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Evaluating the transferability of empirical
models of debris-covered glacier melt
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University of Wellington, New Zealand

Supraglacial debris is significant in many regions and complicates modeling of glacier melt,
which is required for predicting glacier change and its influences on hydrology and sea-level
rise. Temperature-index models are a popular alternative to energy-balance models when forcing
data are limited, but their transferability among glaciers and inherent uncertainty have not been
documented in application to debris-covered glaciers. Here, melt factors were compiled directly
from published studies or computed from reported melt and MERRA-2 air temperature for 27
debris-covered glaciers around the world. Linear mixed-effects models were fit to predict melt
factors from debris thickness and variables including debris lithology and MERRA-2 radiative
exchange. The models were tested by leave-one-site-out cross-validation based on predicted
melt rates. The best model included debris thickness (fixed effect) and glacier and year (random
effects). Predictions were more accurate using MERRA-2 than on-site air temperature data, and
pooling MERRA-2-derived and reported melt factors improved cross-validation accuracy more
than including additional predictors such as shortwave or longwave radiation. At one glacier
where monthly ablation was measured over 4 years, seasonal variation of melt factors suggested
that heat storage significantly affected the relation between melt and energy exchange at the
debris surface.

Introduction

Glacier melt contributes significantly to streamflow and is important for hydro-electric power
generation and irrigation in many places around the world (IPCC, 2014). Glacier melt is also
contributing to the global sea-level response to climate change (Radić and Hock, 2014). To
address the effects of ongoing and future glacier changes on water resources, glacier-related
hazards and sea-level rise, managers and policy-makers depend on the output from melt mod-
els driven by climate data. Being able to quantify the uncertainties in estimated glacier melt
provides decision-makers a basis for assessing risks associated with different management
options.

The physical processes controlling glacier surface melt are well understood and energy-
balance models are accurate at a range of scales (Hock, 2005). However, energy-balance mod-
els are computationally demanding and require extensive input data that may not be available
or reliable over large regions. Temperature-index models (TIM) only require air temperature as
an input, which can often be interpolated from ground-based weather stations or extracted
from reanalysis products with reasonable accuracy at the basin scale (Stahl and others,
2006; Rienecker and others, 2011; Trubilowicz and others, 2016; Gelaro and others, 2017).
TIM are adequate for a wide range of applications and can even exceed the performance of
energy-balance models when forcing data are limited (Gabbi and others, 2014; Réveillet and
others, 2018). However, the physical processes explicitly represented in energy-balance models
are reduced to simplified, site-specific empirical parametrizations in TIM, which may limit
their transferability.

Debris-covered glaciers are a relatively small but significant part of the global cryosphere.
Estimates vary, but recent work found 4.39% (Scherler and others, 2018) to 16.8% (Sasaki and
others, 2016) of the global glacierized area outside Greenland and Antarctica to be debris-
covered – up to 47.4% by region. Theory, models and recent observations suggest the extent
of supraglacial debris cover is increasing as glaciers recede (Bozhinskiy and others, 1986;
Mayer and others, 2011; Scherler and others, 2018). The accuracy of models of debris-covered
glacier melt is therefore an increasingly important area of research.

The surface exchanges of mass and energy that lead to ice melting under debris are differ-
ent to those of snow, firn and ice, because debris temperatures can exceed 0°C. In most con-
ditions, sublimation is expected to be negligible under debris so that surface ablation occurs
entirely by melt (Bozhinskiy and others, 1986; Conway and Rasmussen, 2000). Like melt of
bare ice, sub-debris melt has been well reproduced by energy-balance models applied at
point and glacier scales (Nakawo and Young, 1982; Haidong and others, 2006; Reid and
Brock, 2010; Reid and others, 2012; Lejeune and others, 2013; Brown and others, 2014;
Collier and others, 2014). However, the observational data to develop, calibrate and drive
energy-balance models are as rare in debris-covered environments as elsewhere. As an alter-
native, a number of empirical models based on the temperature index approach have been
developed for sub-debris melt (Booker and Dunbar, 2008; Carenzo and others, 2016;
Möller and others, 2016).
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Observations show that melt rate and its sensitivity to
meteorological forcing decreases as debris thickness (h) increases
from an effective thickness (hc) of around 0.02–0.05 m (Østrem,
1959; Reznichenko and others, 2010; Singh and others, 2019).
Many debris-covered glacier TIM include a dependence on debris
thickness and some include additional variables such as incident
solar radiation (e.g. Zhang and others, 2007; Ragettli and others,
2013; Ayala and others, 2016; Carenzo and others, 2016; Möller
and others, 2016; Hagg and others, 2018). Few studies have quan-
tified the transferability of empirical sub-debris melt models, or
the associated uncertainty in melt estimates.

The key parameter in TIM is the melt factor (k) that relates melt
to air temperature. Melt factors have been applied to predict melt of
debris-covered glaciers in at least 16 reported studies. The melt fac-
tors applied in those 16 studies, listed in Tables 1 and 2, vary over
two orders of magnitude. Only three of the 16 values were calcu-
lated using measurements of melt; the remaining 13 melt factors
were calculated using melt modeled with an energy-balance
scheme, modeled as a function of bare ice melt, modeled using
an assumed statistical distribution, or defined a priori. There is cur-
rently no statistically robust method for selecting melt factors for
debris-covered glaciers where data for calibration are unavailable,
and the accuracy of predictions made with transferred, assumed
or modeled melt factors remains difficult to quantify.

No studies appear to have examined the effect of the proven-
ance of air temperature data on the accuracy of transferred sub-
debris melt factors, which has been shown to affect the transfer-
ability of k for bare snow and ice (Lang and Braun, 1990; Hock
and others, 2007; Wheler and others, 2014). Consequently, it is
unclear whether sub-debris melt factors calculated using air tem-
perature data measured at an on-glacier weather station, for
example, can be used to accurately predict melt using input
data interpolated from a remote weather station or gridded cli-
mate data.

Gridded climate reanalysis products are increasingly used in
hydrological and glaciological modeling because they provide
broader spatial and temporal coverage and continuity than

many traditional data sources (e.g. Koppes and others, 2015;
Hagg and others, 2018). However, if data provenance is critical
to the accuracy of TIM, it would be inappropriate to use climate
reanalysis data with melt factors derived from ground-based tem-
perature observations; instead, k derived from climate reanalysis
air temperature would be required.

A popular reanalysis product is The Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2)
from the US National Aeronautics and Space Administration
(NASA). It provides surface climate fields from 1980 to present,
lagging a few weeks behind real time. It has six-hourly temporal
resolution and 0.5° × 0.65° spatial resolution. It has been applied
successfully to model melt of debris-free glaciers over extended
regions (Mernild and others, 2014). Application of MERRA-2
to model melt of debris-covered glaciers has not yet been tested.

The objectives of this study were to (1) quantify the accuracy of
classical TIM and extended TIM for debris-covered glaciers, (2)
test whether air temperature data provenance affects prediction
accuracy, (3) derive a generalizable relation for sub-debris melt
factors that can be transferred with a known margin of error,
and (4) evaluate the usefulness of MERRA-2 data for modeling
sub-debris glacier melt.

Definition and calculation of melt factors

Temperature index models relate surface ablation to air tempera-
ture as follows:

A = k · PDD (1)

where A is cumulative ablation (mm w.e.) over an observation
period, k is the melt factor and PDD is the sum of positive degree-
days (°C Δt). Thorough reviews of temperature index modeling of
debris-free glaciers were given by Ohmura (2001) and Hock
(2003). Time steps (δt) vary between studies (e.g. hours, days or
months), which makes it difficult to directly compare values of
k. In practice, δt = 1 day is most common, so the units of k are

Table 1. Classical sub-debris melt factors, k (mm°C−1δt−1), that have been applied to model sub-debris melt with time intervals (δt) of an hr = hour, d = day or m =
month

Study area k provenance k δt References

Langtang Khola Basin, Central Himalaya Modeled 2.4 to 6.5 d Braun and others (1993)
Langtang Khola Basin, Central Himalaya Modeled 2.1 d Konz and others (2007)
Langtang Khola Basin, Central Himalaya Modeled 0.7 · kRi or 0.15 · kRi d Immerzeel and others (2012)
Langtang Khola Basin, Central Himalaya Modeled 0.5 · ki or 0.58 · ki, (5.0 ≤ ki ≤ 12.5) d Pradhananga and others (2014)
Upper Indus, Hindu Kush, Karakoram
and Western Himalaya

Modeled Log-Gaussian distribution,
μ = 2, σ = 2

d Immerzeel and others (2015)

Lirung Glacier, Central Himalaya Modeled 0.5 · kRi hr Parajuli and others (2015)
Indus Basin Defined a priori 4, 6.5 or 9 d Koppes and others (2015)
Dudh Koshi Basin, Central Himalaya Literature-derived 3.34 d Shea and others (2015)
Echaurren Norte, Chilean Andes Empirically derived using observed

glacier -wide mass balance
90.1 m Masiokas and others (2016)

Subscript i is for bare ice, snow or both. h is debris thickness (m), and kR denotes a restricted melt factor calculated with air temperature as one of a set of predictor variables.

Table 2. Restricted sub-debris melt factors, kR, calculated with air temperature as one of a set of predictors, that have been applied to model sub-debris melt

Study area kR provenance kR δt References

Keqicar Baqi, Tien Shan Unspecified 2 d Zhang and others (2007)
Hunza Basin, Karakoram Defined a priori 0.06 d Ragettli and others (2013)
Langtang Khola Basin, Central Himalaya Empirically derived using modeled melt 0.03 · h−0.8 hr Ragettli and others (2015)
Shaune Garang, Western Himalaya Empirically derived using observed melt 2.6 to 9.3 d Kumar and others (2016)
Miage Glacier, Italian Alps and
Haut Glacier d’Arolla, Swiss Alps

Empirically derived using modeled melt 0.636 to 2.362 hr Carenzo and others (2016)

Río del Yeso, Chilean Andes Empirically derived using modeled melt 0.017 · h−0.4043 hr Ayala and others (2016)
Inylchek glacier basin, Tien Shan Empirically derived using observed melt 0.0011 · h−0.3625 d Hagg and others (2018)

Units and notation as in Table 1.
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mm w.e. °C−1 d−1. For simplicity and to permit direct compari-
son, only data and models for δt = 1 day are included in this ana-
lysis. The following relation is used to calculate PDD:

PDD = dd
∑nd
i=1

(Ti − Tb) · d(Ti)

with d(Ti) =
1, if Ti ≥ Tb

0, if Ti < Tb

{ (2)

where T is mean air temperature for each day, subscript i is one
day in the observation period of nd days, Tb is a threshold air tem-
perature below which ablation ceases and δ(T ) is a binary variable
that sets ablation to zero below the temperature threshold. Tb is
often set to 0°C, but non-zero values have been found in some
studies (Pellicciotti and others, 2012). In this work, ablation was
standardized as a mean rate, a (mm w.e. d−1):

a = A
nd

(3)

and mean positive degree-days, D (°C), were used to enable com-
parison, calculated as

D = PDD
nd

(4)

In this paper, the term ‘classical’ is used to distinguish melt
factors calculated with only air temperature and debris thickness
as the predictors (k), as in Table 1. Extended models with one or
more predictors in addition to air temperature, such as incident
shortwave radiation or surface slope, have been developed with
a range of different formulations (e.g. Hock, 1999; Pellicciotti
and others, 2005; Carenzo and others, 2016; Möller and others,
2016). When air temperature is one of a larger set of predictor
variables, as in Table 2, the coefficient associated with air tem-
perature is called a ‘restricted’ melt factor (kR) (Kustas and others,
1994). Restricted melt factors are not directly comparable to clas-
sical melt factors. Models with restricted melt factors, including
predictors in addition to air temperature and debris thickness

(such as solar radiation or surface characteristics), are called
‘extended TIM’.

Data collection and preparation

Overview

Data for this study were gathered from free digital archives.
Observed cumulative melt, A, melt rates, a, and melt factors, ko,
were compiled from existing publications. A literature search
was conducted through the University of British Columbia library
databases and Google Scholar using combinations of the key-
words ‘glacier’, ‘ice’, ‘debris’, ‘rock’, ‘ablation’, ‘melt’, ‘melt factor’,
‘temperature index’, ‘empirical’ and ‘model’. Metadata in the pub-
lications were also collected, including geographic coordinates
and site elevation, observation date and period, observational
set-up, debris thickness, lithology and texture and observed air
temperature. If the resolution of the geographic coordinates was
low, Google Earth Pro was used to ground-truth and adjust
them to a rough mid-point within the debris-covered area of
each glacier (as it appears in the composite images in Google
Earth Pro). Additional spatial data representing elements of the
surface energy balance at the time and place of observation
were collected to explore causes of variability in the observations.
These were taken from MERRA-2 climate reanalysis and
WorldClim V2, additional publications and geological maps.
The data are included in the Supplementary Material.
Procedures followed in data collection are detailed below.

The symbols, units and resolution of the data and variables
used are listed with data sources in Table 3. Throughout this
paper, data provenance is distinguished by a letter. The subscript
‘o’ stands for ‘observed’ and is used to identify variables, models
and metrics associated with observational data copied directly
from the literature. The letter ‘M’ is used to distinguish variables
extracted from MERRA-2, or melt factors calculated using
MERRA-2 air temperature data with observed melt rates. The let-
ter ‘P’ stands for ‘pooled’, and is used for the observational and
MERRA-2-derived melt factors combined as a single variable.
The letter ‘d’ is used for melt factors calculated for Dokriani
Glacier alone, using MERRA-2 air temperature data and observed
melt rates.

Table 3. Data and variables

Variable Symbol Units Resolution Source

Response variables
Melt rate a mm w.e. d−1 Point Reviewed publications
Melt factor ko mm w.e. °C−1 d−1 Point Reviewed publications

kM mm w.e. °C−1 d−1 Point Calculated from a and D
Candidate fixed-effects predictor variables
Observed debris thickness h m Point Reviewed publications
Observed air temperature To °C Point Reviewed publications
2 m air temperature TM °C 0.625° × 0.5° inst1_2d_asm_Nx, MERRA-2
Daily mean positive degree-days D °C 0.625° × 0.5° Calculated from TM
Surface temperature Ts °C 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Surface temperature positive degree-days Ds °C 0.625° × 0.5° Calculated from Ts
Incoming shortwave radiation SWin W m −2 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Net shortwave radiation SWnet W m −2 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Incoming longwave radiation LWa W m −2 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Outgoing longwave radiation LWe W m −2 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Net longwave radiation LWnet W m −2 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2
Albedo αM 0.625° × 0.5° tavg1_2d_rad_Nx, MERRA-2

αML 1/60° Terra/MODIS
αML 30 m × 30 m Landsat 5 TM

Continentality C °C 1 km2 WorldClim V2
Bedrock geology L Various Reviewed publications and geological maps
Region R RGI 6.0

Continentality, C, is computed as an annual mean value. All other numeric predictor variables are daily means.
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Melt rates and melt factors

The observational data are from 27 individual glaciers located in
North America, Europe, Asia, Svalbard, Iceland and New
Zealand, with observation points ranging from 140 to 5350 m
a.s.l. and −43 ° to 78 ° latitude. The data are individual measure-
ments of melt and were copied directly from text and tables or by
digitizing plots. In the instances where corresponding values of a
and ko were published together, both were used, but separately.
New melt factors, kM, were computed using Eqn (1) with observed
melt rates and mean positive degree-days calculated with
MERRA-2 air temperature data, D. Four complete years of data
from Dokriani Glacier, Central Himalaya, which were published
in Pratap and others (2015), were generously contributed as a
data file by those authors. As a subset of kM, melt factors calcu-
lated for Dokriani Glacier are denoted kd.

A total of seven observations from the period before 1980 were
found in the literature: one from a 1956 study of Isfallsglaciären
published in Østrem (1959), and six from a 1979 study of Peyto
Glacier published in Nakawo and Young (1981). The MERRA-2
climate reanalysis project covers the period from 1980 to present.
To avoid introducing uncertainty by using more than one source
of climate reanalysis data, this study was limited to the period
from 1980 to present and the observations from Isfallsglaciären
and Peyto Glacier were excluded.

‘Thick’ debris is thought to cover more than twice the area of
‘thin’ debris globally (Sasaki and others, 2016). To isolate the
‘insulation effect’ of ‘thick’ debris, only data for debris thickness
exceeding the critical thickness (h > hc) were included, where hc
= 0.05 m for all glaciers except Summit Crater Glacier
(Richardson and Brook, 2010), for which hc = 0.07 m was used.
To allow direct comparison among sites, only ‘classical’ values
of observed melt factors (ko) and studies focused on melting ice
(rather than snow or firn) were included.

Following personal communication with the authors, the
values of ko reported in Richardson and Brook (2010) were cor-
rected by applying a factor of 10−1, and the units of ko stated in
Table 2 of Koppes and others (2015) were confirmed to be mm
w.e. °C−1 d−1, not m °C−1 a−1 as stated in the text of page
7. Of multiple units for ko reported in Hagg and others (2008),
mm w.e. K−1 d−1 was assumed to be correct because cm K−1

d−1 would be unusually large.
Data processing was conducted using the R programming

language (R Core Team, 2017) in R Studio. To allow comparison
with observed air temperature reported as daily mean values,
and of observation periods ranging from days to years, melt
sums were converted to melt rates using Eqn (3). In all cases
where melt rates were reported in units of water equivalent,
the value for ice density used in unit conversion was stated in
the corresponding publications to be 890 kg m−3. Therefore,
both a and ko that were not reported in water equivalent units
were standardized to mm w.e. with an assumed ice density of
890 kg m−3.

Two data subsets from Dokriani Glacier (n = 24) (Pratap and
others, 2015) and one from Pichillancahue–Turbio Glacier
(n = 3) (Brock and others, 2007) were omitted because they exhib-
ited a positive correlation between melt rate and debris thickness,
indicating the insulation signal was confounded by other pro-
cesses in those instances. The final dataset included 561 individ-
ual observations, consisting of 86 melt factors (from 12 different
glaciers) and 482 melt rates (from 21 different glaciers, 235 from
Dokriani Glacier). The glacier locations are shown in Figure 1.
Observed melt factors (ko) ranged from 0.30 to 18.40 mm w.e. °
C−1 d−1, and debris thickness ranged from 0.05 to 0.65m. Melt fac-
tors computed with MERRA-2 positive degree-days (kM) ranged
from 0.06 to 16.89 mm w.e. °C−1 d−1 and h from 0.05 to 1.20m.
The number of data points from each glacier, summary statistics

Fig. 1. The location of debris-covered glaciers in this study (blue diamonds). Symbol size indicates the number of individual observations from each glacier, on a
continuous scale. The black polygons are the Randolph Glacier Inventory (RGI) 6.0 first-order glaciological regions (RGI Consortium, 2017), labeled with their
numeric IDs. The white areas are the RGI 6.0 glacier outlines, Greenland and Antarctica. The background map is based on data from naturalearthdata.com.
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for ko and data references are provided in Tables 6 and 7,
Appendix A.

Air temperature, shortwave and longwave radiation, surface
temperature

On-site air temperatures were provided in 17 of the source publica-
tions, either as a multi-day mean or as a time series. Daily mean air
temperature for each melt observation period, To, was assumed to
be equal to the multi-day mean in the absence of a time series.

The NASA Earthdata subsetter tool (https://earthdata.nasa.gov)
was used to extract meteorological data from MERRA-2 products
for grid cells that contained the ground-truthed coordinates for
each glacier. Four MERRA-2 data collections were used. The variable
for 2m air temperature (T2) was extracted from the collection
inst1_2d_asm_Nx (2-dimensional, 1-Hourly, Instantaneous,
Single-Level, Assimilation, Single-Level Diagnostics, V5.12.4;
Global Modelling and Assimilation Office, (GMAO, 2015b)).
Surface skin temperature (Ts), incoming and net shortwave
radiation (SWin, SWnet), and incoming, outgoing and net longwave
radiation (LWa, LWe, LWnet) were taken from the collection
tavg1_2d_rad_Nx (2-dimensional, 1-Hourly, Time-Averaged,
Single-Level, Assimilation, Radiation Diagnostics, V5.12.4)
(GMAO, 2015c). Grid cell elevation (EM) was extracted from the
constants file, const_2d_asm_Nx (2d, Constants, V5.12.4)
(GMAO, 2015a).

Elevation lapse rates (Γ) were used to adjust T2 to the elevation
of observations (Eo, in m a.s.l.) that was reported with ko and/or a,
as follows:

TM,j = T2 j + Gj(Eo,j − EM,j) (5)

for each observation site j. Two approaches were used to arrive at
values for Γj. First, a constant value of 6.5°C km−1 was assumed
and applied uniformly for all j. Second, free-atmosphere lapse rates
were calculated for each grid cell from the tavg3_3d_asm_Nv collec-
tion (3-dimensional, 3-Hourly, Time-Averaged, Model-Level,
Assimilation, Assimilated Meteorological Fields, V5.12.4) model-
levels 72 and 71 (respectively, surface-adjacent and second from sur-
face) (GMAO, 2015d) and applied site by site. The elevation-adjusted
MERRA-2 air temperature variables were compared to To to evaluate
which best represented on-glacier conditions. TM with ΓC = 6.5°
C km−1 was found to be in closest agreement with To and was there-
fore used for the remainder of the study (see Appendix B
‘Comparison of MERRA-2 and on-site air temperature data’ for
details). Positive degree-days were calculated from TM following
Eqn (2) and converted to daily mean positive degree-days, D,
using Eqn (4), to match the period of a.

Albedo

Albedo was extracted from the tavg1_2d_rad_Nx collection and
averaged over each observation period. Given the spatial mis-
match of observations and the MERRA-2 grid, and given the
availability of albedo products from satellite imagery, higher reso-
lution albedo from MODIS and Landsat 5 TM (αML) was also
obtained, using Google Earth Engine. To avoid bias from patches
of debris-free ice, ice cliffs and supraglacial ponds, αML was col-
lected from nearby moraine rather than the glacier surface, and
the moraine was identified manually. Cloud cover prevented the
record of albedo during some of the observation periods. In
those cases, values reported for the day nearest the date of obser-
vation were used. Albedo taken both from MERRA-2 and from
MODIS and Landsat was found to vary with time, presumably

due to the change of the incidence angle of solar radiation.
Correcting such effects was beyond the scope of this study.

Debris geology

Geological information about the debris was provided in few of
the source publications. When not stated in the source publica-
tion, debris rock type was found in a related publication or digital
geological map. The debris was assumed to have the same lith-
ology as the dominant basin bedrock in the absence of more spe-
cific information. The distribution of k in bins of debris geology at
the order of, for example, limestone, granite and pumice, was
found to be significantly different, but those results are not
included because the classes were not well resolved and the ana-
lysis was inconclusive (in some cases the highest resolution geo-
logical data were 1:1M). Instead, debris rock type was redefined
as metamorphic, igneous or sedimentary and included in the ana-
lysis as the categorical variable L.

Continentality

Continentality (C, in °C) was calculated as follows

C = Tmax − Tmin (6)

where Tmax and Tmin are annual maximum and minimum
monthly mean air temperatures (°C), respectively, extracted
from WorldClim V2. WorldClim V2 is a 1 km2 resolution inter-
polated climate data product that is derived from ground-based
and satellite observations (Fick and Hijmans, 2017), which is
widely cited for a variety of applications and is freely available
from worldclim.org. WorldClim is a purely observational data
product with structure and resolution that is appropriate for
climate-scale analyses with minimal data storage and processing.
The relatively high temporal and spatial resolutions of MERRA-2
reanalysis products make it appropriate for synoptic scale ana-
lyses, but require data storage and processing that were impracti-
cal for calculating climatic continentality in the current
application.

Statistical analysis

Model fitting

Model fitting and analysis were performed using the R program-
ming language (R Core Team, 2017) within R Studio. R packages
used in addition to base R are listed at the end of this document
and the R code is included in the Supplementary Material. The
statistical models presented here are specified in R syntax rather
than matrix notation, a practice that is encouraged for clarity
and reproducibility (e.g. Gandrud, 2015; Mair, 2016). Readers
are directed to Bates and others (2015) for mathematical expres-
sion of the R syntax.

Models were fitted separately for the two different types of
melt factor, ko (observed) and kM (calculated). The melt factors
calculated for Dokriani Glacier, kd, were included in the analysis
of kM and also analyzed separately. This resulted in three sets of
models, one for each of ko, kM and kd. Hereafter, these model
sets are called KO, KM and KMd, and each individual model
within a set is designated by a number (i.e. KO1, KM1, KMd1).
An additional model set, KP, was generated by pooling ko and
kM. The same data were not repeated in the pooled dataset.
Melt factors in the KO dataset were prioritized over the KM data-
set. If melt rates corresponding to the melt factors in the KO data-
set were available, those melt rates were used to calculate values of
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kM that were included in the KM dataset but were not included in
the pooled dataset.

A range of logarithmic and exponential transformations of the
response and predictor variables were tested to meet the linear
modeling assumption of normally distributed error terms.
Models with base-10 logarithmic transformation of the response
variable met that requirement and were the most accurate in
cross-validation. The base-10 logarithms of the melt factors are
denoted y.

An attempt was made to model ablation directly as a function
of the predictor variables rather than from a predicted melt factor.
However, those models were consistently less accurate than those
based on a predicted melt factor and are not considered further.

Both fixed-effects and mixed-effects linear models for y were
fit, the latter to account for the variability of model coefficients
among glaciers and among years of observation. The motivation
for using mixed-effects models in this study is that they explicitly
address the hierarchical structure of the dataset when observations
are grouped – e.g. by repeat sampling of the subjects in a study –
and the dependency of the error terms on grouping levels (e.g.
sampling sites) must be accounted for (Gałecki and
Burzykowski, 2013; Galwey, 2014).

Mixed-effects models include both fixed effects and random
effects. Fixed effects represent the effects of predictors that are
assumed to apply uniformly throughout the population of inter-
est. When a model that only includes fixed effects is applied to
data with a grouped structure (e.g. multiple observations within
multiple sites), the residuals from the model often exhibit
within-group correlations; for example, some sites may have dom-
inantly positive residuals while other sites may have dominantly
negative residuals. Such within-group correlation violates the
assumption of independence that underlies fixed-effects models.
The inclusion of site as a random effect in this case is one way
to account for such within-group correlation.

The fundamental assumption underlying a mixed-effects
model is that the model coefficients can vary randomly from
group to group, and are drawn from a normal distribution.
When predictions are made for a new group that was not in
the dataset used to fit the model, the prediction is made using
the fixed-effects coefficients, which are assumed to apply through
the entire population. The calculated prediction limits include the
uncertainty associated with the among-site variability of the ran-
dom effects. Multiple random effects and fixed effects can be
included in a single mixed-effects model.

Data with a grouped structure are common to many areas of
earth science (e.g. Booker and Dunbar, 2008; Kasurak and others,
2011; Azócar and others, 2017), making mixed-effects modeling
especially useful. To illustrate the application of mixed-effects
models, consider the case of a linear relation between a response
variable y and a single predictor variable x, with multiple sites and
multiple observations at each site. In this case, the model could be
represented as

yik = B0 + b0k + (B1 + b1k) · xik + eik (7)

where yik and xik are the ith observations of y and x at site k, B0
and B1 are fixed effects that are assumed to apply to the entire
population of sites, b0k and b1k are deviations from the
fixed-effects coefficients for site k, and εik is a random error
term. If the model is applied to new observations at one of the
sites used to fit the model, then both the fixed effects and the ran-
dom effects for that site are included. However, if the model is
applied to observations at a new site, then only the fixed-effects
coefficients are used. With a nested data structure, such as the
present case with multiple sites, multiple years of observation at
each site and multiple observations in each year, the model

would be

yijk = B0 + b0k + b0jk + (B1 + b1k + b1jk) · xijk + eijk (8)

where j is the year of observation at a given site, and the index jk
indicates a deviation from the relation at site k in year j. The ran-
dom effects b0k and b1k are included when the model is applied to
new observations from a site that was used to fit the model; the
random effects b0jk and b1jk are also included if the new observa-
tions were taken in one of the site-years used to fit the model.
Otherwise, for a new site, only the fixed effects are applied, as
for the simpler case of Eqn (7).

The prediction limits computed for a mixed-effects model
include not only uncertainty in the fixed-effects coefficients and
the random error term, as is the case for fixed-effects models,
but also the uncertainty associated with the variability of coeffi-
cients among sites as represented by the variances of the
mixed-effects coefficients. An important advantage of using
mixed-effects models is that the values of B0 and B1 are not biased
by individual sites with large numbers of observations, as would
be the case for a fixed-effects model. Fixed-effects versions of
all the models tested in this study were significantly out-
performed by the mixed-effects models and are not considered
further.

The mixed-effects models were fit using the lmer function
from the lme4 R package using maximum likelihood estimation
(Bates and others, 2015). Model fitting was carried out in two
stages, starting with a base model including debris thickness. In
R syntax, the base mixed-effects model was defined as:

ŷ � h+ (1|G) (9)

where ŷ is the base-10 logarithm of the predicted melt factor (k̂o,
ˆkM or k̂d), h is debris thickness and G is the name of each glacier
as a categorical variable. Equation (9) contains two fixed-effects
coefficients, B0 and B1, which are the intercept and a slope coef-
ficient for h, and the (1|G) term indicates a set of random-effects
coefficients representing a random deviation from the
fixed-effects intercept for each glacier (b0j). Base models were
also tested that allowed the slope coefficient for debris thick-
ness to vary randomly among glaciers in addition to the inter-
cept (b1j):

ŷ � h+ (h|G) (10)

Because multiple years of data were available for a number of
glaciers, the year of observation, yr, was included as an add-
itional random effect, nested within each glacier. The following
model, for example, allows both the intercept and the slope
coefficient for debris thickness to vary randomly among glaciers
and years (b0jk and b1jk):

ŷ � h+ (h|G)+ (h|G:yr) (11)

The candidate mixed-effects base models in Eqns (9)–(11) were
evaluated with the Akaike Information Criterion (AIC). The
AIC is a metric that weighs model performance against parsi-
mony, penalizing unnecessary complexity. The base model with
the lowest AIC was advanced to the second stage of model
development, where additional fixed-effects predictors and
interaction terms were tested. Variables tested were Ts, Ds,
SWnet, SWin, LWnet, LWa, LWe as well as rock type (L), conti-
nentality (C), albedo (αM and αML) and RGI 6.0 glaciological
region (R). To minimize issues with collinearity, pairs of pre-
dictors with a Pearson’s correlation coefficient > 0.5 were not
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included in a model together. Otherwise, combinations of the
fixed-effects variables and interaction terms, such as h · SWnet,
h + SWnet + C and h + SWnet · C, and so on, were tested exhaust-
ively. Calculated melt factors for Dokriani Glacier varied
through the ablation seasons of 2010–2014. In the models for
Dokriani Glacier (model set KMd), month was included as a
fixed effect, and yr as a random effect.

The fitted coefficients and 95% prediction limits calculated
by the lmer function are the average of the maximum likelihood
estimates from a user-defined number of simulations. Here, the
number of simulations per iteration was set to 10,000. Models
were discarded if any individual predictor was not significant at
the 0.95 confidence level or if any fitted coefficient was physically
unrealistic. Valid models for each response variable were ranked
by AIC. Up to five of the top-ranked models were selected for
cross-validation. Only the fixed-effects coefficients were used in
model validation, when fitted models were used to make predic-
tions for glaciers not included in the model fitting.

Model validation

Leave-one-out cross-validation was used to evaluate the candidate
models’ ability to reproduce observed melt rates. At each iteration,
the input values for one glacier were withheld and the model fit
using data from the other glaciers. The newly fitted model was
then applied to predict the values for the withheld glacier. For
model set KMd, 150m elevation bins were used in place of glaciers.

Smearing estimates (s) were calculated to avoid the introduc-
tion of bias during back-transformation of the predicted values
from base-10 logarithms (i.e. k̂ = 10(ŷ+s)) (Duan, 1983).
Predicted melt rates, â, were calculated using Eqn (1) and the
back-transformed melt factors (i.e. â = k̂ · D). When discussing
predicted values of ŷ and â, subscripts are used to indicate
which model was used (e.g. ŷKO3, âKM1).

Metrics used to evaluate the performance of the models in
cross-validation were the root-mean-square error (RMSE),
root-mean-square relative error (RMSRE), mean bias error
(MBE) and relative mean bias error (RMBE), calculated as follows:

RMSE =
�����������������
1
n

∑n
i=1

(ai − âi)
2

√
(12)

RMSRE =
������������������
1
n

∑n
i=1

ai − âi
ai

( )2
√

(13)

MBE = 1
n

∑n
i=1

(ai − âi) (14)

RMBE = 1
n

∑n
i=1

ai − âi
ai

( )
(15)

where ai and âi are the observed and predicted values, respectively,
for each observation i, and n is the total number of observations.
The percentage of points within +25% error and the graphical
linearity of the predictions also served as indicators of the
models’ goodness of fit. Models that performed relatively poorly
in cross-validation were discarded and a maximum of three
top-performing models for each model set are presented in the
Results. A range of prediction uncertainty was estimated for
the strongest model in each set, where the 95% prediction limits

were converted to a percentage of the predicted values and averaged
over the observations.

Air temperature data provenance

To test whether melt factors calculated with air temperature data
of different provenances were significantly different, ko and kM
were combined as a single response variable, kP. Air temperature
data provenance was included in the base model as a fixed-effects
categorical predictor (i.e. observed or MERRA-2). Significance of
the provenance variable was evaluated at the 0.90 confidence level.
This liberal threshold was chosen to reduce the chance of incor-
rectly accepting the null hypothesis, that ko and kM came from the
same distribution.

The importance of using air temperature data of the same
provenance for both calculation and application of melt factors
was also evaluated. Model set KO was tested twice, once using
observed air temperature as input and again using MERRA-2
air temperature as input. If the provenance of air temperature
data (i.e. MERRA-2 vs observed on-site) had a significant affect
on predictive accuracy, then â calculated with k̂o and observed
positive degree-days should be more accurate than â calculated
with k̂o and MERRA-2 positive degree-days.

A complication in the second analysis is that values of ko were
calculated with observed positive degree-days, which were not
reported in the source publications and were thus unavailable for
this test. Therefore, the mean observed temperature, To, was used
rather than positive degree-days, whereas the MERRA-2-based tem-
perature statistic, D, was computed as positive degree-days. It is pos-
sible that using different statistics for the calculation and application
of melt factors (i.e. positive degree-days vs daily means) could affect
prediction accuracy. To evaluate that possibility, cross-validation of
all the models was performed with D first, and then using daily
mean MERRA-2 air temperature, TM. Differences in the RMSE
and MBE of the same model but different air temperature input
statistic were consistently < 0.001mm w.e. d−1. Therefore, applying
To and D in the KO models was deemed to be a valid indicative test
of the effect of input data provenance on prediction accuracy. Values
of âKO predicted using To and D are distinguished with T or D
appended to the model name (i.e. âKO2−T, âKO2−D).

Once the significance of air temperature data provenance had
been assessed, the full model fitting and validation procedures were
carried out with the pooled melt factors, kP, as the response vari-
able. That resulted in the additional set of models designated KP.

Fig. 2. Observed melt rate (a) and mean daily positive degree-days based on
MERRA-2 air temperatures (D), with least-squares best-fit lines through the origin
for bins of debris thickness. Crosses are extreme values that were removed for
model fitting.
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Results

Models were fitted for the KO, KM, KP and KMd datasets, with a
total of 557 individual observations from 27 glaciers around the
world. From the original 568 observations, 11 values of a from
Hinarche Glacier, Dokriani Glacier and Koxkar Glacier were
unusually high or low given D and were removed as outliers
prior to model fitting (Fig. 2, crosses). None of the predictor vari-
ables explained those values and the results presented below are
for the reduced dataset (n = 557).

The model coefficients presented below are in log base-10
transformed units. For example, the coefficients for the
intercept, B0, are in units of log 10 (mm w.e. °C −1 d−1), while
the coefficients for debris thickness, B1, are in units of log 10

(mm w.e. °C−1 d−1)m−1.

Dependence of ablation on degree-days and debris thickness:
overview

Figure 2 illustrates the dependence of measured melt rate on positive
degree-days and debris thickness. As expected, both the magnitude
of melt and its sensitivity to air temperature decline as debris thick-
ness increases. Also notable is the high degree of variability around
the best-fit linear regression lines for each thickness bin.

Model set KO: melt factors for multiple glaciers extracted
directly from the literature

In these models, the slope coefficient, B1, is the direct dependence
of melt factors on debris thickness, while the intercept, B0, is the
variation of melt factors that is independent of debris thickness.
As seen in Table 4, the strongest models for predicted values of
the log base-10 of ko are the base model with random effects
in the intercept of h by glacier (G), KO1, and the extended
model including SWnet, KO2. Despite the inclusion of SWnet in
KO2, which results in different estimates of the intercept, the
models have consistent estimates of the coefficient for debris
thickness, B1.

Although the AIC of model KO1 is 2.4 points lower than that
for KO2, model KO2 was more accurate in cross-validation
(Table 5). The models have similar biases, but the RMSE and
RMSRE of âKO2 are almost half the magnitude of those of âKO1.
The percentage of points within ± 25% error is not a strong metric
of the performance of the KO models, because the influence of
individual points in the small validation dataset was exaggerated.
Nonetheless, those values are also favorable to model KO2, irre-
spective of which air temperature input was used. Differences

due to the air temperature input variable are discussed with the
results for air temperature data provenance, below.

There is a negative bias in âKO2 that increases as a increases
(Fig. 3a), as a result of the uneven distribution of observations
in the lower range of h (Fig. 3b). The 95% prediction limits for
k̂KO2 (calculated with SWnet set to its mean value, 225 W m2)
range from −49 to 203% of the predicted values on average.

Model set KM: melt factors for multiple glaciers calculated
with observed melt rates and MERRA-2 air temperature

The best KM models are the base model with random effects in the
slope and intercept by glacier and by year (KM1), the model
extended with αM (KM2), and the model extended with LWnet

(KM3). The estimated coefficients for h are consistent between
models KM1, KM2 and KM3 and consistent with those of the
KO models, within the standard errors of the estimates.

Model KM2 has the lowest AIC but performed poorly by all
criteria in cross-validation, with RMSE and MBE an order of
magnitude larger than those of models KM1 and KM3, as seen
in Table 5. Models KM3 and KM1 performed similarly well
to each other, with differences in the errors on the order of
0.1 mm w.e. d−1 and one percentage point; on the basis of frac-
tionally more favorable metrics and parsimony, the base model
is deemed to be more robust.

Like âKO2, around half the values of âKM1 fell within ± 25%
error, but the MBE of KM1 is an order of magnitude smaller
than that of KO2. The RMSE is also smaller for âKM1 than âKO2,
but the RMSRE is around three times as large. The RMSRE was
strongly influenced by the lack of observations of low melt rates
in the ko dataset with which to test KO2, as seen in Figures 3a
and c. It can be seen in Figure 3d that the 95% prediction limits
for k̂KM1 are also wider than those for k̂KO2, ranging from approxi-
mately −38 to 270% of the predicted value on average. Again, that
resulted from the larger number of low melt factors in the kM data-
set that were not present in the ko dataset.

Of two observations of melt rate found in published literature
for h > 0.65 m, one was unusually large given D and was
removed as an outlier before model fitting. The value of kM cal-
culated for the sole remaining observation at h = 1.2 m is poorly
reproduced by model KM1 and lies well above the prediction
limits (Fig. 3d).

Model set KP: ko and kM pooled as a single response variable

Air temperature data provenance was not found to be significant
in a model of ko and kM pooled as a single response variable, kP

Table 4. Fitted coefficients with standard errors and AIC for models of ŷKO, ŷKM, ŷKP and ŷKMd .

Model R formula B0 B1 B2 AIC n

KO1. h + (1|G) 0.62 ± 0.08 −1.43 ± 0.11 − 50.2 81
KO2. h + SWnet + (1|G) −0.68 ± 0.32 −1.44 ± 0.11 0.006 ± 0.001 −47.8

KM1. h + (h|G) + (h|G : yr) 0.58 ± 0.04 −1.23 ± 0.17 −189.1 476
KM2. h + αM + (h|G) + (h|G : yr) 1.05 ± 0.10 −1.24 ± 0.17 −2.16 ± 0.42 −209.6
KM3. h + LWnet + (h|G) + (h|G : yr) 0.75 ± 0.05 −1.24 ± 0.17 0.002 ± 4 × 10−4 −204.0

KP1. h + (h|G) + (h|G : yr) 0.62 ± 0.04 −1.46 ± 0.17 −225.0 550
KP2. h + LWnet + (h|G) + (h|G : yr) 0.80 ± 0.05 −1.47 ± 0.17 0.002 ± 3 × 10−4 −239.7

KMd1. h + (h|yr) 0.44 ± 0.04 −0.50 ± 0.18 92.8 231
KMd2. h +month + (h|yr) 0.52 ± 0.05 −0.52 ± 0.16 May: −0.367 ± 0.05 43.5

June: −0.127 ± 0.05
July: 0.010 ± 0.05

September: 0.067 ± 0.05

G is a class variable representing individual glaciers. B0 to B2 are fitted fixed-effects coefficients. Also shown is the number of data points in each model set, n. Random-effects coefficients are
not shown. The model in each set that was most accurate in cross-validation is highlighted with bold font
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Table 5. Cross-validation metrics for predicted melt rates, â

Model Input RMSE RMSRE MBE RMBE % of points Number of
variable (mm w.e. d−1) (mm w.e. d−1) within ± 25 % glaciers in the
(°C) error model set

KO1. To 14.8 0.52 −5.7 0.17 23 12
KO1. D 15.1 0.59 −1.7 −0.01 11
KO2. To 7.9 0.24 −5.4 0.19 46
KO2. D 8.3 0.35 −2.5 0.02 56

KM1. D 7.7 0.99 −0.5 −0.23 51 20
KM2. D 11.7 1.22 −1.6 −0.22 34
KM3. D 7.8 0.95 −0.6 −0.22 50

KP1. D 7.7 0.98 −0.2 −0.23 52 27
KP2. D 7.9 0.98 −0.1 −0.23 50

KMd1. D 7.0 3.84 −1.0 −0.65 54 1
KMd2. D 7.0 3.50 0.2 −0.50 53

The most accurate model in each set is highlighted with bold font.

Fig. 3. Left column: observed melt rates, a, and modeled melt rates, â, using the best models for ko, kM and kP (rows 1–3, respectively). MERRA-2 positive degree-
days were used as input to models KM1 and KP1. In plot a, âKO2−T and âKO2−D are represented with triangles and dots, respectively. The solid lines represent perfect
agreement and the dashed lines are ± 25% error. Right column: observed melt factors, k (crosses), modeled melt factors, k̂ (curves) and 95% prediction limits
(shaded areas), against debris thickness, h.
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(p = 0.23). The cross-validation metrics in Table 5 vary between
models KO given different air temperature input variables, To and
D. The RMSE and RMSRE are smaller using To in both KO1 and
KO2, but the MBE is around three times as large. The difference
in the percentage of points within ± 25% error varies inconsist-
ently between inputs. The differences between âKO2−T and
âKO2−D in Figure 3a are not striking.

In the absence of evidence that inconsistent air temperature
data provenance reduced prediction accuracy, the model fitting
and validation procedures were carried out with kP as the
response variable. The strongest models set in KP are the base
model with random effects in the slope and intercept of debris
thickness by glacier and by year (KP1), and the model extended
with LWnet (KP2) (Table 4). As with model set KM, the AIC
for KP2 is lower than that for the base model but the base
model was more accurate in cross-validation. The RMSE of KP1
is fractionally smaller than that of KP2, and KP1 has 3% more
points within ± 25% error than KP2 (Table 5). The RMSRE
and MBE for the two models are equal. On the basis of those
metrics and parsimony, KP1 is deemed to be more robust.

Only around 50% of âKP1 fall within ± 25% error, comparable
to models KO2 and KM1. The RMSRE of KP1 falls between KO2
and KM1, the RMSE is lowest for KP1 and equal with KM1, while
the MBE is lowest for KP1 of all the models. The uncertainty in
k̂P, ranging from −40 to 254% of the predicted value, is inter-
mediate between KO2 and KM1.

Model set KMd: melt factors calculated for Dokriani Glacier
with observed melt rates and MERRA-2 air temperature

Melt factors for the 2010–2013 ablation seasons at Dokriani
Glacier, kd, were calculated using D and monthly melt measured
at a network of 30 ablation stakes. In Figure 4 it can be seen that
kd increased over the ablation season in all years except 2013.
Figure 4 also shows that inter-site variability of kd within each
month did not vary markedly from year to year. However, for
May, the inter-site variability was low in 2010 and increased
each year to the point that there was greater inter-site variability
in May 2013 than in any other year-month. The difference
between kd for June and September was found to be statistically
significant in all years except 2013, while the difference between
kd in July and August was not found to be significant in any year.

The best models for kd are the base model with random effects
in the slope and intercept by year, KMd1, and the model extended
with a categorical variable for month, KMd2 (Table 4). The esti-
mated coefficients for the slope of debris thickness, B1, are con-
sistent between KMd1 and KMd2, but notably smaller than
those estimated for KO, KM and KP. The estimated coefficients
for month, B2, reflect the pattern of increase through the ablation
season described above.

In cross-validation, the RMSE of the base model and KMd2
were equal, and KMd1 had 1% more predicted values within ±
25% than KMd2 (Table 5). However, the MBE of KMd2 is an
order of magnitude smaller than that of KMd1, and the RMSRE
is also fractionally smaller. Model KMd2 is deemed to be more
robust primarily on the basis of the MBE.

Both KMd2 and KMd1 have smaller RMSE than the strongest
multi-glacier models, but RMSRE more than three times as large.
That is because the distribution of kd is skewed by the low May
and June values while the multi-glacier datasets are more nor-
mally distributed. The MBE of KMd2 and KP1 are equal in mag-
nitude, but the RMBE of KMd2 is twice as large as that of KP1.
The prediction limits for k̂d, calculated as the mean for each
month, are also wider than any of the multi-glacier models at
−32 to 312% of the predicted value.

In Figure 5a, it can be seen that May melt rates were least well
reproduced. It is also of note that, while kd were highest in
September, a were relatively low. Figure 5b shows that the overall
increase of kd between May and September, muted in July and
August, is reflected in k̂KMd2.

Discussion

The data compiled and analyzed here are from debris-covered gla-
ciers around the world, covering a wide range of geographic and
climatic settings. The analysis confirms the generality of the
dependence of melt rates on positive degree-days and debris
thickness that has been well documented at individual sites.

Accuracy of modeled melt factors applied to new glaciers
without calibration

The best-performing models generated predictions that were within
± 25% error only around 50% of the time, while the RMSE and
RMSRE of the highest performing model, 8.7 mm w.e. d−1 and

Fig. 4. The variation of kd among ablation stakes for each month and year of the 2010–2013 ablation seasons.
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0.98 respectively, are substantial (model KP1, Table 5). This reflects
the known strengths and weaknesses of empirical melt models,
tending to be accurate on average but imprecise for specific times
and places. The prediction limits of mixed-effects models are typic-
ally wider than those of equivalent fixed-effects models, because
they explicitly consider the sample used to fit the model within
the context of a broader population of glaciers to which the
model might be applied (Shadish and others, 2002). It is notable,
therefore, that the accuracy of model KP1 is comparable to the
reported accuracy of TIM transferred between neighboring debris-
free glaciers (e.g. Wheler, 2009).

Extending classical TIM with additional predictors did not
improve prediction accuracy, but increasing the size of the cali-
bration dataset did. In cross-validation, model KO2, extended
with SWnet, out-performed the base model (KO1), but the
base models KM1 and KP1 out-performed the extended models
KM2, KM3 and KP2. Then, KP1 predicted ko more accurately
than either KO1 or KO2. This shows that increasing the size
of the dataset let the underlying, common relation between k
and h to be more accurately estimated, and that was more
important than additional information about the surface energy
exchanges.

The inability of other candidate predictors to contribute to the
performance of the models suggests that positive degree-days and

debris thickness are strong predictors of sub-debris melt, which is
in agreement with previous findings (e.g. Möller and others, 2016). It
has been found that air temperature is reproduced more accurately
than other variables in some climate reanalyses (e.g. Trubilowicz
and others, 2016); here, MERRA-2 air temperature was found to
be in good agreement with observations (root mean squared devi-
ation = 2.56°C, mean bias < 0.1°C, n = 32, Appendix B). The relative
performance of the predictors may also have been influenced by rela-
tive accuracy of the MERRA-2 variables.

The increased volume of data used to fit models may have
improved the accuracy of the distribution of melt factors as a
function of debris thickness, or, with more repeat observations
within the hierarchical sampling structure of the data, improved
accuracy of the random-effects coefficients. The models in sets
KM and KP were improved with random effects in the intercept
and slope of h by glacier (G) and by year (yr), having repeat
observations at multiple glaciers over multiple years. In contrast,
the models in set KO were only improved by random effects in
the intercept of h by G, because, despite the same sampling struc-
ture, there were not enough repeat observations for each value of
G and yr to accurately estimate coefficients for the slope of h by G,
or either the intercept or slope of h by yr. With more data, the
fixed- and random-effects coefficients for both kM and ko were
more accurately approximated.

Fig. 5. Left column: observed melt rates, a, and predicted melt rates, â, for Dokriani Glacier and each month of the ablation season, using model KMd2 and
MERRA-2 positive degree-days. The solid lines represent perfect agreement and the dashed lines are ± 25% error. Right column: observed kd (crosses), predicted
values, k̂d (curves) and 95% prediction limits for each month (shaded areas), against debris thickness, h.
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Empirical melt models are often fit to data from a single glacier
and applied to neighboring glaciers. The coefficients for debris
thickness estimated in the models of Dokriani Glacier were sig-
nificantly different to those estimated in the multi-glacier models
sets, KO, KM and KP, while the coefficients for debris thickness
estimated in the multi-glacier model sets were consistent with
each other. This finding suggests that empirical models fitted
using data from a single glacier are location specific, and that
models fitted using data from multiple glaciers more accurately
reflect the direct relation between melt, air temperature and debris
thickness. Models fitted using data from multiple glaciers may,
therefore, be more accurate when they are transferred between
glaciers than models fitted using data from a single glacier.
Indeed, the accuracy of predictions made with model KP1 for gla-
ciers that KP1 had not been calibrated for was only fractionally
lower than that of predictions made for bins of elevation on
Dokriani Glacier with model KMd2, which was calibrated for
Dokriani Glacier.

The fractionally higher accuracy of predictions made with
model KMd2, with RMSE = 7.0 mm w.e. d−1 and MBE = 0.2
mm w.e. d−1, is likely to relate to the properties of the debris at
Dokriani Glacier (e.g. rock type, porosity), which were uniform
by comparison with those in the multi-glacier datasets.
However, the elevations of observation sites at Dokriani Glacier
were also known precisely while only a single, average or nominal
value was known for most of the source data. Therefore, the
accuracy of KMd2 might simply have been due to more accurate
elevation adjustment of D.

Mixed-effects models are based on the assumption that the
observation sites and years are sampled randomly from broader
populations. In the current case, the sampled population includes
only eight of 18 RGI glaciological regions and elevations < 5350 m
a.s.l.; therefore, the applicability of the models and prediction lim-
its outside that population of sites is not known.

The models could not be validated for debris thicker than 0.65
m. Model KP1 predicts k = 0.5 mm w.e. °C−1 d−1 for h = 0.65 m,
decaying to 0.1 mm w.e. °C−1 d−1 for h between 1.0 and 1.2 m,
which is in general agreement with empirical models of sub-
debris melt in the literature (e.g. Brook and Paine, 2012; Brook
and others, 2013; Hagg and others, 2014, 2018; Juen and others,
2014; Möller and others, 2016). However, the single observation
for h > 0.65 m, at h = 1.2 m from Juen and others (2014), has a
value of kM = 4mm w.e. °C−1 d−1 that is considerably higher
than the models predicted, suggesting the models might not be
valid for h > 0.65 m.

Importance of air temperature data provenance

The success of TIMs relies on positive degree-days having a con-
sistent relation to the surface energy balance. A number of studies
have shown that, because air temperature data collected from dif-
ferent locations and/or by different methods differ (e.g. recorded
at an AWS on the glacier or on a lateral moraine, or recorded at a
remote weather station and lapsed to the elevation of the glacier),
the accuracy of predictions can suffer if air temperature data of
different provenances are used for the calculation and application
of melt factors (e.g. Lang and Braun, 1990; Shea and others, 2009;
Shea and Moore, 2010; Wheler and others, 2014).

No clear evidence was found here that air temperature data
provenance affected the magnitude of melt factors, given the con-
siderable scatter inherent in the data. The slightly different distri-
butions of ko and kM were not statistically significant, and
differentiating between them did not improve the performance
of the models. Nor did changing the provenance between
model fitting and application of melt factors have a significant
effect on prediction accuracy: the RMSE of the KO models was

< 1 mm w.e. d−1 lower with observed air temperature input
data than with MERRA-2 positive degree-days, but the MBE
was more than 3 mm w.e. d−1 larger. Model KP1 was derived
from melt factors calculated using data with two different prove-
nances, yet, with input data of a single provenance (D), it was the
most accurate of the multi-glacier models in cross-validation. This
indicates that enlarging the imprecise dataset by combining obser-
vations from different sources was more valuable than maintain-
ing consistent air temperature data provenance.

It is plausible that melt factors calculated with climate reanaly-
sis air temperature data are more highly transferable than melt
factors calculated with point-scale data. Micro-climates can affect
air temperature recorded at point scale, while MERRA-2 air tem-
perature variables reflect the full, integrated system of mass and
energy fluxes through the modeling and assimilation process.
Melt factors calculated with air temperature data that reflects
the average, regional scale energy balance may more accurately
predict melt under debris at new sites than melt factors calculated
with point-scale air temperature data.

Variability of melt factors within the ablation season

The melt factors calculated for Dokriani Glacier, kd, were found to
vary systematically through the 2010–2012 ablation seasons.
Including month as a categorical variable in model KMd2 reduced
the RMSRE of predictions by 0.32 and the MBE by an order of
magnitude, from −1.1 to 0.2 mm w.e. d−1.

In 2010–2012, the values of kd increased significantly from
June to a maximum in September, which is reflected in
Figure 5b and the KMd2 coefficients for month in Table 4.
Short-term observations have found that heat storage in supragla-
cial debris is close to zero on the order of days (Brock and others,
2007) but may be higher at seasonal scale (Nicholson and Benn,
2013). The increase of values of kd between June and September at
Dokriani Glacier suggests that heat accumulated in the debris
layer after melting had begun, so that melt rates were increasingly
sensitive to surface energy inputs. There was no significant differ-
ence between July and August values in any year. July is the first
month of the monsoon in the Central Himalaya, characterized by
thick cloud cover and intense rainfall. The rate of heat accumula-
tion may have declined in response to reduced net radiation, or
the increasing importance of heat advection by rainwater perco-
lating through the debris.

The sensitivity of melt factors to debris thickness in model
KMd2 was close to one-third that of the multi-glacier models,
at −0.52 log10(mm w.e. °C−1 d−1)m−1. That also suggests that
advection by rainwater percolation was an important mechanism
of heat transfer in the debris layer. Continuous percolation of rain
water at air temperature might reduce the thermal gradient in the
near-surface, making the effect of debris thickness on melt energy
supply less pronounced.

Very low values of kd in May 2010–2012 suggest that much of
the surface heat input early in the ablation season was used to
warm the debris layer and thus not immediately available to
melt ice. May 2013 melt factors were higher than they were in pre-
vious years and more variable among sites than in any other
month or year. Air temperature in the region of Dokriani
Glacier was not significantly different in 2013 by comparison
with previous years, but there were precipitation deficits in
March, April and May 2013 (Kaur and Purohit, 2013, 2014).
Further, precipitation in June 2013 was 123–191% greater than
the climatic normal (Kaur and Purohit, 2014, visualize.data.go-
v.in) indicating that macro-scale atmospheric circulation was
unusual that year. With low spring snowfall, there may have
been an unusual spatial distribution of heat in the debris, because
warming could begin earlier at sites without snow, and that could
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explain the high inter-site variation of kd in May 2013. Studies of
debris-free glaciers have shown that empirical models do not
necessarily hold during seasonal transitions (e.g. Essery and
others, 2013; Irvine-Fynn and others, 2014; Litt and others,
2019) and the same conclusion can be drawn from the poor pre-
diction accuracy for May using model KMd2. This finding shows
that antecedent conditions are sometimes important to seasonal
melt at debris-covered glaciers.

More than half of the data in this analysis were from High
Mountain Asia, under a climate similar to Dokriani Glacier
(Fig. 1). However, no significant difference was found between
melt factors or melt rates by region and there was no indication
that the timing of observations systematically affected the values
of k or a. Therefore, it is unclear whether the temporal variability
of melt factors at Dokriani Glacier can be generalized.

Conclusions

This meta-analysis of previously published observations has
demonstrated the generality of the dependence of sub-debris
melt rates on positive degree-days and debris thickness. In cross-
validation, empirical mixed-effects models describing melt factors
as an exponential function of debris thickness have been found to
predict melt rates with accuracy comparable to that reported for
debris-free glacier TIMs transferred between neighboring glaciers.
Predictions made for new glaciers with a model fitted with data
from multiple glaciers were as accurate as those made for a single
glacier with a model fitted with 4 years of data from the same
glacier.

Overall, simple models were more accurate in cross-validation
than models extended with additional predictors and interaction
terms. There was no indication that air temperature data proven-
ance significantly affected melt factors or prediction accuracy.
Pooling melt factors calculated with observed melt rates and
on-site air temperature and melt factors calculated with observed
melt rates and MERRA-2 air temperature into a single large data-
set improved prediction accuracy.

Melt factors calculated for Dokriani Glacier increased through
the ablation season in 3 out of 4 years of observation. Low values
for May in 2010–2012 suggested that energy was used to heat the
debris after the spring snow pack melted, delaying the onset of the
ablation season for a period on the order of days to weeks.
Increasing values between June and September, as well as high
inter-site variability in May 2013, suggest that heat storage in
the debris layer was a significant part of the energy balance.

The models presented here can be used with MERRA-2 air
temperature data to predict regional and glacier scale sub-debris
melt rates with a known margin of error, which may be useful
for estimating melt rates in the absence of more robust alterna-
tives, or as a baseline for comparison with physically based mod-
els. However, the utility of the models for specific purposes may
be limited by the relatively wide prediction limits. The 95% pre-
diction limits around predicted melt factors is substantial at
approximately −40 to 250% of the predicted values, which
demonstrates that melt rates predicted with assumed melt factors
without a margin of error may be misleading. An advantage of
these models is that the uncertainty associated with predicted
ablation is quantified, so this uncertainty can be considered
when the output is used in further calculations (e.g. catchment
water balances) or decision making.

To advance the science of sub-debris melt modeling, add-
itional studies quantifying the transferability of empirical models
would be valuable. It would be worthwhile for the models pre-
sented in this paper to be tested independently in a range of geo-
graphical settings. Only three observations of melt under debris >
0.65 m thick were found in the published literature and the

models were unable to reproduce those observations. Additional
observations would be valuable for testing the accuracy of predic-
tions of melt under debris > 0.65 m thick. The importance of air
temperature data provenance to predictions of sub-debris melt at
higher temporal and spatial resolution should be tested. Seasonal
and multi-year observational studies of debris heat storage would
be useful to constrain the significance of heat storage to ice melt
in different places. Finally, both empirical and physically-based
modeling would benefit if the characteristics of supraglacial deb-
ris, including quantities such as porosity and grain size distribu-
tion as well as qualities such as rock type, were reported with
future field-based studies.
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Appendix A - References for the observational data

Appendix B - Comparison of MERRA-2 and on-site air
temperature data

Air temperature was reported with the melt observations in 17 of the source
publications. These observations were gathered (n = 45) and standardized to
daily means to inform the choice of a MERRA-2 air temperature variable to
use for calculating new melt factors.

MERRA-2 data products for air temperature at 2 m and 10 m above
ground were tested, extracted from the 2-dimensional assimilation instantan-
eous hourly collection (inst1_2d_asm_Nx) (T2 and T10). The variable T2
might be expected to agree more closely with observations made in, near or
lapsed to the first few meters of the glacier surface. However, MERRA-2
2-dimensional assimilation data products represent interactions between the
surface and atmosphere by a classification of surface type, where the fractional
areas of land, lake, ocean and/or ice compose the surface area of a grid cell.
The fractional area of each surface type is based on the aggregation of a
1 km2 resolution satellite-based global surface characterization (DISCover,

Loveland and others (2000)). If debris-covered glaciers were misclassified as
land or if glacierization were atypical of a grid cell area, T2 could be system-
atically warm biased. In that case T10 could be a better approximation of
point scale, ice-cooled air temperature, assuming a lapse temperature profile
in the modeled air temperature fields.

Two approaches were tested to arrive at lapse rates. First, an approximate
global average of 6.5 °C km−1 (ΓC) was assumed for all sites. Second, site-
specific lapse rates were acquired as stated in the observation source publica-
tions (n = 3) and otherwise calculated from mid-layer air temperature of
model-levels 72 and 71 from the MERRA-2 tavg3_3d_asm_Nv collection
(GMAO, 2015d), as follows

GMj = (T72
j − T71

j )/(E72
j − E71

j ) (B1)

where E72 and E71 are the model level mid-layer elevations and j is the grid cell.
Lapse rates were applied following Eqn (5). Four air temperature variables
resulted from this procedure, T2ΓC, T10ΓC, T2ΓM and T10ΓM, where C stands
for constant and M stands for mixed. The four variables are collectively
denoted TM.

The root mean squared deviation, RMSD, was used to evaluate agreement
between To and TM, calculated for every observation, i, as follows:

RMSD =
����������������������
1
n

∑n
i=1

(To,i − TM j,i)
2

√
(B2)

Table 8. The RMSD of observed air temperatures and MERRA-2 air temperatures
adjusted for elevation with lapse rates

RMSD

T2ΓC 2.56
T10ΓC 2.52
T2ΓM 2.77
T10ΓM 2.74

ΓC = constant lapse rate, ΓM = mixed lapse rates, from observations and calculated from
MERRA-2 air temperature profile.

Table 7. References for the reported melt rates and the number of observations
at each glacier

Glacier n Reference

Venerocolo Glacier 8 Bocchiola and others (2015)
Pichillancahue-Turbio Glacier 3 Brock and others (2007)
Miage Glacier 24 Brock and others (2010)
Lirung Glacier 10 Chand and others (2015)
Chorabari Glacier 17 Dobhal and others (2013)
Miage Glacier 21 Fyffe and others (2014)
Southern Inylchek Glacier 3 Hagg and others (2008)
Franz Josef Glacier 1 Hagg and others (2014)
Koxkar glacier 3 Haidong and others (2006)
Vernagtferner 6 Juen and others (2013)
Barpu Glacier 71 Khan (1989)
Eliot Glacier 12 Lundstrom and others (1993)
Rakhiot Glacier 6 Mattson and others (1993)
Hinarche Glacier 5 Mayer and others (2011)
Baltoro glacier 8 Mihalcea and others (2008)
Ghiacciaio del Belvedere 3 Nicholson and Benn (2006)
Larsbreen 5 Nicholson and Benn (2006)
Batal glacier 9 Patel and others (2016)
Dokriani Glacier 321 Pratap and others (2015)
Lirung Glacier 15 Rana and others (1998)
Qingbingtan Glacier No. 72 3 Wang and others (2017)
Hailuogou Glacier 9 Zhang and others (2011)

Fig. 6. Variables T2ΓC and To, with symbols distinguishing To data provenance.

Fig. 7. The difference between T2ΓC and To, e, plotted against MERRA-2 grid cell frac-
tion of land ice, η.

Table 6. References and summary statistics for the reported melt factors

Glacier n Maximum Minimum
Geometric
mean Reference

Ice-cored Fox
Glacier Moraine

4 5.8 1.1 2.9 Brook and Paine
(2012)

Franz Josef
Glacier

6 3.0 1.0 2.1 Brook and others
(2013)

Southern
Inylchek Glacier

3 4.1 0.9 2.4 Hagg and others
(2008)

Koxkar Glacier 16 2.6 0.3 1.1 Juen and others
(2014)

Khumbu Glacier 5 18.4 5.3 8.8 Kayastha and
others (2000)

Djankuat Glacier 7 4.8 0.5 1.7 Lambrecht and
others (2011)

Zopkhito Glacier 4 3.6 2.9 3.2 Lambrecht and
others (2011)

Maliy Aktru 6 3.1 0.9 1.6 Mayer and others
(2011)

Baltoro glacier 22 5.9 1.2 2.9 Mihalcea and
others (2006)

Summit Crater
Glacier

9 12.9 2.6 5.3 Richardson and
Brook (2010)

24k glacier 8 10.6 1.6 3.7 Yang and others
(2010)
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As seen in Table 8 T10 variables were smaller than they were for T2 but the
difference was on the order of just 10−4 °C. The variables adjusted with a con-
stant lapse rate were in closer agreement with observations, with RMSD
around 0.2 °C smaller for both T2 and T10. Biases were found to be < 0.01
°C in all cases. The variable T2ΓC was chosen for calculating new melt factors
in the meta-analysis to be consistent with the common practice of using air
temperature data from the glacier near-surface and because the difference
between T2ΓC and T10ΓC was slight.

Air temperature data provenance has been found to affect the consistency
of melt factors in some studies. The data for To were recorded at automatic
weather stations (AWS) that were located on the glacier being studied, on
moraine near the melt observation sites, in a base camp in the same glacier
basin, or in a local government-operated meteorological station, in which
case the data were lapsed to the elevation of the glacier being studied.
Figure 6 shows that AWS location did not have a clear affect on the deviation
of To from perfect agreement with T2ΓC.

The MERRA-2 grid cell fraction of land ice (η) was nil in six instances,
where the glacierized land area is small in reality (Summit Crater Glacier,
Pichillancahue-Turbio Glacier, Lirung Glacier, Eliot Glacier, Miage Glacier

and Ghiacciaio del Belvedere). A weak positive relationship between η and
the magnitude of the deviation between T2 and To was found, but that rela-
tionship did not remain once lapse rates had been applied. The conditions
required for glacierization tend to occur at high elevation outside polar regions,
and if high elevations are uncommon regionally, the difference between glacier
snout elevation and mean regional elevation will be large and the glacierized
area will tend to be small. A statistically significant negative linear relationship
was found between η and the deviation between T2ΓC and To (p = 0.95), as
seen in Figure 7, but there is no physical reason for T2ΓC to be warm biased
where η is large and cold biased where it is small. Speculatively, the pattern
might reflect reduced concentration of observational air temperature data
ingested to MERRA-2 with increasing ice area.

At sites near the coast, MERRA-2 air temperature is more strongly influ-
enced by simulated coastal processes, which might overwhelm any signal of
local interactions between the air and ice, particularly if the ice area is small.
The deviation between T2 and To was found to be slightly higher for glaciers
near the coast than glaciers further from the coast but again, that was corrected
with the application of elevation lapse rates, because the glaciers near the coast
in these data also tend to be at relatively high elevation.
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