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Electrolyte solutions play an important role in energy storage devices, whose performance
relies heavily on the electrokinetic processes at sub-micron scales. Although fluctuations
and stochastic features become more critical at small scales, the long-range Coulomb
interactions pose a particular challenge for both theoretical analysis and simulation of
fluid systems with fluctuating hydrodynamic and electrostatic interactions. Here, we
present a theoretical framework based on the Landau–Lifshitz theory to derive closed-form
expressions for fluctuation correlations in electrolyte solutions, indicating significantly
different decorrelation processes of ionic concentration fluctuations from hydrodynamic
fluctuations, which provides insights for understanding transport phenomena of coupled
fluctuating hydrodynamics and electrokinetics. Furthermore, we simulate fluctuating
electrokinetic systems using both molecular dynamics (MD) with explicit ions and
mesoscopic charged dissipative particle dynamics (cDPD) with semi-implicit ions, from
which we identify that the spatial probability density functions of local charge density
follow a gamma distribution at sub-nanometre scale (i.e. 0.3 nm) and converge to a
Gaussian distribution above nanometre scales (i.e. 1.55 nm), indicating the existence of a
lower limit of length scale for mesoscale models using Gaussian fluctuations. The temporal
correlation functions of both hydrodynamic and electrokinetic fluctuations are computed
from all-atom MD and mesoscale cDPD simulations, showing good agreement with the
theoretical predictions based on the linearized fluctuating hydrodynamics theory.
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1. Introduction

Electrolyte solutions, consisting of a polarized solvent and ionic species, are extremely
important in a wide range of fields, including chemical physics, biology and geochemistry
(Guglielmi et al. 2013; Molina-Osorio et al. 2020). They are also of interest in engineering
physics, such as aggregation and dispersion of charged liquid particles (Boutsikakis
et al. 2020; Nieto et al. 2021) present in aerospace systems. Despite a long history
of electrolyte solution studies, there are still important open questions associated with
fluctuations and correlations of electrolyte bulk solutions (Donev et al. 2019a). At the
mesoscale (i.e. nanometre to micrometre length scales), thermal energies of electrolyte
solutions are of the same magnitude as the characteristic energies of hydrodynamics and
electrokinetics. Therefore, thermally induced fluctuations can play an important role in
both equilibrium and non-equilibrium electrokinetic phenomena at the mesoscale (Ladiges
et al. 2021). Quantifying the impact of fluctuations on mesoscale fluid systems is critical
to understanding the large-scale dynamics of complex fluid systems designed from the
nano/mesoscale in a bottom-up approach.

The essential feature of an electrolyte solution is that charged species interact with
each other with long-range Coulomb forces, leading to a system whose properties are
significantly different from those of electrically neutral solutions (Klymko et al. 2020).
The presence of a liquid–liquid or liquid–solid interface will change the dynamics of
charged particles, and the behaviour of these charged particles near surfaces could
differ significantly from the bulk properties as they form condensed ion layers (Larsen
& Grier 1997) and ionic double-layer structures (Sidhu, Frischknecht & Atzberger
2018). Elimination of sound waves in low-Mach-number transport of charged species
at the mesoscale with significant thermal fluctuations can yield a quasi-incompressible
formulation of fluctuating hydrodynamics (Péraud et al. 2016). Discrete ion effects
can induce depletion forces and significant nanoparticle–wall interactions (Asakura &
Oosawa 1954, 1958). The differential capacitance of charged particles can vary from
a minimum value for aqueous solution (Kilic, Bazant & Ajdari 2007) to a maximum
value for molten electrolytes (Lamperski & Kłos 2008). The changes from minimum
to maximum values are driven by a change of reduced charge density from small, for
aqueous solutions, to large, for molten electrolytes (Lamperski, Outhwaite & Bhuiyan
2009). In the electroneutral limit, the fluctuating Poisson–Nernst–Planck (PNP) equations
are constrained to preserve charge neutrality by a variable-coefficient elliptic equation
instead of the standard Poisson equation (Donev et al. 2019b). At the continuum
scale level, fluctuating hydrodynamic and electrokinetic theories have been used to
describe thermally induced fluctuations through random tensor/flux terms in the governing
equations, formulated properly to satisfy the fluctuation–dissipation theorem (Landau &
Lifshitz 1959; Ortiz & Sengers 2006). The electrostatic properties can be modelled by
the Poisson–Boltzmann (PB) equation (Baker et al. 2001). At the atomic scale, molecular
dynamics (MD) simulations with explicit ions have also been used to study electrolyte
solutions. MD models of electrolyte fluids can maintain a good accuracy compared to
the classical density functional theory (cDFT) calculations, while PB models depart
significantly from cDFT and MD at high charge densities (Lee et al. 2012). However,
the huge computational cost of MD simulations prevents their use at large length and time
scales (Chen & Pappu 2007; Joung, Luchko & Case 2013; Yoshida et al. 2014). Mesoscale
approaches smoothly bridge the gap between continuum and atomistic descriptions,
and provide the possibility to integrate fluctuations consistently into macroscopic
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Theory and simulation of electrokinetic fluctuations

field variables. To this end, we developed a charged dissipative particle dynamics
(cDPD) model (Deng et al. 2016) to simulate mesoscale electrokinetic phenomena with
fluctuations.

Hydrodynamic fluctuations at mesoscopic scales have been studied extensively in the
past decade (Bian et al. 2015; Péraud et al. 2016; Yu et al. 2016; Bian, Deng & Karniadakis
2018; Kim et al. 2018; Donev et al. 2019a). However, the electrokinetic fluctuations in
electrolyte solutions have been explored less, especially from a theoretical perspective.
In the present work, we focus on theoretical analysis on electrokinetic fluctuations
in bulk electrolyte solutions close to the thermodynamic equilibrium state, aiming to
provide closed-form expressions for temporal correlation functions of electrokinetic
fluctuations. We consider a continuum formulation and derive the coupled fluctuating
hydrodynamic and electrokinetic equations. Based on the linear response assumption
(Kubo 1982), we will linearize the fluctuating hydrodynamic and electrokinetic equations
and derive analytical closed-form expressions for current correlation functions of
electrolyte bulk solutions in Fourier space. Then we will perform both all-atom MD
simulations with explicit ions and mesoscale cDPD simulations with semi-implicit ions to
compute spatial and temporal correlations of hydrodynamic and electrostatic fluctuations
directly from particle trajectories. These simulation results will be used to validate the
closed-form expressions for correlation functions derived from the linearized fluctuating
hydrodynamics theory by comparing simulation results against theoretical predictions.

The remainder of this paper is organized as follows. In § 2, we introduce the continuum
formulation for fluctuating hydrodynamics and electrokinetics, and also the derivations
of analytical solutions for current correlation functions using perturbation theory. In § 3,
we describe the details for performing all-atom MD simulations and mesoscopic cDPD
simulations, and we also present the simulation results comparing against the theoretical
predictions. Finally, we conclude with a brief summary and discussion in § 4.

2. Continuum theory

2.1. Fluctuating hydrodynamics and electrokinetics
We consider a mesoscale system of electrolyte solution at thermal equilibrium in a
periodic domain Ω of fixed volume. The system contains S types of ionic species with
concentration cα(r, t) and charge valency zα for the αth ionic species. Let e be the
elementary charge. Then a global constraint is imposed by the charge neutrality condition

S∑
α=1

∫
Ω

ezα cα(r, t) dr = 0. (2.1)

The solvent molecules are represented implicitly through their electrostatic and
thermodynamic properties, such as dielectric constant ε, bulk viscosity ζ , and shear
viscosity η. From the continuum perspective, this system can be described by equations of
classical fluctuating hydrodynamics with an additional electrostatic force:

∂ρ

∂t
+ ∇ · g = 0, (2.2a)

∂g
∂t

+ ∇ · (gv) = −∇p + η ∇2v +
(η

3
+ ζ

)
∇(∇ · v) + ρeE + ∇ · δΠ, (2.2b)

for velocity v(r, t), pressure p(r, t), mass density ρ(r, t), momentum density
g(r, t) = ρ(r, t) v(r, t), and electric field E(r, t). The local charge density is given
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by ρe(r, t) = ∑S
α=1 ezα cα(r, t). The random stress tensor δΠ is a matrix of

Gaussian-distributed random variables with zero means and variances given by the
fluctuation–dissipation theorem (FDT) (Ortiz & Sengers 2006)

〈δΠij(r, t) δΠkl(r′, t′)〉 = 2kBTCijkl δ(r − r′) δ(t − t′), (2.3)

where Cijkl = η(δikδjl + δilδjk) + (ζ − 2η/3)δijδkl is a rank-4 tensor. The fluctuating
hydrodynamic equations are closed with the equation of state, e.g. c2

s = (∂p/∂ρ)T , with cs
being the isothermal sound speed.

The Ginzburg–Landau free energy functional for an electrolyte solution is (Ginzburg &
Landau 1950)

G =
∫

Ω

dr

{
kBT

S∑
α=1

cα ln cα +
S∑

α=1

ezαcαφ − ε

2
(∇φ)2

}
, (2.4)

where kBT is the thermal energy, and φ is the electrostatic potential. Variation of the free
energy with respect to the electrostatic potential yields the Poisson equation

−∇ · (ε(r)∇φ) =
S∑

α=1

ezα cα(r, t), (2.5)

by setting δG/δφ = 0. Similarly, the electrochemical potential of the αth ionic species can
be derived by variation with respect to ionic concentration:

μα = δG
δcα

= kBT ln cα + zαeφ. (2.6)

The transport and dissipation of ionic species are driven by the fluid velocity,
electrochemical potential and thermal fluctuations, which can be described in terms of
the ionic concentration flux J (r, t) by

∂cα(r, t)
∂t

+ v(r, t) · ∇cα(r, t) = −∇ · (Jα(r, t) + δJα(r, t)), (2.7)

where Jα(r, t) is the dissipative flux, and δJα(r, t) is the random flux when the
system is near thermodynamic equilibrium. The diffusion flux can be written as
Jα = −∑S

β=1 Mαβ ∇μβ(r, t), in which ∇μ is the thermodynamic force for diffusion flux,
and Mαβ are the Onsager coefficients related to macroscopic ionic diffusion coefficients.
In general, Mαβ = Mβα /= 0, as implied by reversal invariance (Onsager 1931a,b). The
off-diagonal terms Mα /=β describe mutual diffusion and are assumed to be relatively small
compared to the diagonal self-diffusion terms. For example, according to experimental
data (Chapman 1967), the self-diffusion coefficients of cation and anion in a 1 M NaCl
solution are 1.16 × 10−9 and 1.99 × 10−9 m2 s−1, respectively, while the mutual diffusion
coefficient is one order of magnitude smaller: 1.3 × 10−10 m2 s−1. Therefore, we assume
that the mutual diffusion terms can be ignored in the present work for simplicity. In
numerical experiments, this assumption is checked by computing the self-diffusion and
mutual diffusion coefficients from MD data using the Green–Kubo relations (Zhou &
Miller 1996; Wheeler & Newman 2004), as presented in § 3.
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By substituting the electrochemical potential expression into the diffusion flux, we
obtain

Jα = −Mα ∇μα(r, t) = −MαkBT
cα

∇cα − Mαzαe ∇φ. (2.8)

In practice, it is more convenient to use the macroscopic diffusion coefficients Dα =
MαkBT/cα instead of the phenomenological coefficients Mα . Therefore, the ionic
concentration transport equation can be rewritten as

∂cα(r, t)
∂t

+ v(r, t) · ∇cα(r, t) = ∇ ·
(

Dα ∇cα + Dαezαcα

kBT
∇φ + δJα(r, t)

)
. (2.9)

For a system near thermodynamic equilibrium, the random fluxes can be modelled as
Gaussian random vectors with zero means and variance given by the generalized FDT as

〈δJα(r, t) · δJβ(r′, t′)〉 = 2kBTMαβ δ(r − r′) δ(t − t′)

= 2Dαcα δ(r − r′) δ(t − t′). (2.10)

The coupled equations (2.2)–(2.10) form the fluctuating hydrodynamic and
electrokinetic equations.

2.2. Linearized theory of electrolyte solution
The stochastic partial differential equations (sPDEs) given by (2.2)–(2.10) could be solved
through numerical discretization, with the FDT satisfied at the discrete level following the
GENERIC framework (Grmela & Öttinger 1997; Öttinger & Grmela 1997). In general, it
is very challenging to obtain an analytical solution of such sPDEs. However, if the local
hydrodynamic and electrokinetic fluctuations are sufficiently small, then linear response
theory can be applied to derive linearized equations to describe the relaxation process of
electrolyte solution towards equilibrium. In the present work, we focus on the linearized
equations for electrolyte solutions and their closed-form solutions.

The equilibrium state of a bulk electrolyte solution is characterized by its mean
field properties, i.e. constant mass density ρ0, constant pressure p0, constant bulk ionic
concentration cα0, zero momentum field g0 = 0, and zero electrostatic potential field
φ0 = 0. The local fluctuating hydrodynamic field can be expressed as the perturbation
around the mean field state:

ρ(r, t) = ρ0 + δρ(r, t), (2.11a)

p(r, t) = p0 + δp(r, t), (2.11b)

g(r, t) = δg(r, t), (2.11c)

where the local perturbation of pressure can be related to density fluctuations via the
equation of state δp = c2

s δρ under isothermal conditions. Also, the local fluctuating
electrostatic field can be decomposed as

cα(r, t) = cα0 + δcα(r, t), (2.12a)

φ(r, t) = δφ(r, t), (2.12b)

ρe(r, t) = δρe(r, t), (2.12c)
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in which δρe(r, t) = ∑S
α=1 ezα δcα(r, t) when the global electroneutrality condition∑S

α=1 ezαcα0 = 0 is imposed. The fluctuating electrostatic potentials and charge densities
are related via the Poisson equation.

For small fluctuations of electrostatic field, the linearized fluctuating hydrodynamic and
electrokinetic equations can be written as

∂(δρ)

∂t
= −∇ · δg, (2.13a)

∂(δg)

∂t
= −c2

s ∇δρ + η ∇2(δv) +
(η

3
+ ζ

)
∇(∇ · δv), (2.13b)

∂(δcα)

∂t
=
(

Dα ∇2(δcα) + Dα

ezαcα0

kBT
∇2δφ

)
, (2.13c)

−∇ · (ε ∇δφ) =
S∑

α=1

ezα δcα(r, t), (2.13d)

where only first-order perturbation terms are kept in these linearized equations. It is
important to note that the advection term ∇ · (δg δv) and the electrostatic force δρe ∇δφ in
the momentum equation, and the convection term δv · ∇δcα in the transport equation, are
high-order perturbation terms and are thus assumed to be negligible in the equations above.
Therefore, the linearized hydrodynamic and electrokinetic equations become explicitly
decoupled for fluid systems in thermodynamic equilibrium.

The linearized fluctuating hydrodynamic equations given by (2.13) can be transformed
into k-space by a spatial Fourier transform and then solved in the k-space. Appendix A
describes the detailed derivation of mass–momentum correlations by solving (2.13). The
normalized temporal correlation functions of the mass–momentum fluctuations in the
k-space are given by

〈ρ̂(k, t) ρ̂(k, 0)〉
〈ρ̂(k, 0) ρ̂(k, 0)〉 = exp(−ΓTk2t) cos(cskt), (2.14a)

〈ĝ‖(k, t) ĝ‖(k, 0)〉
〈ĝ‖(k, 0) ĝ‖(k, 0)〉 = exp(−ΓTk2t) cos(cskt), (2.14b)

〈ĝ⊥(k, t) ĝ⊥(k, 0)〉
〈ĝ⊥(k, 0) ĝ⊥(k, 0)〉 = exp(−νk2t), (2.14c)

〈ρ̂(k, t) i ĝ‖(k, 0)〉
〈ρ̂(k, 0) i ĝ‖(k, 0)〉 = exp(−ΓTk2t) sin(cskt), (2.14d)

where the symbol ˆ indicates Fourier components, the wave vector k = (k, 0, 0) is defined
along the (arbitrary) x-direction, ν = η/ρ is the kinematic viscosity, ΓT = 2ν/3 + ζ/2ρ is
the sound absorption coefficient, and cs is the isothermal sound speed. Also, g‖ represents
longitudinal momentum (sound mode) parallel to the wave vector k, and g⊥ represents the
transverse component (shear mode) perpendicular to the wave vector k.

For simplicity in deriving closed-form solutions, we consider only two types of ionic
species: the cation (denoted by p) and anion (denoted by n). By substitution of the Poisson
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equation into the linearized ionic transport equation, we obtain

∂(δcp)

∂t
= Dp

(
∇2(δcp) + κ2

p δcp −
∣∣∣∣zn

zp

∣∣∣∣ κ2
p δcn

)
, (2.15a)

∂(δcn)

∂t
= Dn

(
∇2(δcn) + κ2

n δcn −
∣∣∣∣zp

zn

∣∣∣∣ κ2
n δcp

)
, (2.15b)

where κ2
p and κ2

n are defined as

κ2
p ≡ Dpzp

2cp0e2

kBTε
, κ2

n ≡ Dnzn
2cn0e2

kBTε
, (2.16)

with units of inverse-squared distance. For a periodic system, we can expand the solution
in Fourier modes: δc(r, t) = ∑

k δĉ(k, t) eik·r. The spatial Fourier transformation of (2.15)
gives two coupled ordinary differential equations

∂δĉp(k, t)
∂t

= Dp

[
(κ2

p − k2) δĉp(k, t) −
∣∣∣∣zn

zp

∣∣∣∣ κ2
p δĉn(k, t)

]
,

∂δĉn(k, t)
∂t

= Dn

[
(κ2

n − k2) δĉn(k, t) −
∣∣∣∣zp

zn

∣∣∣∣ κ2
n δĉp(k, t)

]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.17)

The above equations can be written in matrix form as ∂u(k, t)/∂t + Lu = 0, with the
vector u = (δĉp, δĉn)

T, and L the 2 × 2 matrix defined as

L =

⎡⎢⎢⎣(k2 − κ2
p )Dp

∣∣∣∣zn

zp

∣∣∣∣ κ2
p Dp∣∣∣∣zp

zn

∣∣∣∣ κ2
n Dn (k2 − κ2

n )Dn

⎤⎥⎥⎦ . (2.18)

The matrix L can be further split as L = −L0 + k2L1, where

L0 =

⎡⎢⎢⎣ κ2
p Dp −

∣∣∣∣zn

zp

∣∣∣∣ κ2
p Dp

−
∣∣∣∣zp

zn

∣∣∣∣ κ2
n Dn κ2

n Dn

⎤⎥⎥⎦ , (2.19)

L1 =
[

Dp 0
0 Dn

]
. (2.20)

These equations can be solved by a linear combination of the eigenvectors ξ (i)(k), which
satisfy the eigenvalue equation

[−L0 + k2L1] ξ (i)(k) = λi ξ
(i)(k). (2.21)

The conditions κ2
p,n 	 k2 hold in the continuum limit, when either the domain size L or

the charge concentration z2
αcα0 is sufficiently large. In this limit, the eigenvalue equation
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can be solved perturbatively by expanding ξ (i) and λ(i) in powers of k2:

ξ (i) = ξ
(i)
0 + k2ξ

(i)
1 + · · · , (2.22a)

λ(i) = λ(i)0 + k2λ
(i)
1 + · · · . (2.22b)

Substitution of (2.22) into the eigenvalue equation (2.21) gives the zero- and second-order
perturbation theory equations:

(L0 − λ(i)0 I)ξ (i)
0 = 0, (2.23a)

(L0 − λ(i)0 I)ξ (i)
1 = (L1 + λ(i)1 I)ξ (i)

0 , (2.23b)

where I denotes the identity matrix. The solution to order O(k2) is given by two
real negative roots approximated as λ1 ≈ −((k2 + κ2

p )Dp + (k2 + κ2
n )Dn) + k2 Ds(k) (fast

decay) and λ2 ≈ −k2 Ds(k) (slow decay), where the collective diffusion coefficient of
cation and anion pairs is defined as

Ds(k) = (k2 + κ2
p + κ2

n )DpDn

(k2 + κ2
p )Dp + (k2 + κ2

n )Dn
, (2.24)

which has the same order as the diffusion coefficients Dα . The solutions of (2.17) with
initial conditions δĉp(k, 0) and δĉn(k, 0) can be written as

δĉp(k, t) = A1 δĉp(k, 0) + A2 δĉn(k, 0), (2.25a)

δĉn(k, t) = A3 δĉn(k, 0) + A4 δĉp(k, 0), (2.25b)

with the coefficients

A1 = αp eλ1t + αn eλ2t, (2.26a)

A2 = βp(eλ2t − eλ1t), (2.26b)

A3 = αn eλ1t + αp eλ2t, (2.26c)

A4 = βn(eλ2t − eλ1t), (2.26d)

where the dimensionless parameters are defined as

αp = (k2 + κ2
p )Dp − k2 Ds(k)

(k2 + κ2
p )Dp + (k2 + κ2

n )Dn − 2k2 Ds(k)
, (2.27a)

αn = (k2 + κ2
n )Dn − k2 Ds(k)

(k2 + κ2
p )Dp + (k2 + κ2

n )Dn − 2k2 Ds(k)
, (2.27b)

βp =

∣∣∣∣zn

zp

∣∣∣∣ κ2
p Dp

(k2 + κ2
p )Dp + (k2 + κ2

n )Dn − 2k2 Ds(k)
, (2.27c)

βn =

∣∣∣∣zp

zn

∣∣∣∣ κ2
n Dn

(k2 + κ2
p )Dp + (k2 + κ2

n )Dn − 2k2 Ds(k)
, (2.27d)

such that αp + αn = 1.
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The fluctuations modelled by the above equations are transported and dissipated in
time, and this can be shown via the time correlation of the fluctuating concentration field
with different Fourier modes. The temporal correlations between species α and β in the
fluctuating concentration field are given by

Ψαβ =
〈δĉα(k, t) δĉ∗

β(k, 0)〉
〈δĉα(k, 0) δĉ∗

β(k, 0)〉 , (2.28)

where the symbol ∗ denotes the complex conjugate. The temporal correlation function for
specific ionic species can then be expressed as

Ψpp = αp eλ1t + αn eλ2t + βpSnp(eλ2t − eλ1t), (2.29a)

Ψnn = αn eλ1t + αp eλ2t + βnSpn(eλ2t − eλ1t), (2.29b)

Ψpn = αp eλ1t + αn eλ2t + βp

Spn
(eλ2t − eλ1t), (2.29c)

Ψnp = αn eλ1t + αp eλ2t + βn

Snp
(eλ2t − eλ1t), (2.29d)

in which Spn and Snp are static structure factor-like terms for a wave vector k defined as

Spn(k) = 〈δĉp(k, 0) δĉ∗
n(k, 0)〉

〈δĉn(k, 0) δĉ∗
n(k, 0)〉 , (2.30a)

Snp(k) = 〈δĉn(k, 0) δĉp∗(k, 0)〉
〈δĉp(k, 0) δĉp∗(k, 0)〉 . (2.30b)

In this linearized theory, the covariance between the initial ionic concentration fluctuations
of cation and anion are non-zero due to the charge neutrality constraint. The structure
factor terms Spn and Snp can be obtained from experiment or more detailed simulations.
The long-time behaviour of both temporal autocorrelations and cross-correlations are
dominated by slowly decaying terms that behave asymptotically as exp(λ2t), where λ2
is one of the two (negative) eigenvalues.

3. Numerical results

To validate the closed-form expressions of fluctuation correlations that we derived based
on linearized fluctuating hydrodynamic and electrokinetic equations in § 2, we perform
both all-atom MD simulations with explicit ions and mesoscale cDPD simulations with
semi-implicit ions, as illustrated in figure 1. We first carry out all-atom MD simulations of
an aqueous NaCl solution in the bulk, which consists of 400 Na+ ions, 400 Cl− ions,
and 64 000 H2O water molecules in a periodic cubic computational domain with box
size L = 12.8 nm. The mass density is ρ0 = 0.616 amu Å−3, and the ion concentration
is c± = 0.3168 M. The SPC/E model (Berendsen, Grigera & Straatsma 1987) is used for
water molecules. The ionic force field terms are adopted from published work by Smith
& Dang (1994) and Yoshida et al. (2014). The particle–particle particle-mesh (PPPM)
method (Hockney & Eastwood 1988) is used for computing electrostatic interactions
with vacuum periodic boundary conditions. The PPPM method maps atom charge to a
three-dimensional mesh and uses fast Fourier transforms to solve Poisson’s equation on
the mesh, then interpolates electric fields on the mesh points back to the atoms, which is
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(a) (b)

L = 12.8 nm
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Na+

Cl–

c+/c̄+
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L
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C

L = 106.8 nm

1.10
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0.90

PBC

L

L

L PBC PB
C

Figure 1. Typical snapshots of the aqueous NaCl solution from (a) all-atom MD simulations with explicit ions
(box size L = 12.8 nm), and (b) mesoscale cDPD simulations with semi-implicit ions (box size L = 106.8 nm).

implemented in a built-in PPPM solver in LAMMPS (Thompson et al. 2022). A direct
space cutoff of 9.8 Å, which is three times larger than the size of the oxygen atoms,
is used to ensure the accuracy of the PPPM solver (Isele-Holder, Mitchell & Ismail
2012). The bond length of water molecules is constrained using the SHAKE algorithm
(Ryckaert, Ciccotti & Berendsen 1977) to allow a time step of 1 fs in the velocity Verlet
integrator (Allen & Tildesley 2017). A constant number–volume–temperature system
(NVT ensemble) is simulated at T = 300 K with a Nosé–Hoover thermostat. The system
is relaxed for 0.5 ns to achieve a thermal equilibrium state, and then for up to 10 ns for
statistics and sampling.

In § 2, we assumed that the mutual diffusion is small compared to ionic self-diffusion,
thus it can be ignored in the derivation. To confirm this assumption, we compute both
self-diffusion and mutual diffusion coefficients of ionic species from the MD velocity
correlation functions via the Green–Kubo relationship (Zhou & Miller 1996; Wheeler
& Newman 2004). The computed self-diffusion coefficient is 1.3 × 10−9 m2 s−1 for
Na+, and 2.1 × 10−9 m2 s−1 for Cl−, while their mutual diffusion coefficient is 1.2 ×
10−10 m2 s−1. These results are consistent with previous simulation and experimental
results for NaCl solutions (Wheeler & Newman 2004), and also confirm that the mutual
diffusion coefficient is much smaller than the self-diffusion coefficients in this electrolyte
solution, thus it can be ignored in the analytical derivations of current correlation functions
presented in § 2.

Alternative to all-atom MD simulation, at the mesoscopic scale, a cDPD model
is used to tackle the challenge of simulating coupled fluctuating hydrodynamics and
electrostatics with long-range Coulomb interactions. The cDPD model is an extension
of the classical DPD model to solve numerically the fluctuating hydrodynamic and
electrokinetic equations in the Lagrangian framework. In classical DPD models, ions
can be represented by explicit charged particles with electrostatic interactions between
explicit ions. Groot (2003) introduced a lattice to the DPD system to spread out the
charges over the lattice nodes. Then the long-range portion of the interaction potential
was calculated by solving the Poisson equation on the grid based on a PPPM algorithm
(Hockney & Eastwood 1988) by transferring quantities (charges and forces) from the
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particles to the mesh, and vice versa. Because the mesh defines a coarse-grained
length for electrostatic interactions, correlation effects on length scales shorter than
the mesh size cannot be properly accounted for. Although the particle-to-mesh then
mesh-to-particle mapping/redistribution can solve the Poisson equation for particle-based
systems, its dependence on a grid may contradict the original motivation for using
a Lagrangian method, and additional computational complexity and inefficiencies are
introduced. To abandon grids and use a unifying Lagrangian description for mesoscopic
electrokinetic phenomena, we developed the cDPD model (Deng et al. 2016) to solve the
Poisson equation on moving cDPD particles rather than grids. More specifically, cDPD
describes the solvent explicitly in a coarse-grained sense as cDPD particles, while the
ion species are described semi-implicitly, i.e. using a Lagrangian description of ionic
concentration fields, associated with each moving cDPD particle, as shown in figure 1(b),
which provides a natural coupling between fluctuating electrostatics and hydrodynamics.
The validation of the cDPD model has been confirmed by Deng et al. (2016) in
different problems, including electrostatic double-layer and electro-osmotic flows in
micro-channels.

The state vector of a cDPD particle can be written as (r, v, cα, φ), which is
characterized not only by its position r and velocity v as in the classical DPD model,
but also by ionic species concentration cα (with α representing the αth ion type)
and electrostatic potential φ on the particle. A cDPD system is simulated in a cubic
periodic computational box with length 106.8 nm, where a cDPD particle is viewed
as a coarse-grained fluid volume that contains the solvent and other charged species.
Exchange of the concentration flux of charged species occurs between neighbouring
cDPD particles, much like the momentum exchange in the classical DPD model. The
governing equations of cDPD and model parameters are summarized in Appendix B. We
will perform cDPD simulations of electrolyte solutions and compute current correlation
functions of fluctuating electrokinetics to compare with theoretical predictions given
in § 2.

We first examine the local fluctuations of mass density, momentum density,
charge density and ionic concentration. For each of these quantities, we construct
the instantaneous function n(r) on a grid ri,j,k by spatial averaging using a step
function W(r, h), with h being the grid size, i.e. W(r, h) = 1 for |ri − r| ≤ 0.5h,
and W(r, h) = 0 for |ri − r| > 0.5h. Then the local quantities can be extracted by
n(r) = ∑N

i=1 W(|r − ri|, h)ni with h = 3.1 Å or h = 7.75 Å for MD data, and h =
4.27 nm for cDPD data. Because all instantaneous physical quantities are computed on
a three-dimensional grid, the first point beyond r = 0 in spatial correlation functions
(SCFs) presented in figures 3 and 4 is r = h, the second point is r = √

2h, the third point
is r = √

3h, then r = 2h, and so on. According to the central limit theorem, the local
fluctuations in these quantities of interest should be Gaussian in the continuum regime.
This is observed for mass density, momentum density and charge density from both MD
and cDPD results. However, the local concentration fluctuations for ionic species in the
MD system follow gamma distributions and converge to Gaussian with large spacing h, as
shown in figure 2(a). Because the cDPD model assumes that the random fluxes of ionic
concentration between neighbouring cDPD particles can be modelled by Gaussian white
noises, the MD results indicate that the cDPD model is valid for length scales above a few
nanometres, but has a lower bound for its length scale. Figure 2(b) presents the probability
distribution functions of local ionic concentration in cDPD simulations, which follow a
Gaussian distribution as expected.
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Figure 2. Local ionic concentration probability distribution functions from (a) all-atom MD and (b) mesoscale
cDPD simulations. The symbols show simulation data, while the lines show fits to gamma (MD) and Gaussian
(inset of (a), and cDPD) distributions.

The SCFs for physical quantities of interest n(r) are computed on the grid ri,j,k according
to

SCF(r) = 1
N(r)

N(r)∑
i=1

δn(ri) δn(ri + r), (3.1)

where N(r) is defined as a normalization coefficient. We have assumed that the spatial
correlations are isotropic in weakly charged electrolyte bulk solutions. We observe that
the spatial correlations of mass density, momentum density, charge density and ion
concentration are all very short ranged (approximately delta-correlated for large systems),
which is in agreement with continuum fluctuating hydrodynamics results at equilibrium.
However, as shown in figure 3, there is small-scale anti-correlation structure for the
charge densities obtained in the MD simulations. We also compute the SCF of charge
density in mesoscale cDPD simulations, and find similar small-scale anti-correlation
structures for both positive and negative ions, as shown in figure 4. These anti-correlation
structures are observed on length scales comparable to the Bjerrum and Debye lengths for
electrolyte solution systems, suggesting that this could be related to the ionic screening
effect.

The temporal correlation function (TCF) between two physical quantities u and w in
Fourier space is defined by

TCFk(t) = 〈u(k, t) w(k, 0)〉 = 1
N(t)

N(t)∑
s=1

û(k, t) ŵ(k, 0), (3.2)

where k is the wave vector in Fourier mode, and û, ŵ are the Fourier components computed
directly from particle trajectories as

û(k, t) = 1
NP

NP∑
i=1

ui(ri, t) exp(−ik · ri(t)). (3.3)

We use a wavelength equal to the computational box size L by setting k = 2π/L, which is
12.8 nm for the MD system, and 106.79 nm for the cDPD system.

Figures 5(a) and 5(b) present the temporal velocity autocorrelation functions from MD
and cDPD simulations, respectively. The theoretical predication based on (2.14) gives
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Figure 3. Spatial correlation function (SCF) of charge density from full-atom MD simulations for grid
distances (a) 0.31 nm and (b) 0.775 nm.
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Figure 4. SCF of charge density from mesoscale cDPD simulations.

CFv(t) = exp(−0.1616t) (shear mode) and CFv(t) = exp(−0.2403t) cos(0.7352t) (sound
mode) for the MD system, and CFv(t) = exp(−0.0216t) (shear mode) and CFv(t) =
exp(−0.0238t) cos(0.2177t) (sound mode) for the cDPD system. It can be observed from
figure 5 that the computed results from both MD and DPD simulations are in agreement
with the classical linearized theory of fluctuating hydrodynamics, i.e. the transverse
autocorrelation function (shear mode) decays as exp(−νk2t), with ν the kinematic
shear viscosity, while the longitudinal autocorrelation function (sound mode) decays as
exp(−ΓTk2t) cos(cskt), with ΓT = 2ν/3 + ζ/2ρ the sound absorption coefficient and cs
the isothermal sound speed. We conclude that the fluctuating hydrodynamics model still
follows the classical linearized theory, and is not affected explicitly by the electrolyte
bulk solutions. In an electrolyte solution in thermodynamic equilibrium, the fluctuating
hydrodynamics and electrokinetics are decoupled explicitly.

Next, we compare the autocorrelation and cross-correlation functions of charge
concentration with the linearized theory derived above, as shown in figure 6. We fit the
MD and DPD results with the linearized theory in the form of (2.29) with proper structure
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Figure 5. Temporal transverse (shear mode) and longitudinal (sound mode) velocity autocorrelation functions
in Fourier space from (a) MD and (b) cDPD simulations represented by open symbols, with comparison against
the theoretical predictions in the form of (2.14) in solid and dashed lines.
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Figure 6. Temporal cation and anion concentration autocorrelation (Ψpp and Ψnn) and cross-correlation (Ψpn
and Ψnp) functions in Fourier space from (a) MD and (b) cDPD simulations represented by open symbols, with
comparison against the predictions from linearized fluctuating hydrodynamics theory in the form of (2.29) in
solid and dashed lines.

factors Spn and Snp, which are around 1.0 and system-dependent, i.e.

Ψpp(t) = Ψnn(t) = −0.0490 exp(λ1t) + 1.0049 exp(λ2t),

Ψpn(t) = Ψnp(t) = 0.0276 exp(λ1t) + 0.9724 exp(λ2t),

}
(3.4)

with λ1 = −7.4187 × 10−3 and λ2 = −3.9067 × 10−4 for the MD system, and

Ψpp(t) = Ψnn(t) = −0.2401 exp(λ1t) + 1.2401 exp(λ2t),

Ψpn(t) = Ψnp(t) = 0.2458 exp(λ1t) + 0.7542 exp(λ2t),

}
(3.5)

with λ1 = −3.4446 × 10−3 and λ2 = −8.10 × 10−4 for the cDPD system. We observe in
figure 6 that the computed results of temporal correlation functions from both MD and
DPD simulations are in good agreement with the theoretical predictions derived from
linearized theory of fluctuating hydrodynamics. Compared to the temporal correlation
functions of hydrodynamic fluctuations presented in figure 5, the temporal correlations of
charge concentration fluctuations shown in figure 6 decay extremely slowly over time. The
long-time behaviour of both autocorrelation and cross-correlation follow the slow decay
dominated by ∝ exp(λ2t), which is significantly different from the decorrelation processes
of hydrodynamic fluctuations.
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4. Summary and discussion

We have presented theoretical closed-form expressions for the fluctuations of electrolyte
bulk solution close to thermodynamic equilibrium, with an emphasis on mesoscopic
spatiotemporal scales. In particular, we started with the Landau–Lifshitz theory and
linearized the fluctuating hydrodynamic and electrokinetic equations to derive analytical
solutions for current correlation functions using perturbation theory. To validate these
theoretical expressions obtained based on the linearized theory, we performed numerical
experiments of fluctuating hydrodynamics and electrokinetics for electrolyte solutions
using both all-atom molecular dynamics (MD) and a mesoscale charged dissipative
particle dynamics (cDPD) methods. We presented both MD and DPD simulation results
of bulk electrolyte solutions in about 10 and 100 nm scales, which are compared directly
with the predictions from the linearized continuum theory.

The current correlation functions computed from both MD and cDPD trajectories
indicate that the temporal correlations of fluctuations from electrokinetics decay much
more slowly than those from hydrodynamics, which agree well with the predictions
made by the theoretical closed-form expressions of temporal correlation functions
(hydrodynamics and charge) as well as the vast differences in decay time – varying by a few
orders of magnitude. In a bulk electrolyte solution close to thermodynamic equilibrium,
the fluctuating hydrodynamics and electrokinetics are decoupled explicitly because of the
zero mean velocity, thus their behaviour is not dependent explicitly on the electrolyte
concentrations in the dilute regime. At length scales above 10 nm, the results obtained
from both MD and cDPD simulations are in good agreement with the continuum-limit
linearized theories. The good agreement between the theoretical predictions and the
particle-based mesoscopic simulations can also be interpreted as the capability of the
mesoscopic cDPD model in bridging nano-to-continuum scales. Spatial correlations of
charge density demonstrate finite range and non-trivial structure at nanometre length
scales, but can be viewed as the delta function in the continuum limit. Simulation results
also show that the fluctuations of local ionic concentration follow a gamma distribution at
small length scales, while converging to a Gaussian distribution in the continuum limit,
which suggests the existence of a lower bound of length scale for mesoscale models
using Gaussian fluctuations for electrolyte solutions. Because the probability distribution
functions of local ionic concentrations are computed directly from MD simulations before
the continuum hypothesis is applied, a lower bound of length scale could exist in more
general mesoscopic descriptions, including the Landau–Lifshitz PDE-based approach
where stochastic fluxes are modelled as Gaussian processes.

It is worth noting that the present work focused on dilute electrolyte solutions close
to thermodynamic equilibrium, where the mutual diffusion of ions is small compared
to their self-diffusion, and the fluctuating electrokinetics is decoupled from zero-mean
hydrodynamic fluxes. When the mutual diffusion coefficients of ions become comparable
to the self-diffusion terms in concentrated electrolyte solutions (Dufrêche, Bernard & Turq
2002; Galindres et al. 2021), the contribution of mutual diffusion on ionic transport should
be considered correctly in the fluctuating hydrodynamic and electrokinetic equations.
Moreover, the linearized fluctuating hydrodynamics and electrokinetics system was solved
in the k-space by a spatial Fourier transform, where the periodic condition is used in
derivation of analytic solutions. Although both MD and cDPD simulations can be applied
easily to electrokinetic problems involving fixed or induced charges on walls, the current
theoretical framework cannot be extended to such problems directly. It is also interesting
to consider how the fluctuating hydrodynamics is coupled with mesoscale electrokinetics
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in shear flows, where the current correction functions can be affected by the coupling
between fluctuating terms and advection processes (Bian et al. 2018), leading to an
orientation-dependent decorrelation process of fluctuating variables in the fluid system.
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Appendix A. Derivation of mass–momentum correlations

The local hydrodynamic field can be expressed as the perturbations around the bulk state.
We can define the instantaneous density, velocity and momentum as

ρ(r, t) = ρ0 + δρ(r, t), (A1a)

u(r, t) = u0 + δu(r, t), (A1b)

g(r, t) = δg(r, t) = ρ u(r, t). (A1c)

The linearized equations of fluctuating hydrodynamics are given by

∂[δρ(r, t)]
∂t

+ ∇ · δg(r, t) = 0, (A2a)

∂[δg(r, t)]
∂t

+ c2
s ∇δρ(r, t) − η

ρ0
∇2δg(r, t) −

η

3
+ ζ

ρ0
∇(∇ · δg(r, t)) = 0. (A2b)

The above equations can be transformed into k-space by a spatial Fourier transform using
the function

f̂k(t) =
∫

V
f (t) exp(−ik · r) dr. (A3)

To make the derivation simple, we set the wave vector k = (k, 0, 0) as one-dimensional
along an arbitrary x-direction, leading to

∂δ̂ρk(t)
∂t

+ ik · δ̂gk(t) = 0, (A4a)

∂δ̂gk(t)
∂t

+ ic2
s k δ̂ρk(t) + η

ρ0
k2 δ̂gk(t) +

η

3
+ ζ

ρ0
kk δ̂gk(t) = 0. (A4b)

We can divide the above equations into different components (x-, y- and z-directions). The
x-direction equations are

∂δ̂ρk(t)
∂t

+ ik · δ̂gx
k(t) = 0, (A5a)

∂δ̂gx
k(t)

∂t
+ ic2

s k δ̂ρk(t) + η

ρ0
k2δ̂gx

k(t) +
η

3
+ ζ

ρ0
k2 δ̂gx

k(t) = 0. (A5b)
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The y- and z-components are given by

∂δ̂gy
k(t)

∂t
+ η

ρ0
k2 δ̂gy

k(t) = 0, (A6a)

∂δ̂gz
k(t)

∂t
+ η

ρ0
k2 δ̂gz

k(t) = 0. (A6b)

Let ν = η/ρ0 and νL = (4
3η + ζ )/ρ0. The above equations can be rewritten into the forms

∂δ̂ρk(t)
∂t

+ ik · δ̂gx
k(t) = 0, (A7a)

∂δ̂gx
k(t)

∂t
+ ic2

s k δ̂ρk(t) + νLk2 δ̂gx
k(t) = 0, (A7b)

∂δ̂gy
k(t)

∂t
+ νk2 δ̂gy

k(t) = 0, (A7c)

∂δ̂gz
k(t)

∂t
+ νk2 δ̂gz

k(t) = 0. (A7d)

The last two equations are first-order linear ODEs, which are solved easily as

δ̂gy
k(t) = δ̂gy

k(0) exp(−νk2t), (A8a)

δ̂gz
k(t) = δ̂gz

k(0) exp(−νk2t). (A8b)

The first two equations of (A7) are two coupled ODEs and can be written in matrix form
as

dak(t)
dt

= H ak(t), (A9)

where

ak(t) =
[
δ̂ρk(t)

δ̂gx
k(t)

]
and H =

[
0 −ik

−ic2
s k −νLk2

]
. (A10a,b)

The solutions of (A9) are determined by the eigenvalues of H , which can be obtained by
solving the equation

det(H − λI) = 0. (A11)

The eigenvalues are given by

λ1 = −ΓTk2 + isTk and λ2 = −ΓTk2 − isTk, (A12a,b)

where

ΓT = νL

2
and sT =

√
4c2

s − ν2
Lk2

2
. (A13a,b)

Here, ΓT is the sound absorption coefficient. Next, we consider an under-damped solution,
where sT is real, that is, k < 2cs/νL. In particular, we consider the continuum limit, where
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k � 2cs/νL so that sT ≈ cs, then we arrive at the solutions (De Fabritiis et al. 2007; Bian
et al. 2018)

δ̂ρk(t) = e−ΓT k2t
[

cos(cskt) δ̂ρk(0) − i
cs

sin(cskt) δ̂gx
k(0)

]
, (A14a)

δ̂gx
k(t) = e−ΓT k2t [cos(cskt) δ̂gx

k(0) − ics sin(cskt) δ̂ρk(0)
]
. (A14b)

Therefore, the normalized temporal correlation functions of the mass–momentum
fluctuations in k-space are given by

〈δ̂ρk(t) δ̂ρk(0)〉
〈δ̂ρk(0) δ̂ρk(0)〉 = e−ΓT k2t cos(cskt), (A15a)

〈δ̂gx
k(t) δ̂gx

k(0)〉
〈δ̂gx

k(0) δ̂gx
k(0)〉 = e−ΓT k2t cos(cskt), (A15b)

〈δ̂ρk(t) i δ̂gx
k(0)〉

〈δ̂ρk(0) i δ̂gx
k(0)〉 = e−ΓT k2t sin(cskt), (A15c)

where we have assumed that the initial cross-correlation is 〈δ̂ρk(0) δ̂gx
k(0)〉 = 0.

Appendix B. Charged dissipative particle dynamics (cDPD)

We consider a constant number–volume–temperature system (NVT ensemble) consisting
of N cDPD particles, with the state of each cDPD particle defined by its position r, velocity
v, and ionic concentration cα (with α representing the αth ion species). The time evolution
of the ith particle state with unit mass is governed by Newton’s law and a transport
equation (Deng et al. 2016):

d2ri

dt2
= dvi

dt
= F i =

∑
i /= j

(F C
ij + F D

ij + F R
ij + F E

ij ), (B1a)

dcαi

dt
= qαi =

∑
i /= j

(qD
αij + qE

αij + qR
αij), (B1b)

where F i denotes the total force exerted on the ith particle, which consists of the
conservative, dissipative and random forces. Additionally, the electrostatic force F E

i is
introduced to couple the hydrodynamics and electrokinetics within the DPD framework.
In particular,

F C
ij = aij ωC(rij) r̂ij, (B2a)

F D
ij = −γij ωD(rij) (r̂ij · vij) r̂ij, (B2b)

F R
ij = σij ωR(rij) θij δt−1/2 r̂ij, (B2c)

F E
ij = λij

( S∑
α=1

zαcαi

)
Eij, (B2d)

where rij = |rij| = |ri − rj|, r̂ij = rij/rij and vij = vi − vj. The conservative, dissipative
and random forces are pairwise forces with weighting functions ωC(rij), ωD(rij), ωR(rij),
942 A29-18
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and corresponding strengths aij, γij, σij, respectively. The θij are symmetric Gaussian
random variables with zero means and unit variances; these variables are independent
for different pairs of particles at different times; θij = θji is enforced to satisfy momentum
conservation. The dissipative and random forces together act as a thermostat, with their
coefficients and weighting functions satisfying the fluctuation–dissipation theorem (FDT)
(Español & Warren 1995)

σ 2
ij = 2kBTγij, ωD(rij) = ω2

R(rij), (B3a,b)

where kB is the Boltzmann constant and T is the temperature. The coupling parameter
λij in electrostatic force is introduced by rescaling the PNP equations with DPD units,
which are related linearly to the macroscopic dimensionless coupling parameter Λ = c∗

0 ·
kBTτ 2/(ρ0r5

0) with c∗
0 = c0r3

0, the reference concentration in DPD units (usually c0 as bulk
concentration, r0 as unit DPD length). Here, Eij is the relative electric fields difference
between particles i and j, which is determined by the electrostatic potential field φ:

Eij = (φi − φj) ωE(rij) rij, (B4)

with ωE(r) a weighting function. It is very important to note that the electrostatic forces
here are not pairwise additive, i.e. F E

ij /= F E
ji ; however, we have

∑
i,j F E

ij = 0 to guarantee
the global momentum conservation when there is no external electrostatic field. In the
cDPD framework, the ionic concentration (rescaled by the reference concentration c0)
evolution is driven by three pairwise flux terms, i.e. the Fickian flux qD

αij, electrostatic
flux qE

αij and random flux qR
αij, induced by concentration gradient, electrostatic potential

gradient and thermal fluctuations, respectively. Specifically,

qD
αij = −καij(cαi − cαj) ωDC(rij), (B5a)

qE
αij = −1

2καijzα(cαi + cαj)(φi − φj) ωDC(rij), (B5b)

qR
αij = ξαij ωRC(rij) θij δt−1/2, (B5c)

where κij are the diffusion coefficients, and ωDC(rij) and ωRC are weighting functions. The
coefficients and weighting functions of the random flux are determined via the generalized
FDT as

ξαij
2 = καij

c∗
0

(cαi + cαj), ωDC(r) = ω2
RC(r). (B6a,b)

The electrostatic potential φ on each cDPD particle is determined by solving a modified
Poisson equation at every DPD time step. In cDPD, we consider the dimensionless
modified Poisson equation rescaled by DPD units,

∇ · (ε(r)∇(φ(r)) = −Γ ρe(r), (B7)

with Γ = e2c∗
0r2

0/ε0kBT , and ρe = ∑S
α=1 zαcα is the charge density. The electrostatic

potential φi on the ith particle is obtained together via a successive over-relaxation iteration
scheme as

φk
i = φk−1

i + ϑ

⎡⎣ S∑
α=1

Γ zαcα −
∑
j /= i

ε̄ijφ
k
ij ωφ(rij)

⎤⎦ , (B8)
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Parameter name Symbol Value

Number density ρ 4.0
Thermal energy kBT 1.0
Strength of conservative force a 18.75
Strength of dissipative force γ 4.5
Coupling parameter in electrostatic force λ 0.1438
Diffusion coefficient κ 0.25
Coefficient of random flux ξ 6.0
Reference concentration in DPD unit c∗

0 26.224
Cutoff radius for conservative force rc 1.5
Cutoff radius for Fickian flux rcc 1.0
Cutoff radius for electrostatic flux rec 1.0

Table 1. Parameter list for cDPD simulations. The values are provided in reduced DPD units. Length unit
r0 = 21.36 nm, time unit τ = 3.28 ns, energy unit kBT = 4.14 × 10−21 J and concentration unit c0 = 4.08 mM
are used for mapping to physical units.

where ωφ(r) is the weight function, k represents an iteration step, ϑ is the relaxation
factor, and εi and εj are the permittivities of the ith and jth cDPD particles, respectively.
Here, ε̄ij = (εi + εj)/2, where εi and εj can be different values to model mixtures of
heterogeneous solvents.

The initial guesses for φk−1
i take the value of φi from the previous time step. The

iteration stops when the absolute differences |φk
i − φk−1

i | are smaller than a tolerance,
i.e. 10−3 for all cDPD particles. The relaxation factor ϑ is selected adaptively during the
iteration to optimize for faster convergence. For more details on the derivations leading to
(B1)–(B8), we refer interested readers to the previous work Deng et al. (2016).

Throughout this paper, the weighting functions are chosen as ωC(r) = (1 − r/rc),
ωD(r) = ω2

R(r) = (1 − r/rc), ωqD(r) = ω2
qR(r) = (1 − r/rcc)

2, ωφ(r) = (1 − r/rec)
2 and

ωE(r) = 0.5(1 − r/rec)
2r. The cDPD parameters used for the simulation are summarized

in table 1. The basic DPD units according to these parameters are r0 = 21.36 nm for the
length unit, τ = 3.28 ns for the time unit, kBT = 4.14 × 10−21 J for the energy units, and
c0 = 4.08 × 10−3 M for the concentration unit.
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