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Abs t rac t . The pulsation motions of the limit-cycle model can be described as a superposi
tion of the Fourier harmonics, in the adiabatic layers each harmonics being identified with 
the corresponding standing wave. Near the resonance Tlo/Iii = k the harmonics of order 
k is also identified with the overtone of order /. The spectra of the oscillatory moment of 
inertia obey to the power dependence on the Fourier harmonics order k. In cepheids with 
periods shorter than 9 days the bump is due to the wave packet generated by the second 
overtone, whereas at periods longer than 10 days the bump feature is due to the traveling 
pulse reflected off the stellar core. 

1. Introduction 

The Hertzsprung progression of Classical cepheids is one of the most conspic
uous features which is unmistakably reproduced in hydrodynamic calcula
tions on the theoretical light and radial velocity curves. At the same time the 
nature of the secondary bump is still unknown because the long competition 
between two alternative hypotheses on the nature of the secondary bump 
has not been ended yet. The first of these hypotheses considers the bump fea
ture as the traveling pulse reflected off the stellar core (Christy, 1968; 1975), 
whereas the second one proposed by Simon and Schmidt (1976) assumes that 
the bump is due to the resonance between the second overtone and funda
mental mode. The attempts to reconcile both these hypotheses also did not 
reach their logical completion'(Whitney, 1983; Aikawa and Whitney, 1985). 
Below we try to shed the light onto the problem of the Hertzsprung pro
gression using the fact of the strict repetition of the pulsation motions in 
Classical cepheids. This allows us to calculate the Fourier coefficients for the 
main hydrodynamic variables at each mass zone of the limit cycle model. 
Together with the problem of the Hertzsprung progression we briefly discuss 
also some other features of pulsating stars. In more detail some preliminary 
results of this study are given by Fadeyev and Muthsam (1992). 

2. Radial Properties of Fourier Harmonics 

The most conspicuous feature of the Fourier harmonics of hydrodynamic 
variables is that their radial dependence are very similar to the eigenfunc-
tions of the linear equation of stellar pulsation. For example, shown on the 
upper panel of Fig. 1 are the normalized amplitudes of the three lowest 
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Fig. 1. The normalized amplitudes (upper panel) and the phases (lower panel) of the 
Fourier harmonics of order 1 < k < 3 as a function of the radial distance. 

Fourier harmonics of the radial displacement. This similarity is most promi
nent in the adiabatically pulsating layers where the difference between the 
adjacent maxima and minima is largest. Moreover, the phase of the Fourier 
harmonics is constant between two adjacent amplitude minima, whereas at 
the minimum the phase abruptly changes by -K radian. Such a behaviour of 
the Fourier harmonics is recognized up to the order of k = 8. For higher 
Fourier harmonics this conclusion becomes uncertain due to the limited 
space resolution of the hydrodynamic models. 

So, in the adiabatic layers the pulsation motions can be represented as 
a superposition of the standing waves. However in the radiative damping 
region as well in the outer layers where effects of nonadiabaticity become 
perceptible the amplitude minima and the corresponding phase changes be
come shallower and smoother, respectively. This implies that in the nonadi-
abatic layers the pulsation motions cannot be described in the terms of the 
pure standing waves due to the presence of the progressive wave component. 
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Fig. 2. The spectra of the kinetic energy Exk of the models of Classical cepheids with 
pulsation periods 7.26 and 58.2 days. 

Comparison with the eigenfunctions of the linear equation of stellar pul
sation shows that the Fourier harmonics of order k can be identified with the 
overtone of order / if the period ratio is ITo/II/ = k. When the period ratio 
is not integer and is in the range from k to k + 1, the harmonics of order 
k reveals the features typical for both eigenfunctions of order / and / — 1, 
respectively. When the period ratio becomes closer to one of these integer 
values, the properties of one of the overtones escape, whereas the properties 
of another overtone enhance. 

Using the Fourier coefficients of radius and velocity we can calculate the 
oscillatory moment of inertia J^ and kinetic energy Exk f°r e a c n Fourier 
harmonics of order k. Another conspicuous feature of the Fourier harmonics 
is that in all hydrodynamic limit-cycle models the pulsation spectra of J^ 
and Ejik obey to the power law: Jj, = J\k~VJ and E^k — Eu\k~VE (see 
Fig. 2). Increase of nonadiabaticity in the envelope is accompanied by the 
decreasing slope of the spectrum, so that there is a correlation between the 
spectrum index vj (or V£) and the parameter related to nonadiabaticity 
(e.g. the growth rate of pulsation instability or mass to radius ratio). This 
implies that increase of nonadiabaticity is accompanied by the redistribution 
of the pulsation energy among higher harmonics. 

3. Wave Packets 

The compression wave propagating inwardly from the He+ zone is easily 
traced using the temporal velocity dependence (see, e.g. Christy, 1975), 
whereas the outwardly propagating pulse reflected off the core is often lost 
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Fig. 3. The temporal dependence of the wave packets consisted of Fourier harmonics 
of order 2 < k < m = 15. The dependencies are arbitrarily normalized, r is acoustic 
coordinate of the layer. 

in the helium ionizing region due to its relatively small amplitude. So, it is 
instructive to remove the influence of the high amplitude oscillations of the 
low-order harmonics and to consider the propagation of the wave packets 
consisted of Fourier harmonics of order ki < k < m. 

Shown in Fig. 3 are the temporal dependence of the velocity wave pack
ets consisted of Fourier harmonics of order k > ki = 2. For the sake of 
the graphic representation all. these dependence are arbitrarily normalized. 
As is seen, the wave packets reveal the presence of the both inwardly and 
outwardly propagating pulses. However, though this method of the pulse 
tracing has a certain advantage, the procedure nevertheless remains rather 
cumbersome. In order to avoid such shortcoming, we considered the acous
tic coordinates of most prominent maxima and minima of the wave packets. 
Fig. 4 shows the typical acoustic coordinate - time diagram for the cepheid 
model with the pulsation period of 8.5 day. On this diagram the minima and 
maxima of the velocity wave packets are shown as filled and open circles, 
respectively, the larger circles corresponding to the most prominent maxima 
and minima. So, the traveling pulse can be traced as a sequence of minima 
or maxima located along the characteristics (\dr/dt\ = 1). 

As is seen from Fig. 4, the inwardly propagating pulse is created in the in
stability excitation region at maximum compression (the phase i/IT ~ -0.1). 
Below the instability excitation region the pulse propagates along the charac-
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Fig. 4. The acoustic coordinate - phase diagram for the Classical cepheid model with 
period of 8.5 day. The filled and open circles show the minima and maxima of velocity, 
respectively. The largest circle corresponds to the most prominent maximum or minimum 
of the wave packet. 

teristics and his trajectory is broken only at the acoustic midpoint (r = 0.5) 
due to interaction with the outwardly propagating pulse reflected off the 
stellar core. The reflected pulse also propagates along the characteristics 
but as is seen from Fig. 4, this pulse cannot be responsible for the secondary 
bump since his arrival at the photosphere nearly coincides with the main 
maximum. 

The secondary bump appears due to the wave packet generated in the 
ionizing region at phases from 0.5 to 0.7 (see Fig. 4). The maximum of this 
wave packet coincides with the phase of the maximum of the second Fourier 
harmonics. Calculations show that the bump location changes in phase with 
the maximum of the second Fourier harmonics of the velocity. This implies 
that the secondary bump at periods shorter than 9 days is generated by the 
second Fourier harmonics and the nature of the Hertzsprung progression is 
tightly related to the second Fourier harmonics identified with the second 
overtone. Shown in Fig. 5 are the radial dependence of the phase difference 
between the fundamental mode and the second Fourier harmonics. This 
phase difference becomes close to 7r/2 radian near the resonance center. 
It is interesting to compare the change of the phase difference y'c/i - y?i/2 
with the corresponding dependence of the secondary bump on the pulsation 
period. According to Fadeyev (1982), in the period range from 6 to 9 days 
the phase change of the secondary bump is dip/dlgTl = -1.66. According to 
our models, the corresponding phase change is dp/dlgll = -1.54. There are 
hopes that the agreement will be improved when the more extended grid of 
the models is considered. 

At periods longer than 10 days the secondary bump is due to the out-
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Fig. 5. The phase difference between the fundamental mode and second Fourier har
monics as a function of acoustic coordinate. The numbers near dependencies show the 
corresponding pulsation period. 
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Fig. 6. The acoustic coordinate - time diagram for the Classical cepheid model with 
period of 17.4 day. 

wardly propagating pulse reflected off the core (see Fig. 6). The energy of 
this pulse is distributed among the harmonics of order k > 2, i.e. the bump 
observed before the main maximum is not related to the second Fourier 
harmonics. As in observed light and radial velocity curves, the phase of the 
traveling pulse appearance does not change with the period. 
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4. Concluding Remarks 

Now we can certainly assert that transfer of the pulsation energy from the 
instability excitation region into the inner layers of the envelope is due to 
the traveling pulse created as a superposition of the standing waves. In pop
ulation II cepheids the pulsation spectra are not so steep as in Classical 
cepheids so that the kinetic energy of the second Fourier harmonics identi
fied with the first overtone is nearly a quarter of the kinetic energy of the 
fundamental mode. This implies that the second Fourier harmonics might 
be responsible for the alternating oscillations in RV Tau stars. 
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