
A RESTRICTED INHOMOGENEOUS MINIMUM
FOR FORMS

P. E. BLANKSBY

(Received 10 July 1967)

1. Introduction

Let us suppose that f(x, y) is an indefinite binary quadratic form that
does not represent zero. If P is the real point (x0, y0) then we may define

(1-1) M(f; P) = inf \f{x+x0, y+yo)\,

where the infimum is taken over all integral x, y. The inhomogeneous
minimum of the form / is defined

(1.2) M(/) = supM(/ ;P) ,
p

where the supremum taken over all real points P, need only extend over
some complete set of points, incongruent mod 1.

We may write / in the following way:

(1-3) f{x, y) = - ^ - (dx+y)(x+<py),
dcp—l

where 6, cp are irrational, and A = VD, where D is the discriminant of /.
The form / is said to be I-reduced (inhomogeneously reduced) if it can be
written in the form (1.3) with

(1.4) |0| > 1, \<p\ > 1.

Thus (1.3) is a unique representation of such an /. If in addition we have
0(p < 0, then / is said to be Gauss-reduced.

Let / be any /-reduced form, and P the point (x0, y0), then if

(1.5)

W U

we may define M+{f; P) and M-(f; P) as follows:

M+(f; P) = inf
0(p—l
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where the infimum is taken over all integers x, y, such that dx-\-y-\-£0 > 0,
and

M-(f;P)= inf

where the infimum extends over all integers x, y such that dx-\-y-\-10 < 0.
Suppose we write an integral unimodular substitution as the matrix

(1.6) T =

where p, q, r, s are integers such that ps—qr = ± 1 . If the substitution

x = pX+qY
y = rX+sY

gives
f(x, y) = F(X, Y),

then we will write

(1.7) F = fT

Define the form g(x, y) by

and let Q be the point

(1.9) Q -.

We readily see that

M+(c 0) = inf

and

M-{g. Q) = inf ^l(^+y+^o)(x+%+lo)l
<px-\-y*\-iio<0 I "9^ I

We wish to define a function which is independent of the particular
/-reduced form chosen from an equivalence class of forms, and so after
(1.8) and (1.9) we put

(1.10) M*(f; P) = M*{g; Q) = max {M±(/; P), M±(g; <?)},

and

(1.11) M*(f) = M*(g) = supM*(/; P),
p
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where the supremum is taken over all real points P, such that, after the
definition (1.5), neither 9x-\-y-\-^0, nor x-\-q>y+r]0 represent zero in integers

It is readily seen that M*(f) = M*(h) where / and h are equivalent
/-reduced forms. Thus if q is any form which does not represent zero,
we may define M*(q) = M*(f), where / is any equivalent /-reduced form.

The purpose of this paper is to investigate the supremum of values
taken by the function M* (/), where / does not represent zero, and to evaluate
this function for a certain sequence of equivalence classes of forms. We will
deduce these results from a related problem investigated by Cassels [6]
and Descombes [7], [8].

The major result that we prove is Theorem 7.3, which may be summa-
rized as follows:

A. We have for all forms f that do not represent zero

27A
M*(f)

28V7

B. Furthermore, except for an equivalence class of forms for which
equality holds in A, we have

45V510

The material in this paper is part of my thesis submitted for the degree
of Doctor of Philosophy at the University of Adelaide. I would like to
express my indebtedness to my supervisors Professor E. S. Barnes and
Dr. E. J. Pitman. I am most grateful for their encouragement, guidance,
and helpful criticisms during the preparation of this work.

I gratefully acknowledge the support of an 1851 Overseas Scholarship.

2. The divided cell method

The results of this paper will be obtained by modifications of the divided
cell method, discussions of which may be found in [1], [3], [5] and [10].
The reader is particularly referred to [4], where the notation that we will
need is introduced.

The grid .£?, in the I, ??-plane is again given by

(2.1) * : '
n = y(x+<nt+yo)>

for integral x and y. The vertices of the divided cell Sn are denoted An,
Bn, Cn and Dn, labelled in a clockwise direction. It is essential for applica-
tions in §§ 5, 7, to note that if AnDn has positive slope then An+1 is in the
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opposite quadrant to An, while if AnDn has negative slope then An and
An+1 are in the same quadrant.

The algorithm applied to a grid SC with no points on either axis gener-
ates a doubly infinite chain of integer pairs {an+1, en} which satisfies the set
of conditions given by equation (2.6) of [4]. This enables an evaluation of
M(f; P) in terms of the variables cpn> 8n, fin, Xn, of equation (2.8) in [4].

THEOREM 2.1. If

(2.2)
4| 0 , ^ -

then

where

We also have

M(f;

\K
K

P) =

if;P)

< |0

< \v

miMn
n

= inf
1 <!• <

| _ 1 .

Examination of the proof of this theorem indicates that the Af £*> arise
from the points Cn, Dn, Bn and An, respectively.

Now corresponding to an indefinite form /, and point P, which gives
rise to a grid with no point on an axis, the integer sequence {an+1, en}
generates a sequence of /-reduced forms {/„} given by

/ .(*. y) =

In the above context we call {an} an a-chain of the form f, from the form f0.
Pitman [11] has shown by producing counter-examples that it is not

always possible to obtain all /-reduced forms equivalent to / by taking all
forms that occur in the chains from /. Nor is it always possible to obtain
all chains of equivalent forms of /, by taking all chains from some one
form, even in the case when it is an integral Gauss-reduced form. However,
Pitman [11], [12] has shown the following results to be true.
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THEOREM 2.2. Suppose f is any I-reduced form [given, say, by (1.3)),
and g is any Gauss-reduced form, properly equivalent to f, say,

(2.3) {*. y) =
coco' — 1

(cox+y)(x+a>'y),

with co < —1 , to' > 1. Then every form chain from f contains at least one of
the three forms

/I 1\ / I 0\
g' g[o i)' 8 { - i i j -

(2.4)

If f and g have integral coefficients, then every form chain from f contains
infinitely many occurrences of a form of the triad (2.4), and the distance
between these occurrences [not necessarily the same form) is bounded.

We will use this theorem to obtain an analogous result for quadratic
irrationals.

LEMMA 2.1. Any semi-regular expansion of a quadratic irrational a,
contains a complete quotient aB, such that | a j < 1, where the bar denotes the
algebraic conjugate.

PROOF. This result is readily obtained by writing a as a linear fractional
form in terms of <xn, then solving for «.„, and taking the algebraic conjugate.
We obtain

where the pr, qr are the semi-regular convergents of the expansion (see

[1] p. 213). Now since />B-2?»-i—A.-1&.-2 = l> w e h a v e

1+

By the properties of the convergents pjqn,

Pn
— — = <x.=£5c, hm \qn\ = oo, and \qn_2

^ |?B_i | — 1 .

Thus, provided n is large enough,

< g—2

L _ U 1 + _ 1 _
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THEOREM 2.3. Suppose y>, \y>\ > 1, is a quadratic irrational, and <x is an
equivalent number satisfying

(2.5) <x> 1, — 1 < 5 < 0

then every semi-regular continued fraction expansion of y> of the type we are
considering, has as a complete quotient one of the numbers

(2.6) a, a + 1 , , or their negatives.
1 — a

PROOF. The existence of such an a satisfying (2.5) (usually called a
reduced quadratic irrational) follows from the well known result that to
every binary quadratic form, there exists an equivalent Gauss-reduced
form. We can assume that « > 1 by making the transformation \\ j),
if necessary.

Now, by the previous lemma, every semi-regular expansion of y> leads
forward to a complete quotient <p, say, with the property that \<p\ < 1.
Putting 6 = \\tp, to = 1/5, and co' = a, the forms (1.3) and (2.3) are
equivalent, and multiples of integral forms.

Suppose / is properly equivalent to g, then since g is Gauss reduced,
we may apply Theorem 2.2. Hence every form chain of / in fact leads forward
to one of the forms (2.4), and so any semi-regular expansion of <p (and thus xp)
leads forward to one of co', co'+l, or co'/(l—co') (e.g. by [9] p. 99). This gives
the required result.

If / is improperly equivalent to g, then / L _ jj is properly equivalent

to g, and the same argument implies that every expansion of —cp leads
forward to one of the triad (2.6).

For the purpose of approximating the Mn of Theorem 2.1, we will
require in later sections Theorems 2.4 and 17.1 of [4]. Modifications of the
following result quoted from [1] will enable much chain exclusion to be
done without additional case splitting.

THEOREM 2.4. The value of M(f; P) remains unchanged after the following
elementary chain operations have been applied to the chain pair {an+1, £„};

(i) reversing the chain about some point,

(ii) negating the {sn} chain,

(iii) negating the {an} chain, and alternate members of the {en} chain.

3. Continued fractions to the integer above

If a is irrational and a > 1, then among the infinitely many semi-
regular expansions of a, there is that unique expansion for which an 2j 2
for all n. We will call this the A-expansion of a. Note that an > 2 for infi-
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nitely many n. The ^4-expansion enjoys many analogous properties to the
ordinary continued fractions expansion, but we will not explicitly use
many of these. However, we will require a transformation which will convert
one kind of expansion into the other. We will use the usual notation for a
repeated chain segment (for any type of expansion) by enclosing it in
brackets and subscripting with the number of repetitions. For example

[ a 1 ( a2, • • •, an, (bx, b2, • • -, br),, an+rt+1, • • • ] .

In this notation we will use the convention that s = 0 will imply that the
chain segment is deleted altogether from the expansion.

Wre will consistently distinguish ordinary from semi-regular expansions
by using round and square external brackets, respectively.

THEOREM 3.1. If in ordinary continued fractions

a = (a, r+1, x),
where

then we have

PROOF.

the following

c

a

r ^ 0, x > 1,

A-expansion for

.+ 1 = [a+2, (2

1

1
a + (r+1);

, a. ^ 0,

a+1;

1

X

x+1
r«+l

— a 1 1
I* X

H-i)

1

(x+1)— r

It is readily seen by an inductive argument (or by using the con-
vergents pn, qn as in [11]) that

and the result follows.
Using the convention mentioned above, and inserting an appropriate

(2)0 into the A -expansion, if necessary, we obtain the following result as a
corollary.
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COROLLARY, a = (alt a2, a3, a4, • • •) if and only if

(3.1) a + 1 = [«x+2, ( 2 ) ^ , a3+2, (2)a<_1( • • •].

This relationship enables many of the properties of the A -expansions
to be deduced from the corresponding property of the ordinary continued
fraction.

4. The inhomogeneous approximation problem

Let tp be an irrational number, and a real such that (px-\-y-\-a. does not
represent zero in integers x, y. If ||0|| denotes the distance from 6 to the
nearest integer, then put

(4.1) k+((p, a) = liminf a;||<pz+a||.
x—H-oo

Cassels [6] and Descombes [7] showed that there is a decreasing
sequence of isolated values, taken by k+(cp, a), which approach the limit

1 773868—28547V510
(4.2) — = = 0 • 352 • • •
V ; y 366795

Descombes used the algorithm originally described by Cassels to find
this sequence. The method involved the ordinary continued fraction expan-
sion of <p, together with an associated sequence of integers which arise from
the inhomogeneity of the problem. By means of a modification of the divided
cell method described in § 2, we will reformulate the problem in terms of
semi-regular continued fractions, and then convert Descombes' critical chains
into this context. We will then connect the approximation problem and the
restricted form problem of § 1.

The couples (9?, a) and (<pf, a') are said to be equivalent if there exist
integers p, q, r, s, a, b with ps—qr = ± 1 , such that

(4.3) 9> = tH±l, a> = ( * y ) « + ^ , r<p+s > 0.
r<p-\-s rq)-\-s rcp-\-s

LEMMA 4.1. If {cp, a) and (<pr, a') are equivalent then

k+(cp, a) = k+(cp', «')•

The proof may be found in [7].
By the means of a set of eight integer sequences, Descombes defines

three sequences of real numbers which we shall denote by

{Wr}, {ar} and {yr}, for r ^ - 2 ,
where
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« = ~ ~ T a l = ~ "'O = ~

225—\/510 15—VTlO
^ 4 ' ^ 2340 ' % 10

28 V7 45V510

The whole of the paper [7] is devoted to the proof of the following
theorem.

THEOREM 4.1.

(i) {yT} is an increasing sequence, and if y is given by (4.2), then

lim^oo 7r = V-

(ii) For all r ^ — 2, we have

k+(y,r, <xr) = - •

(iii) / / we exclude all couples equivalent (in the sense of (4.3)) to one of
(yjr, ccr), for —2 ^ r 5S n, then

k+{y>,<x) <k+(y>n)xn) = - •
Yn

(iv) Furthermore, if (y>, a) is not equivalent to (fr, <xr) for some r, then

k+(f,a.) ^ — ,
y

and equality holds for uncountably many couples (y>, a).

This result provides a parallel to the classical results of Markov on
the approximation of irrationals by rationals. The explicit values of the
sequence pair (xpr, <xr) will be of less interest to us for the purpose of this
paper, than the algorithmic development of the pair. As with the homo-
geneous case, since we are dealing with a lim inf problem, only the tail of
this development will be relevant.

Let (}'T be the tail of the ordinary continued fraction development of
\pr. Define the following ordinary continued fraction blocks

(4.4) A' = (4, 1, 1, 1), B' = (4, 1, 1, 1, 1, 1), C = (3, 1, 1, 1).

Then from [7] (pp. 324, 327—330, 351) we may suppose in the notation
introduced above

/Si, = (A'J. 0U = ((B'C'U, & = (B'J
f?r={(A'(B'C')r)00), forr2>l .
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It follows from a well-known result (see [5]) that the ft'r are reduced for all
r ^ —2. We put /9r = # + 1 .

Define the following semi-regular blocks.

(4.6) A = [6, 3], B = [6, 3, 3], C = [5, 3].

Now it is apparent by the transformation (3.1) that the equations (4.5)
hold when the prime is removed, and the external round brackets replaced
by square brackets. Hence

{ • ' Pr=[(A(BC)r)eo], f o r r ^ l .

If {mk} is an arbitrary increasing sequence of positive integers, then
any irrational ip, whose ordinary continued fraction tail is given by

(4.8) (A'(B'C')miA'(B'C')mt • • •) = {A'(B>C')mk)Zx,

together with some corresponding a has

k+(y>, a) = - .
y

Clearly there are uncountably many such ip. The proof of this result may be
found in [7] (p. 349). The corresponding yl-expansion in semi-regular
continued fractions is given by (4.8) with the primes removed from the
blocks.

5. Alternative method for obtaining k+((p, a)

Barnes [2] used a degenerate case of the divided cell method in order
to evaluate k+{cp, a). He considered the grid

(5.1) *=*
t] = <px+y+ix,

where x and y take integral values. Commencing from a particular 'divided
cell', he constructed a one-sided chain of divided cells, and a corresponding
one-sided chain of integer pairs {an+1, sn}, satisfying a similar set of condi-
tions to equation (2.6) in [4]. A detailed discussion of this formulation may
be found in [5]. The main result that we require is analogous to Theorem
2.1. Note, however, that in this case 6n and Xn are rational numbers.

THEOREM 5.1. Using the notations (2.9),

(5.2) k+(<p, a) = lim inf M+

where

https://doi.org/10.1017/S1446788700007291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007291


[11] A restricted inhomogeneous minimum for forms 373

min {M<3>, M<*>}, if ( - 1 ) " ^ • • • an > 0.

In (5.3) we will denote the occurrence of the upper alternative by Xn and
the lower alternative by Yn.

Since the lim inf is required in (5.2), then any behaviour of the chain
which occurs only a finite number of times, will not effect the value of
k+(q>, a), provided that the correct alternative is maintained.

If we reverse the rules for deciding which alternative to take in (5.3)
(define this value to be M~) then we are evaluating \!-r)\ in the left hand
plane.

Put
k~((p, a) = lim inf M~ = lim inf \x\ \\<px+x\\

n—H-°° »-•—oo

(5.4) = liminf x \\q>x—a||
x—H-oo

= k+{<p, —a) .

Suppose that we have two one-sided chains which are identical from
some point onwards. Let the chain for {tp, a) be {an+1, en}, and the chain
for (<p', a') be {a'n+1, /„}, where

an+r+l = am+r+l>

for some m, n and all r 2g 0. Then it follows that

, - - v h+, , lk+{<p',«.'), ii {-l)m+na1---ana[---a'm>0

We will now discuss the application of two of the elementary chain
operations mentioned in Theorem 2.4, and their effect on the value of
k+{q>, a). A prime attached to a variable will signify its new value after the
operation has been applied.

THEOREM 5.2.

(i) / / the sign of the {en} chain is reversed, then

k+((p', a') = k+(<p, —a) = k~{<p, a).

(ii) If the signs of the {an} chain, and alternate members of the {sn} chain
are reversed, then

k+(<p', a') = k+(<p, a) or k+(<p, —a).

PROOF.

(i) W e h a v e dn = d'n, <pn = <p'n, ln = -X'n, Mn = -jt'H. Hence for all

n ^ 0, the application of this operation interchanges the values of

https://doi.org/10.1017/S1446788700007291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007291


374 P. E. Blanksby [12]

and M^, and also M^ and Af®. Consequently, although the pairing in
(5.3) is maintained, the alternatives Xn and Yn are interchanged. The result
follows by (5.3) and (5.4).

(ii) We have 6n = — O'n, #>„ = —<p'n- Suppose that we have en = e'n
{either er = (— l)re'r with n even, or sr= (—l)r~1£^ with n odd). Then
[in = (i'nt Xn = — Xn, and it is easily checked as in (i), that the products
within the alternatives Xn and Yn are interchanged. If, however, sn = — s'n,
then we can show that the products within the alternatives Xn and Yn

are preserved. Now since

sgn ( ( - 1 ) " « X •••«;) = ( -1 ) " sgn ((-l)"fl!«2 • • • an),

we can readily check that after the application of the operation, the rules
(5.3) constantly give either the same alternatives, or the opposite alter-
natives for the two chains. The result follows from this.

REMARK. AS a consequence of this theorem, if we are investigating the
possibilities arising from each of the two alternatives (e.g. the value of
max {k+(q>, ±a)}), then we may arbitrarily choose the sign of some an

and er.

6. The critical semi-regular chains

In this section we will determine the critical semi-regular chains
corresponding to those of Descombes in § 4. Now fi'r is a reduced quadratic
irrational (for each r 3: —2), and so Theorem 2.3 implies that any semi-
regular rth critical chain must belong to the set of semi-regular expansions
that lead forward to one of the numbers

or their negatives. We will later show that the appropriate semi-regular
expansions for the critical chains are those A -expansions of the /?r (or their
negatives) indicated in (4.6), (4.7). In order to obtain this result we will
require the following lemma which considerably restricts the sequence
{an} for any critical chain.

LEMMA 6.1.7/ any one of the following three situations arises in a chain
{«„}.

(i) Kl = K+il = 2 •
(ii) K | = 2, \an+1\ ^ 6, anan+1 < 0 or

(iii) K | > 100,

then for at least one r, such that n—2 fSr 5S«+1, we have
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max {Mf} < — = 0-352 • • •

PROOF. By the remark following Theorem 5.2 we may suppose that
an > 0 and Xn ^ 0.

(i) Suppose an+1 = 2, then since Xn < 1, \/un\ < 1, we consider the
following cases of (2.2) and (5.3).

(a) If 6n <2,<pn< 2, then since |AJ < | 0 J - 1 , K | < | y j - l we have

(b) If 0B > 2, <pn > 2, we have

/̂O n ^ 3 •

(c) The other two cases follow readily by a combination of the methods
of (a) and (b).

Consequently in any critical chain we cannot have two consecutive
two's of the same sign, infinitely often, and so |0n| > f-, \<pn\ > •§ for all
large n.

Suppose an+1 = — 2, then since we may suppose

| < 0. < 3, | < | n | < 3,

and \fin\ < \<pn\ — 1, we have from (2.2) and (5.3) at Xn:

4(0.190,

(0.-1) |y.l fl.-i JL
2(0JJ + l) 20 3 >

atYn:

min {MS*, M»»}

< max
4(0.19.1

Q,(lyJ-i) \
'2(0>.| + 1)/

4{3(f) + l}•To]
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(ii) By part (i), we may suppose that —6 ^ an+1 ^ —3, and
0 ^ K < !• Now at Xn: examination of the proof of Theorem 2.4 in [4]
reveals, in fact that

at Yn we consider the two cases.
When nn ^ 0, then since dn < 3, \<pn\ > 2, we have

When /*„ > 0, we consider the following three subcases,

(a) If \<pn\ < 4, then

(b) If \<pn\ > 4, and 0 < ftn ^ 1, then

9

(c) If 4 < \<pn\ < 7, and ^ n > 1, then as in (a)

This concludes the case (ii).

(iii) The bound 100 in the enunciation of this lemma is just a convenient
number, which could be reduced to 6 with considerably more effort.

When 0 jg Xn 5S O-390n, since we may suppose \q>n\ > f, then
l^nfnl > !50, and so we have, again as in the proof of Theorem 2.4 in [4],

M± (g«+*Jk.l (l-39)(150) J_
" 4(flb»|-l) 4(149) y"

When AB > O-390n, we have since fin_t > Xn—2,

/*n_i An en 2

Vn—1 ^nfn—1 Vn—\

• (Q-39)(a.-l)-2

~̂> 37 -^ O*^fi

Now since |0n_1| > •§, and <pn_x > 100, we may assert in all cases
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2(|0n_1|pn_1-l) •

(1-5)(65) 1
2(149) y '

We have now concluded the proof of the lemma. As a consequence, the
situations (i), (ii) and (iii) cannot occur infinitely often in any semi-regular
critical chain.

THEOREM 6.1. The tail of the critical {an} chains consists of the A-expan-
sions of the f$r, as given by (4.6) and (4.7).

PROOF. We have already noted that the critical chains {an} are among
those semi-regular expansions which lead forward to one of

or their negatives.
Suppose that {an} is an arbitrary semi-regular chain which leads forward

to fi'rl{\—fi'r), for some r, r ^ —2. Now by (4.4) and (4.5), we have fl'r > 4,
and so

-A— < -f = f2, 2, 21.
fit -m ^ O L » 7 J

Thus any such chain contains consecutive twos, and so, by the previous
lemma, the complete quotients ±P'r/(l — f$'r) may occur only a finite number
of times.

Suppose then that we have a chain which leads forward to either fi'r
or /Sr, then we show that only their A -expansions from this point on can
be in the tail of any critical chain. Suppose that we have expanded ft'r or fir

in continued fraction to the integer above, so that it equals, for some
k>0,

where the aT will be 3, 5 or 6.
We will investigate the effect of changing the ak to ak—l, to give

r - - «
\a1>a2, • • •, ak—

Consider the following cases.
(i) ak = 3. Formulae (4.6) and (4.7) imply that a > 2, and hence
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— <2
a-1 < •

Since ak— 1 = 2, then Lemma 6.1 implies that this change cannot be made
infinitely often in a critical chain.

(ii) ak = 5. Again by (4.6) and (4.7), a = [3, 6, • • •], and using the
notation described in §3, and the transformation (3.1) twice, we obtain

« = [3, (2)0, 6, • • •]
and

a - 1 = (1, 1, 4, • •• ) ,
whereby

- i - = (o, l, l, 4, • • •),
a—1

and

Since the 3 leads to consecutive twos, then this chain segment cannot
be part, infinitely often, of a critical chain. However, if we choose the other
alternative, and change the 3 to 2, then we will again violate Lemma 6.1.

(iii) ak = 6. If a = [3, 6, • • •], then the result follows exactly as in
part (ii). If not, then from (4.6) and (4.7), we readily see that
<x = [3, 3, a, 3, • • •], where a is either 5 or 6. Following the method of part
(ii), we obtain

— - = (0, 1,1, 1,1, a - 2 , 1, • • • ) ,

implying

- ^ - = [2, 3, 3, (2)O_3, 3, • • •].
a— i

Clearly we cannot leave (infinitely often) the consecutive threes, since they
lead to consecutive twos, nor can we change the first 3 to a 2, without
violating Lemma 6.1. Also, using the same method, we find that

[3, (2)O_3, 3, • • •] = [2, - ( a - 1 ) , • • • ] .

which contravenes Lemma 6.1, for a critical chain.
Thus we have shown that we cannot deviate from the A -expansion of

/Sr (or (i'r) infinitely often, without implying, for the corresponding <p, and
any a (such that cpx+y+a does not represent zero),

k+(<p, a) < — .
7
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Hence, as a consequence of Theorem 2.3, the tail of any critical chain
must be given by those semi-regular expansions (4.7) (or their negatives).
Associated with each of these a-chains will be a corresponding e-chain
which we will now determine.

LEMMA 6.2. The tail of the e-chain for critical chains

(i) is alternating in sign if {an} has fir as its tail,

(ii) has constant sign if {«„} has —/9r as its tail.

PROOF. By Theorem 5.2, (ii) follows from (i), and so we may suppose
an > 0 for all n > N. From the form of the relevant expansions if n is
large enough, we have 0n<pn > 4, and so, as in the proof of Theorem 2.4
in [4],

Since an+1 > 0, then by (5.3) the cases Xn and Yn will alternate with
successive values of n; hence so too must the sign of Xn, in order to maintain
the products containing the factors (

COROLLARY. The appropriate products, for large enough n, are

(6.2)

This follows immediately from (2.2) and (5.3), and the previous lemma.

LEMMA 6.3. In any critical chain, for n large enough, whenever

an+i = 3, 5, or 6,
then

|ej = 1, 1, or 2,
respectively.

PROOF.

(i) When an+1 = 3, the result follows (2.6) in [4], since sn must be
odd.

(ii) When an+1 = 5, by (4.7) and Theorem 6.1, we have a chain segment

[• • •, 6, 3, 3, 5, 3, 6, • • •].
If \sn\ = 3, then

i j > 3H > 3-25,

https://doi.org/10.1017/S1446788700007291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007291


380 P. E. Blanksby [18]

and | 4 | <2, 6n> 2-5, q>n < 4-75. Thus by (6.2),

(0B+3)(yw-2-75) < (5-5) (2-5)

V - l ) 4{(2-5)(4-75)-l}

1

Y

Consequently, \en\ = 1.

(iii) When an+1 = 6, we have the chain segment

[• • •. 3, 6, 3, • • •].

If \en\ = 4, then as in case (ii), |/<J > 4-25, |AJ < 2, $>„ < 5-75, and
6n > 2-5, implying

(5-5) (2-5) J.
n ^ 4 { ( 2 5 ) ( 5 7 5 ) l } '

If sn = 0, then by the method of proof of Theorem 2.4 in [4], we have,
since dn+1 > 5-5, cpn+1 > 2-5,

M± < iz^i±r^iiii^i <

(6-5)(2-5)

The lemma now follows in full.
Consequently, if n is large enough, the en associated with an+l in a

critical chain is automatically fixed by these two lemmas. We may therefore
consider the blocks A, B, and C of (4.6) to be blocks of integer pairs. We
may now state the following result which follows Theorem 4.1.

THEOREM 6.2. Suppose we have a one-sided chain pair which has as its
tail the A-expansion of f}r, for some r ̂  —2, given by (4.6) and (4.7), [or any
chain obtained from such a chain pair by application of one of the operations
of Theorem 5.2); then for the corresponding cp and a, exactly one of k+{cp, a)
or k+(<p, —a) has the value \jyr [of § 4), while the other has a value not
exceeding - j .

7. Supremum of values taken by M*(f)

If / is any /-reduced form given by (1.3), and P is a point such that
the corresponding grid J?', given by (1.5) and (2.1), does not have a point
on either axis, then we readily see that
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M+(f; P) = inf {|f
M-(f; P) = inf {|f

M+(g; Q) = inf {|f

M-(g; Q) = inf {|f
>?i; (f.»?)6-

>?l; (£»?) e =

Sf, f <

y,v >

0}

0}
0}

0}
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Because the rules for moving from cell to cell by the algorithm are the
same for the modification of § 5 as for the general method, so too the rules
for determining which pair of vertices is in the right hand plane remain
unaltered. Thus if A „ is in the first quadrant for some n, then the sign of
an+1 completely determines the quadrant of An+l, and the sign of an deter-
mines the quadrant of An-1. Now A 0 is in the first quadrant, and so we may
evaluate M+(f; P) by the following straight forward extension of (5.3).

It is clear that

(7.2) M+(f; P) = inf M+(f; P),
n

where

M+{f; P) = min {M®, M<*>}, and for n > 0,

min {M^\ M^}, if ( — l ) " ^ ^ • • • « „ < 0,(7.3) MUf; P) = , _ _ f , e > ,f ( _ 1 ) 1 l f l i f l i ...an>0>

+ if m = /

~nU> ' i min {Ml3', M ^ } , if ( - l ) -«o«- i ' " ' «i-» > 0-

Again we shall refer to the upper and lower alternatives at the nth
step as Xn and Yn, respectively. By consistently reversing the rules (7.3),
taking Xo as a reference point (i.e. M^(f; P) = min {M^, M^]}), we may
calculate M~(f; P). The chain for a grid defined by g and Q may be deter-
mined from the following lemma, suggested by Theorem 2.4.

LEMMA 7.1. / / the doubly infinite chain pair {an+1, en} is reversed about
some point (e.g. n = 0), the chain obtained corresponds to the grid derived
from the form g, and the point Q of (1.8) and (1.9).

PROOF. For a step n in the original chain, there corresponds a step n'
in the resultant chain such that

dn = 9V. <Pn == dn'.

Consequently, the groupings as a whole of the four products M^
are preserved in the new chain (for some other value of n) but their order
is not. In particular M^ and M®> are interchanged. Now as we have
noted in § 2 of this paper, M™, M%\ M™, Mf are derived from Cn, Dn,
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Bn, An, respectively. Thus at the alternative Xn, in the reversed chain,
we are evaluating a minimum involving the coordinates at Cn and Bn,
vertices of the «th divided cell in a grid associated with the original chain.
Similarly, Yn, corresponds to an evaluation at An and Dn. The lemma may
then be checked to hold in all cases, the result following, from (1.8), (1.9),
(2.2), and (7.3).

This lemma enables the calculation of M±(g; Q), and hence of M*(f; P).
In the previous section of this paper, certain results were stated which

involved the lim inf of one-sided chain pairs. We will now deduce from
them, various results on this restricted infimum of two-sided chains. We
will use the following obvious extension for doubly infinite chains of a
notation already used.

[ooK. «2. • • ". an)> • • "I-

Consider the following chain pairs, where {en} is chosen in accordance
with Lemmas 6.2, 6.3, and the blocks A, B, C are given in (4.7).

(74) c_i :

C r : [ M ( 4 ( B C ) f ) J , f o r r ^ l .

THEOREM 7.1. If the chain pair Cr (r 2g —2) corresponds to a form fr,
and a point Pr = Pr(xr, yT), then

A
(7.5) max (M±(/r; Pr)} = - ;

Yr

furthermore, if

(7-6) gr = fr ( J J ) , and Qr = Qr(yr, xr),

then

(7.7) mm{M±{gr;Qr)}^-,

where equality holds if and only if the chain Cr is symmetrical {identical with
its inverse). If equality does not hold, then we may replace the constant in
(7.7) by A/y.

PROOF. It is clear from Theorems 17.1 in [4], and 6.2, that if the infimum
in the definitions of M±(fr; Pr) were replaced by lim inf, then (7.5) would
hold. But since the chains Cr are totally periodic, there are only a finite
number of different values for the M^{fr; PT). Consequently, the infimum
will equal the lim inf, and so (7.5) follows.
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By Lemma 7.1, the chain pair associated with gr and Qr will be the
reverse of the chain Cr. In the case C_2 and Co (the only symmetrical Cr),
equality will clearly hold in (7.7). But for r = — 1 , and r ^ 1, Cr is not
symmetrical, and its reverse provides a new periodic chain, and hence any
right hand chain obtained from this chain by truncation can never be one
of the semi-regular critical chains. Thus equality in (7.7) would contradict
Theorem 6.2, as would equality with any constant exceeding Ajy.

COROLLARY. M*(fT; Pr) = (A[yr).

This is immediate upon (1.10)

THEOREM 7.2. M*{fr) = (A/yr).

PROOF. We may suppose that fr{x, y) is given by (1.3) where

tp = pr, 6= 1/fc

(p being the algebraic conjugate of q>. Then the chain for fr, and some point
S, such that the corresponding grid has no point on an axis, must contain
a semi-regular expansion of q>, as a right hand chain (together with an
associated e-chain). Now the theory of § 6 clearly demonstrates that the
A -expansion of <p must be taken if the infimum of the chain is to exceed
Ajy. Hence the lim inf of the chain does not exceed A/yT, implying

M±(fr;S) ^ - ,

for all such 5. Similarly for gr and points S' with the required property,
we obtain

S ' ) f £ - .

The result follows by (1.11) and the previous corollary.
The following lemma will enable us to construct from a two-sided chain

with a certain infimum, a one-sided chain with an arbitrarily close lim inf.

LEMMA 7.2. If H is a finite set of integer pairs, and {an+1, en} any infinite
sequence whose elements are taken from H, then for every integer j > 0, there
exists a block containing j integer pairs of H, and this block occurs infinitely
often in the sequence {an+1, en}.

PROOF. The lemma is clearly true for / = 1. Assuming the truth of
the assertion for / = k, we have that there exists a block of k members of
H which occur consecutively in the given sequence, infinitely often. We
may suppose these blocks are well separated, by taking an infinite subset,
if necessary. These blocks can be followed only by an element from a finite

https://doi.org/10.1017/S1446788700007291 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700007291


384 P. E. Blanksby [22]

set, and so one such element must occur infinitely often. Thus the result
holds for / =

THEOREM 7.3. For all forms that do not represent zero, we have

Suppose that f is not equivalent to the form /_a of Theorem 7.1, then

_, i , , . ^ A 359A
M*(f) <: —• =7-1 45V510

where equality holds for forms equivalent to f_1.

PROOF. Suppose C is an arbitrary doubly infinite chain, not identical
to C_2, and let / and P correspond to C. Then C falls into at least one of
the following three types.

(a) C does not contain the subchain [• • • A^].

(b) C = [WAgg], where W is a one-sided chain which does not contain
the subchain [XA • • •].

(c) C = [^AVAgg], where F is a finite chain segment not equal to
segment An, for any positive integer n.

Assume M+(f; P) = pA. Then for all n, we have

Mt(f; P)=Mt^ pA.

Assume, for an appropriate e, that

(7.8) 0<e<p •.
7-i

After Lemma 6.1, we have that |0J and \q>n\ are both bounded in the
interval (1-5, 101). Thus we may apply Theorem 17.1 in [4], and the
constant implied by the order notation is independent of the particular
chain segment under consideration. There therefore exists an integer m,
with the property that the respective products belonging to the centre
of a common chain segment of length 2m from two chain pairs, differ by
no more than e.

Now in the cases (a) and (b), C must contain some chain segment
different from A, which occurs infinitely often. Consequently, by the
method of Lemma 7.2, there exists a block, D say, of length 2m and con-
taining this segment, which occurs in C infinitely often. In the case (c),
let D = A2m.

Consider the one-sided chain C*, given by
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(7.9) C*:

where in the cases (a) and (b), Z is a chain segment which separates two
blocks D, and in the case (c) put Z = V. (Note that in the former cases
we may always pick Z so that it separates two blocks D which commence
at the same alternative, either Xn or Yn.)

Since every step in the chain C* (far enough along) is the centre of
a chain segment of length 2m which also appears in C, then it follows from
(5.3), (7.3), (7.8) and the choice of m, that, for some cp and a corresponding
to the chain C*,

k+(<p, on) ^ p—e >

But, by construction, C* is not one of the critical chains of Theorem
6.2, and so we have a contradiction. The theorem now follows.

8. Further results for M*(f)

It would be of interest to know whether M* (/) takes only the discrete
values Ajyr, r ^ —2, greater than A/y. In the previous section we have
seen that for certain equivalence classes of forms {/,}, we have M* (fr) = A/yr.
But it is possible that there are other doubly infinite chains for which
M*(f)>A/y.

To enable such results to be obtained, it seems certain that we would
need lemmas of the type Lemma 28 ([7], p. 349), whereby the products
at certain 'privileged' points of the following chain segments are compared.

• • • A ' { B ' C ' ) T A ' { B ' C ' ) k A ' •••, O^k^k',
• • • A'(B'C')r,A'{B'C')k,A' •••, 1 ^ r < r'.

It is probable that similar results would follow through for the semi-regular
algorithm, by the same type of argument used in [7] (p. 326—355). If this
were so, then the following chain

for corresponding / and P, would have

M+{f; P) £ — for k > r, and lim inf M+(f; P) = - , for k < r.
y |n|-*oo yr

The question as to whether A/yr is approached from above or below
could be settled by detailed, but straight-forward analysis of the type
needed for Lemma 28 of [7]. We will not undertake such an investigation
in this paper, but it seems reasonable to conjecture that the Ajyr are, in fact,
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the only values taken by M*(f) which exceed A/y. For example, if {r,}
is a finite, strictly increasing sequence of positive integers, with k members,
then it would be consistent with [7] to conjecture that the chain

has infimum equal to
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