • •
o rt(x) • • •

r(*)=

• • rr(x))
for x eS.

Then Fis a proper representation of S of degree n = WJ+W2+ • • • -\-mr,
(2) is the representation ideal series of F and F( is the i-th primitive component
ofFfori= 1, 2,---,r.

PROOF. It will follow that F(x)F(y) = F(xy) once we show that
W I ^ '= I\tart iot i = 1,2, • • -, r.

By Lemma 8, rf(et)* is the identity matrix Im(. Hence from the defini-
tion of Ft we have (cf. the proof of Lemma 22)

= F*(e*(xei)*)F*(i,ei)*
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= rf{etxyet)*
= rf{et)*r*{xyet)*

= rt(xy).
Consequently F is a representation of S, clearly of degree n. Since,

for each i, Fffa) = Imi, Tis proper.
Let V be the vanishing ideal of F. Then, if x e V, in particular,

Fx{x) = 0, i.e. F*{xex)* = 0. Hence Ff {xej)* Ff {e))* = 0, i.e.

F*((xei)*(ei)*) = F*(xeie{)* =

Since F* is 0-restricted, therefore (x^)* = 0 for / = 1, 2, • • -, tx. Hence
x is 0-linked to Px modulo Vx. From condition R3, which the series (2)
satisfies, therefore x eV1. Thus V QV1.

Conversely, let x e Vx. Then x e Vt for i = 1, 2, • • •, r. Hence (xe4)* = 0
for i = 1, 2, • • •, y. Thus rs(x) = 0 for * = 1, 2, • • •, r, and so F(x) = 0.
Hence Fx Q V. Combined with the earlier inequality this gives V = Vx.

Let P* be the unique maximal primitive ideal of F(S) and let
P = F-1(P*) n S. We shall show that P = Px.

Let us show firstly that -T(^), for / = 1, 2, • • •, tx, are primitive non-
zero idempotents of F(S). It is clear that F(e{) ^ 0; for {e{)* ^ 0 and F*
is O-restricted. Suppose that F(f) is a non-zero idempotent of F(S) under
F(e{) : F(f)F(ei) = T(/) ^ 0 . If * > 1, then eieie0o[Px]Q<Po[Vi] and
so r*(^e,)* = 0. Hence the equation F(f)F(e{) = F(f) implies that
rf(fet)* = 0 for » > 1. We shall show that T * ^ ) * = F*{e{)*.

Since r f ^ c , ) * = 0, if i > 1, and the F*{e{)* are ^ distinct primitive
non-zero idempotents of r^^PJVj)/^), therefore F(e1)F(4) = 0, if j # A.
Hence the equation F(f)F(ei

1) = T(/) ^ 0 holds for precisely one /. Hence
r?iKei)* = r*(K)* # 0 . i-e.. since T* is O-restricted, (/ej)* ^ 0 for
precisely one /. Thus / is 1-linked to Px modulo Vx. If r = 1, then / e F2 = 5.
If r > 1, then from F*(fe2)* = 0 we infer that (fe2)* = 0 and so / is 0-linked
to P2 modulo F2. By condition R3, therefore / e P2 and so / e F2. We now
have / 1-linked to Px modulo Vx and f eV2; hence by condition R4, / e Px.

It now follows that F*^)* is one of the non-zero idempotents of
A * ( W i ) K ) - Hence F^feJ* = F*(e{). Consequently, F{f) =F{e[);
and this completes the proof that each F(e[) is primitive in F(S).

We now return to proving P = Px. Let x e Px. Then, setting / = xx~x,
F(f) = 0 or F[f) = F(e{), for some /, and so, as we have shown, F(f) is
primitive in F(S), i.e. F(f) e P*. Hence f eP; whence x = fxtP. Thus
PXQP.

Conversely, let x e P. Then, if / = xx'1, F(f) = 0 or F{f) is primitive,
by the definition of P*. If F(f) = 0, then / e F = F 1 £ P 1 . If F(f) ^ 0,
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then either F(f) = F[e{) for some j , or F(f) is different from all the
In the former event, F*(fe2)* = 0 whence we infer, as before, that / e F 2 .
Then, again as in an earlier argument, F*(fex}* = F*(e{)* ensures that / is
1-linked to Px modulo Vx; whence we infer, from condition R4, that fePx.

If F(f) is not equal to any of the F(ei
1), then since /"(/). is primitive,

r(f)r{4) = ° f o r ^l /• T h u s r(fei) = °> whence F*(fex)* = 0. This implies
that / is 0-linked to Px modulo Vx. From condition R3, therefore / e Px

and s o / e F , . Hence, F{j) = 0, contrary to assumption.
Hence, in all cases / e Px; whence x = fxe Px. Thus P C P j i whence

P = PX.
What we have shown so far suffices to show that Fx is the first primitive

component of F. We have / " = Fx © Ax, say, where Ax = AP , in our
earlier notation. Now apply the argument we have just applied to F and to
S instead to Ax and to S. The conditions upon the ideal series (2) then
ensure that V2 is the vanishing ideal of Ax, that F2 is the first primitive
component of Ax and that P2 = A\'1(Pf) n S, where P* denotes the unique
maximal primitive ideal of -d1(5); and so on.

Hence, for each i, Ft is the i-th. primitive component of F and the series
(2) is the representation ideal series of F.

This completes the proof of the theorem.
When the series (2) is a representation ideal series let us call the semi-

groups (PJVJIni, i = 1, 2, • • •, r, the primitive factors of the series. From
the remarks preceding Theorem 30 and from Theorem 30, it follows that
any proper representation of S determines a representation ideal series and
O-restricted proper representations of its primitive factors, and that, in turn,
these representations of the primitive factors determine the primitive com-
ponents of the original representation and so determine this representation
to within equivalence. And, conversely, starting with a given representation
ideal series, and assigning O-restricted proper representations to each of its
primitive factors, we thereby determine in a unique fashion a proper rep-
resentation of the whole semigroup with the given representation ideal
series as its representation ideal series and determining in turn the given
assigned representations of its primitive factors.

The one-to-one relationship we have thus established between proper
representations of S and O-restricted proper representations of the primitive
factors of a representation ideal series is a relationship which involves a
particular means of constructing, to within equivalence, each from the other.
The wider question of characterizing equivalent proper representations in
terms of their representation ideal series and representations of their
primitive factors we treat in a later section. As a preliminary to this analysis
we examine in the next section, more closely, the representations of the
semigroups
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What we have proved shows that an inverse semigroup S = S° admits
a proper representation if and only if it possesses a representation ideal
series. We complete this section by some comments on the construction of
such series.

Isolating the portion

OQVrCPrQVr+1 = S

of the representation ideal series (2), and observing that this is itself a
representation ideal series, it follows that 5 possesses representation ideal
series if and only if it contains ideals V and P such that

(3) OQVCPQS

is a representation ideal series. Theorem 16 then applies to show that such
a representation ideal series can be constructed provided we can find an
ideal series (3) satisfying merely the conditions that PIV is categorical at
zero and (PIV) fa is of finite rank.

Suppose that (P/F)/^ is of finite rank and that {B* : j = 1, 2, • • •, «},
say, is its set of Brandt semigroup summands. Let Bt be the set of all ele-
ments of P mapped onto B* under the natural mapping of P onto (PIV) In.
Since n is O-restricted, therefore Bt n Bk Q V if / ^ k. Consequently PIV
is the 0-direct union of the Bt/V, j = 1, 2, • • • , « . Denote by nt the restriction
of n to BJV. Then (B,/F)/^ s B*. Hence

0 Q V C Bt Q S

satisfies the two conditions: BfIV is categorical at zero and (BJV)/^ is a
Brandt semigroup of finite rank.

Munn showed in [6] that a semigroup T = T°, say, has a O-restricted
homomorphic image which is a Brandt semigroup if and only if it is cate-
gorical at zero and its zero is indecomposable. Moreover Munn also showed
that if T satisfies these conditions then any non-zero ideal of T satisfies
these conditions and has the same (to within isomorphism) maximal
O-restricted homomorphic Brandt semigroup image (loc. cit.).

Taking P to be one of the B/s or an ideal of one of the B/s properly
containing V, we therefore see that S has a representation ideal series if and
only if it possesses an ideal series

OQVCPQS

such that (i) P/V is categorical at zero and has an indecomposable zero and
(ii) (PIV)/n is (a Brandt semigroup) of finite rank.

From our earlier results we infer

THEOREM 31. Let S = S° be an inverse semigroup. Then S possesses a
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non-trivial matrix representation over a field if and only if there exists an
ideal series

OgVCPQS

such that P\V is categorical at zero and (PfV)J7c is of finite rank. In this
condition it may also be assumed that P/V has an indecomposable zero, in
which event (PjV)ln is a Brandt semigroup of finite rank.

Munn's necessary and sufficient conditions for a 0-simple inverse semi-
group to have a non-trivial matrix representation ([1], Theorem 2.6 (is)
are a special case of the above result. For Brandt semigroups, as shown
earlier by Clifford [2], the conditions mean that the Brandt semigroup has
to have finite rank. We complete the section with a further example of a
O-simple inverse semigroup with only trivial matrix representations.

The example is the inverse semigroup S generated, as a subsemigroup
of the symmetric inverse semigroup SN, by the two one-to-one mappings,
a and /S of the set N of natural numbers into itself defined thus:

a: n -> 2n (n eN);
j3 :n->2»+l (neN).

The zero of S is the zero of yN, the empty mapping 0. We have oca"1 = iN,
the identical mapping of N. Hence iN e S. Thus <uN^~x is a product of ele-
ments in 5. Moreover cuN = a and iN^~x = /3-1; but auyf}-1 = a/?"1 = 0.
Hence S is not categorical at zero.

Once we show that S has no proper non-zero ideals, i.e. that S is
0-simple, then it will follow from the preceding theorem that S has only
null matrix representations. To see that S is 0-simple, consider the elements
of S. We easily see that a'/H = 0 for any positive integers *', /; and similarly
(or consequently) ft or* = 0 for i, j positive. Giving the meaning iN to each
of a0 and /?°, the powers of each of a and /S form infinite cyclic groups with
iN as identity element. From these remarks we see that the non-zero elements
of S can be reduced to two kinds (i) products of non-negative powers of
a and /? (ii) products of negative powers of <x and /S. Let

x = a'i/S:f»a'»/9>« • • • a**̂ *

be an element of the first kind. Then its left unit is iN. Hence SxS = S.
Each element x of the second kind is an inverse of an element of the

first kind. Hence SxS = S for such elements also. Hence S is 0-simple-
as asserted.

8. Representations of semigroups which are categorical at zero

We have seen in the previous section that the general representation
of an inverse semigroup is determined by the O-restricted representations
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of the semigroups P,/Ff associated with a representation ideal series (2).
These semigroups PJVi are categorical at zero and such that the corre-
sponding primitive factors (P./F,)/:^ are of finite rank. In this section we
examine more closely these representations.

If S is an inverse semigroup which is categorical at zero, then we define
/3 = /3(5) on 5 thus

(4) (5 = {(a;,y)eSxS: there exist a, b, z in S such that ax, az, zb and yb
are all non-zero).

THEOREM 32. Let S be an inverse semigroup which is categorical at zero.
Define p by (4).

Then the restriction of (I to 5 \ 0 is an equivalence relation on 5 \0 .
Let {Bt : / e/} be such that (i) 0 e Bt for each j and (ii) {Bt\0 : j el}

is the set of ̂ -classes in S\0.
Then each B} is a subsemigroup of S which is both categorical at zero

and with an indecomposable zero. Moreover S is the O-direct union of the
{Bt:jel}.

Furthermore, if T is an ideal of S in which 0 is indecomposable, then
T QBj for some j e I.

Alternatively, the B, may be defined thus. Let n be defined on S by equation
(1) of Theorem 5. Then Sjn is the O-direct union of a set of Brandt semigroups
{Bf : j el}, say. For each j el, define B, = Bffa^)-1.

PROOF. Define the sets Bt as in the final paragraph of the theorem.
The Bj are then subsemigroups of 5. Further, since n is O-restricted, 5 is
the O-direct union of the {B3 : j e I}. Hence, since B} n Bk = 0 if / ^ k,
{Bj\Q '.j el} forms a partition of 5 \0 . Denote by a the equivalence relation
determining this partition. We shall show that a is the restriction of /? to
S\0.

Let x, y e Bj\0. Then xn, yn e Bf\O. Since Bf is O-bisimple (i.e. Bf\0
forms a S-class) there exists z in B,\0 such that (xn, zn) e 01 and
(ZTZ, yn) e £?, where J§? and & denote Green's equivalence relations (see
[4], Chapter 2) on Bf. Let a, b be elements of B>\0 such that an is an
idempotent ^-equivalent to xn and bn is an idempotent j£?-equivalent to
yn. Then

(ax)n = (an) (xn) = xn, (az)n = (an) (zn) = zn,
(zb)n = (zn) (bn) = zn, and (yb)n = (yn) (bn) = yn.

Since n is O-restricted and xn, yn and zn are all non-zero, therefore ax, az,
zb and yb are all non-zero. Hence (x, y) e ft. Consequently, a Q fi.

Conversely, let x, y be non-zero and5 suppose that (x, y) e /?. Thus
ax, az, zb, yb are all non-zero for some a, z, b in S. Hence (an) (xn), (an) (zn),
(zn)(bn), and (yn)(bn) are non-zero in S/n. Thus (an)-1 (an) is the left unit
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of xn and of zn; whence xn and zn belong to the same Brandt summand of
S\n. Similarly, zn and yn belong to the same Brandt summand. Hence xn
and yn belong to the same summand, Bf, say. Thus x, y e B^\0 and so
(x, y) e a. We have thus shown that the restriction of /5 to S \ 0 coincides
with a.

That each Bt is categorical at zero is immediate because S is categorical
at zero. That B} has an indecomposable zero follows from Munn's Theorem
1.1 in [6], since Bf is its homomorphic image.

Now let T be an ideal of S which has an indecomposable zero. Let
Tf = T n Bu j el. Then Ts is an ideal of T, for each /, and Tt nTk = 0,
if y y^ k. Since the zero of T is indecomposable it follows that Th = 0 except
for at most one k e J. Hence T = TjQBi, for some / e / .

The proof of the theorem is complete.
We now examine the semigroups Bt more closely. They are semigroups

categorical at zero and with an indecomposable zero or, as we shall say,
more shortly, categorical at an indecomposable zero. Munn showed [6] that
an inverse semigroup S = S° is categorical at an indecomposable zero if
and only if it has a Brandt semigroup as a O-restricted homomorphic image.
Munn also showed that the maximal such homomorphic image is the
same, to within isomorphism, for S and for any of its non-zero ideals
([6] Theorem 3.6).

We recall that if x is an element of a semigroup S = S°, then J{x)
denotes the principal ideal generated by x, l(x) denotes the subset of J(x)
consisting of those elements of J(x) which generate a principal ideal of S
properly contained in J(x), and / „ denotes J(x)\I(x). I(x) is non-empty
when x ^ 0, and is an ideal of S. The semigroups J(x)/I(x) are the principal
factors [^ 0) of S. When S is an inverse semigroup, each of the principal
factors J(x)jl(x) is 0-simple. JX is the set of generators of J(x) and is the
set of non-zero elements of J(x)/I(x). (See [4], § 2.6.)

When S is categorical at an indecomposable zero and has a 0-minimal
ideal K, say, then K is (isomorphic to) a principal factor of 5 and, from the
above remarks, S and K have the same maximal Brandt homomorphic
image. This is the case, in particular, when 5 is finite. As we shall show by
an example shortly there need not be a principal factor of S with the same
Brandt homomorphic image.

Following Munn, if p is a O-restricted congruence on S = S° such that
Sjp is a Brandt semigroup, we shall call p a Brandt congruence.

LEMMA 33. Let S be categorical at an indecomposable zero. Let
x,y e S \ 0 and suppose that J(x) QJ{y). Let p be a Brandt congruence on S.
Then, for each element a in Jv there is an element b in Jx such that (a, b) e p.

PROOF. Let a ejy. Since J(x) QJ(y) = J(a) there exist u.veS such

https://doi.org/10.1017/S1446788700005656 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005656


58 G. B. Preston [30]

that x = uav. Set b = u~xxv~x. Then

ubv = uw1xvv~1 = uu~xuavv~xv = uav = x.

Thus b ejx. Furthermore, b = u-xuavv~x, which implies that

bP = (up)-x(uP)(ap)(vP)(vp)-x.

Since p is O-restricted, bp =£ 0. Hence (up)-1 (up) is the left unit of ap in the
Brandt semigroup S/p and, similarly, (vp)(vp)~x is the right unit. Hence
ap = bp.

COROLLARY 34. Let S be categorical at an indecomposable zero. Let p be a
Brandt congruence on S and suppose that Sip is finite.

Then there exists a #-class J, say, such that Jp% = (S//»)\0. Further-
more, if J' is a non-zero #'-class and J' ^ / , then J'p^ = (Sjp)\O.

PROOF. Choose ylt y2, • • -, ym, say, in S such that (ylP), (y2p),---, (ymp)
are the non-zero elements of Sjp. Then

because otherwise 0 is decomposable. Choose a non-zero element x belonging
to all the J(yi). Then, by the lemma, since J(x) Q / ( y j , there is an element
Xf, say, in Jm, such that x(p = ytp. This holds for i = 1, 2, • • •, m. Hence,
taking J = JX,JP* = (S/p)\0. If 0 ^ / ' ^ / , then the lemma immediately
gives J'p* =Jp*.

In a later paper the structure of inverse semigroups which are cate-
gorical at an indecomposable zero will be explored further. Meanwhile we
give the example mentioned earlier.

Let G be an abelian group of type^>°°, with generators, at, i = 1, 2, • • •,
which satisfy the defining relations a\¥1 = ait and a\ = 1. We now define
an inverse semigroup S which has G° as its maximal Brandt semigroup
image. S is commutative, has a zero 0, and generators bit eit i = 1, 2, • • •,
satisfying the defining equations

b? = tit i = 1, 2, • • -,
V?V] = bf^~l+n, if i ^ /.

It may then be checked that each ./-class of S is a finite cyclic group, the
principal factors being obtained by adjoining zeros. In fact the ^-classes
are the subgroups of S generated by the bt, i = 1,2, • • •. Each principal
factor is thus a finite Brandt semigroup. Define <f> as the homomorphism
of S which maps bt onto a(, i = 1, 2, • • •. Then S<j> = G°, and it may be
shown that G° is the maximal Brandt semigroup O-restricted image of S.
In particular, G° is not the homomorphic image of any principal factor of S.
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We return now to the representations of semigroups categorical at
zero that are involved as primitive components of the general representation.
They are O-restricted representations which have a primitive image. For
these the following theorem gives the extension of the result of Theorem 9
needed. We shall say that the representation F of a semigroup S is
primitive if F(S) is primitive.

THEOREM 35. Let S be an inverse semigroup categorical at zero and
such that its maximal to-restricted, primitive image is of finite rank. Let
Bf, j = 1, 2, • • •, u, be the to-direct summands of S with indecomposable zeros
of Theorem 32, i.e., such that {B^\to : j = 1, 2, • • •, u} is the set of ^-classes,
where (} is defined by (4).

Let F be a to-restricted primitive representation of S. Then F decomposes
into to-restricted primitive representations F}:

F=F1®ri© •••@ Fu,

where Ft is a representation of Bt.

PROOF. From Theorem 32, the semigroups Bt may be identified as the
semigroups Bffo^)-1, where it is defined by equation (1) of Theorem 6.
By assumption, F(S) is primitive and O-restricted and hence, by Theorem 5,
TCGFOF-1. Set F(S) = P* and let P*, P*. • • •, P*. say, be the Brandt
semigroup summands of P*.

Let x,ye Bt\to. Then F(x) ^ 0 and F{y) ^ 0, since F is O-restricted.
Let/»eP*, F(y)ePf; thenxeF-HP*), = Tk, say, and yeF-^P*), = Tt,
say. By Munn's Theorem (loc. cit. [6]), Th and Tx have indecomposable
zeros. Hence, by Theorem 32, Tk and T1, are each contained in one of the
semigroups Bx, B2, • • •, Bu. Since x,yeBjt therefore Tk and T, are con-
tained in Bj. Were k ^ I, then it would follow that Tkn Tt = to and
this would conflict with the fact that Bj has an indecomposable zero.
Hence k = /; and we have shown that each F(B}) is contained in one of
the P*.

Since F is O-restricted, distinct Bf are contained in distinct Pf. There
is thus a one-to-one correspondence between the Bt and the Pf. Hence
u = v and we may assume that the Pf are enumerated so that F(Bi) Q Pf,
j — 1, 2, • • •, u. Indeed, since

u r(B,) = F(S) = u Pf

and F(Bi) n F(Bk) = 0, if / ^ k, we have F(B,) = Pf, for each /.
If we denote the restriction of Tto Bt by Fjt it now follows immediately

from Theorem 9, that F decomposes into the representations F,. It is clear
that the Fs are O-restricted and primitive.
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9. Equivalent representations

Let Ft and F2 be equivalent representations of the inverse semigroup
S and let

(2) 0 Q Vx C P1 Q V2 C • • • C Pr Q Vr+1 = 5

be the representation ideal series of Ft.
Since Fx{x) = 0 if and only if F2(x) = 0, V1 is also the vanishing ideal

of F2. Let P* be the maximal primitive ideal of 7\(5). Then Pt = /Y1 (•?*)•
Let Q* be the maximal primitive ideal of F2(S). Then we shall show that

By assumption there is a non-singular matrix A, say, such that
A~1F1(x)A = F2(x) for all x e S. It is clear therefore that F2(x) is an idem-
potent if and only if Fx(x) is an idempotent and that the idempotent
r2(xj) is under the idempotent Fz{x2) if and only if rx{xx) is under F^x^.
Hence if E denotes the set of primitive idempotents of F^S) and F that of
rt{S), F = A-iEA (= {A^Fx{x)A : / » e E}).

Let r^x) e P*. Then T^r^y) = rx(x), where rx{y) e E and rx{y)
is the right unit of Fx(x). Hence F2{x)F2{y) = F2(x), where F2{y) G F;
whence F2(x) eQ*. The reverse argument holds. Hence Fx(x) e P* if and
only if F2(x) e Q*, i.e. Pt = F?((?*).

Thus we have shown that the first two terms of the representation ideal
series for F2 coincide with the first two terms, Vx and P1 ( of the representa-
tion ideal series for Fx. Consideration of the second primitive component
of Fx shows that the next two terms of the representation ideal series of
Fx and F2 coincide; and so on. Thus we have proved,

THEOREM 36. Two equivalent representations of an inverse semigroup
S = S° have the same representation ideal series.
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