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Generalized Solution of the Photon
Transport Problem

Yu-Hsien Chang and Cheng-Hong Hong

Abstract. The purpose of this paper is to show the existence of a generalized solution of the photon
transport problem. By means of the theory of equicontinuous Co-semigroup on a sequentially com-
plete locally convex topological vector space we show that the perturbed abstract Cauchy problem has
a unique solution when the perturbation operator and the forcing term function satisfy certain con-
ditions. A consequence of the abstract result is that it can be directly applied to obtain a generalized
solution of the photon transport problem.

1 Introduction

The motivation of this study is due to the problem of photon transport in a cloud.
Meri Lisi and Silvia Totaro [5] consider the photon transport problem in a cloud that
occupies a convex region of space with a localized source inside (for example, a star).
They assume that the photon transport phenomenon is one-dimensional; that is, the
photon number density U depends on the space variable x, on the angle variable p,
and time ¢. They also assume that the nebula is bounded by the two surfaces x = a(t)
and x = b(t). In order to avoid a moving reference system, it is convenient to assume
that the surface at the left end is fixed, i.e, x = a(t) = 0. Hence, the boundary
plane x = b(t) moves with speed b(t), where b(t) is a continuously differentiable real
function of ¢t € [0, +00) such that

|B(t)| < sup \B(t)| < 00.
>0

The following figure gives a sketch of the situation:

Vacuum | Nebula | Vacuum
(PartI) | (PartII) | (PartIII)

Each region is characterized by some different total and scattering cross sections.
However, in each region, the relative cross sections can be considered constants; in
particular, in the vacuum the total cross section and the scattering cross section are
very small, because the particle density is low. Hence, in Parts I and III, if we denote
the total cross section and the scattering cross section by &, 75, respectively, then we
may assume g > g, > 0. On the other hand, in Part II, one has that o > o, > 0,
where o, o, are the total cross section and the scattering cross section, respectively.
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Moreover, since the particle density in the nebula is higher than that in the vacuum,
we may assume that o > & > 0 and o, > 7, > 0.
The photon transport equation in interstellar space can be described as follows:

(11) QU(X,’U,,t) = 76,“‘2(](967.“’ t) - C[L/T\ + (U - &\)X(xyt)]U(xa }L,t)
ot Ox

+ C[as + (Us - ’a\s)x(x, t)]
1
X [ k(p, p U (e, p' )dp” + qod (x — x0) X (x, 1),
—1

Vx € (—o0,4+00), € (—1,1), andt € (0, +00),

where x = x(x,t) is the characteristic function of the interval [0, b( - )], qo is a con-
stant, x € [0, b(¢)], and 6(x — xp) is the Dirac delta function. The scattering kernel
k(p, ') is a positive C*°-function with compact support with respect to each vari-
able in (—1, 1) such that

1

(1.2) k(py ') = k(p' o), | k(e p")dp = 1
-1

and

7

0 , k
rk(,u,,u)t‘ gEVrGNO(NO:{O,l,Z,...}),

(1.3) 5

where k is a suitable positive constant. They chose o, small enough such that
(1.4) ko < 0.

However, since the derivative of  is not defined at x = 0 and x = b(t), in order
to avoid this difficulty, we consider a mollified version X(x,t) of x(x,t), which is
defined as follows:

X(x,t) =0, Vx € (—00,0] U [b(t), +o0),
~ 2 3
X(x, t) = ——sz + —sz7 Vx € (0,¢);
€ €
X(x, 1) =1, Vx€[g,b(t) —el;

R0 1) = — 2 [b(6) — xI' + 2 [b(e) — 217, Vx € (b(t) — &, bl1).
15 )

In the preceding equations, € is a positive constant such that ¢ < b(0), with
b(0) # 0 (see [6] for details). Equation (LI is supplemented by the initial condition

(1.5) U (x, it,0) = Uy(x, p) for x € (—o0, +00) and for pp € (—1, 1),
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where Uy is a given positive function. In order to study (LI)—(T.5), Lisi and Totaro
first considered the Banach space X = L!(R x (—1, 1)) endowed with the norm

[e'e) 1
|\f\\:[ dx[l|f<x,u>|du Vfex.

They defined the operators S: D(S) C X — R(S) C X and J: D(J) C X — R(J) C
X by

$fs.) = —enflep) f € DIS) C X,

1
T (e n) = / Kyt i) f e, p )’ S € X,
~1

where D(S) = {f € X : Sf € X}. Moreover, they set

o(t) =0+ (0 —)X(x,1),
o(t) = 6'\5 + (os — 6\5)5(\(9"7 1),

Q(t) = QOé(X - xO)y(xa t)7

where o(t) and o4(t) are functions from [0, +00) into L*°(R), and Q(¢) is considered
as a function from [0, +00) into X.
Hence, the problem (LI)-(T.5) can be transformed into the form

(16) UM =[S — oI +co()]IUE) +Q), Vit > 0;
' U(0) = Uy,
where U(t) = U(-, -,t) is considered as a function from [0, +00) into X. It is

reasonable to assume that the number of photons inside the cloud changes slowly
in time, i.e., %U(t) is small. For the same reasons they assumed that o(¢) = o,
os(t) = 05, Q(t) = Q, and b(t) = b, do not depend on time ¢. They transformed the
initial value problem into the equation

(1.7) U(0) = U,.

{;tU(t) = [S—col+co UM +Q, V1> 0;

However, they found that the initial value problem (I.7) has no solution in the
Banach space X = L!(R x (—1,1)), since §(x — x9) does not belong to X. To solve
(L7 they had to consider a more general space. It is for this reason that we consider
the perturbed Cauchy problem in a sequentially complete locally convex space rather
than in a Banach space. They solved equation (7) for the special case %U(t) = 0.
The new system

[S—col+co,JIU()+Q(t) =0, Vi>0
U(0) =U,
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is the so-called quasi-static equation in the space X = D/(R x (—1,1)), where X
is the space of all linear continuous functionals on the space D consisting of all test
functions. We will give further descriptions of these spaces in Section 3 and show
that the initial value problem (L.7) has a unique generalized solution for the case
%U(t) # 0.

Throughout this paper we will use the following notations. We let X be a se-
quentially complete locally convex space (sclcs) under a family of seminorms I'. We
denote by £(X) the space of all linear continuous operators on X and by E a collec-
tion of bounded subsets of X such that (UMEB M) =X.ForeachBe€ Eandqg €T,
a seminorm pg, on L(X) is defined by

PBq(L) = sup{q(Lx) : x € B} for every L € L(X).

Then the family {pg, : B € E, q € I'} induces a locally convex topology for £(X)
(e.g., see [4, p. 131]).

A family  of linear operators on X is equicontinuous if for each p € T', thereis a
continuous seminorm g = g(p) € I' such that p(Lx) < g(x) forall L € Jallx € X.
For each p € I" and a linear operator L on X, we define a corresponding seminorm
for the linear operator L as

p(L) = sup{p(Lx) : p(x) < 1}.
A linear operator L on X is said to be p-continuous if
p(L) = sup{p(Lx) : x € X with p(x) < 1} < oo.

A linear operator L € L(X) is said to be I'-continuous if it is p-continuous for every
p € I'. Let L1(X) denote the space of all I'-continuous linear operators on X and let
Br(X) be the subspace of L1 (X) whose elements L satisfies

[ILllr = sup{p(Lx) : p € T',x € X with p(x) < 1} < c0.

Br(X) with the norm || - ||r is a Banach algebra. With these notations, we have the
relation Br(X) C Lr(X) C L(X). For any K € Br(X) we define the operator ¢’X by

i
k=3 ‘TKI’ for eacht > 0 and ¢’ = I fort = 0.
i=0 L+

Definition 1.1 Let X be an sclcs. The family of continuous linear operators
{T(t)};>0 on X is called a strongly continuous Cyp-semigroup if the following three
conditions hold:

@ TO) =1,

(i) T@#)T(s) =T(t+s)foralls,t > 0and

(iii) T(t)x — xast | O, for everyx € X.
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We call a family of linear operators {T(f) },>¢ equicontinuous if for each continuous
seminorm p on X, there exists a continuous seminorm g on X such that p(T(¢)x) <
q(x) forall t > 0 and x € X. Such a family {T(¢)};> is called an equicontinuous
Co-semigroup. Moreover, if there exists a number § > 0 such that {e*B’T(t)}tZO is
equicontinuous, then it is called a quasi-equicontinuous Cy-semigroup. A semigroup
{T(#)}+>0 is said to be locally equicontinuous if for any fixed 0 < T < oo, the
subfamily {T(¢) : 0 < ¢ < T} is equicontinuous.

Let 3 be an equicontinuous family of linear operators on X and let I be a calibra-
tion for X. We define, for each p € T', a continuous seminorm p’ on X by

p'(x) = sup{p(Lx) : L € Sor L =1} forevery x € X.

This implies that p’ > p for each p € T'. Choe [1] showed that the new calibration
I'" = {p’: p € I'} induces the same topology on X.

If {T(t)};>0 is an equicontinuous Cyp-semigroup on X, then Choe’s result allows
us to define a new calibration I'' on X such that ||T(¢)||r» < 1forallt > 0. In
this case, {T(¢)};>¢ is called a I''-contraction Co-semigroup. In fact, we have the
following proposition.

Proposition 1.2 If {T(t)};>o is an equicontinuous Co-semigroup on X, then there is
a new calibration T on X such that {T(t) };>¢ is a I''-contraction Cy-semigroup.

Proof LetI'' be a new calibration on X that is defined by

p'(x) = sup{p(T(t)x) : p(x) < 1} foreach p € T.
>0

Then for every p € T’

p'(T(t)x) = sup{p(T(s)T(t)x) : p(x) < 1} = sup{p(T(t +s)x) : p(x) < 1}

s>0 s>0

= sup{p(T(k)x) : p(x) < 1} < sup{p(T(k)x): p(x) <1} = p'(x).
k>t k>0

This shows that ||T(¢)|[p» < 1forall# > 0, and hence {T(¢)},>¢ is a I'’-contrac-
tion Cy-semigroup. ]

For convenience, if no confusion arises, we will still denote this new calibration by
T" instead of .

Definition 1.3 Let X be a locally convex linear space. Then any convex, balanced,
and absorbing closed set is called a barrel. X is called a barrel space if each of its
barrels is a neighborhood of zero.

Let X be the subspace of X such that Xr = {x € X : SUP e p(x) < oo} We
defined || - ||r on X by [|X[|r = sup,c p(x) for every x € Xr. Then || - [|r is a norm
on Xp for which (Xr, || - ||r) is a Banach space. (For details, see [7, Proposition 2.5]).
Since Xt is a Banach space we can consider the Bochner integrable function on Xr.
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Let A; be measurable set on [0, T] with the measure u(A;) < oo for all i =
1,2,...,mand U A; = [0, T]. We say that a function f: [0, T] — Xr is a simple
measurable function if f = 21:1 XiXa,> Where x; € Xr.

Naturally we may define fOT fdp = 3" xip(A;) for every simple measure func-
tion f. A measurable function f is called Bochner integrable (or just integrable for
simplicity) if there exists a sequence of s1mple measurable functions { f, } that con-
verge almost everywhere to f so that fo Il fu = fwllr dp — 0 and the integral fo fdu
is then defined as lim,_, o fo fudp.

Choe showed that if A generates an equicontinuous Cy-semigroup on X and B €
Br(X), then (A + B) generates an equicontinuous Cy-semigroup on X ([1, Corollary
5.4]). In fact, by means of some estimates of resolvent operators, Choe proved a more
general result for both A and B that depend on ¢ and satisfy certain conditions (see
[1, Theorem 5.3]). However, for discourse on the photon transport problem we need
only to consider the linear operators A and B that are independent of ¢. By choosing
a suitable calibration on the sclcs X, we can prove Choe’s Corollary 5.4 in a different
approach in Section 2 (see Theorem[2.1)).

Instead of solving the photon transport problem (L.6) directly, we consider the
inhomogeneous term Q(t) is not a constant function and 4 ZU(t) # 0. We consider
the abstract initial value problem

- 4(u(t)) = Au(t) + f(t),t > 0
. u(0) = x,x € D(A),

where A is the generator of a equicontinuous Cy-semigroup and f: [0, T] — Xr
is a Bochner integrable function. We will show that the abstract initial value prob-
lem has a unique mild solution if A is a generator of the quasi-equicontinuous
Co-semigroup and f is a Bochner integrable function on Xr (see Theorem[2.3]).

2 Main Results

Theorem 2.1 Suppose {T(t)}o<i<7 is a locally equicontinuous Cy-semigroup on a
barrelled space X generated by a closed linear operator A. If B is a closed linear operator
on X with ||B|r = M < oo, then there exists a locally equicontinuous Co-semigroup
{S(t) }o<i<T generated by (A + B).

Before proving Theorem 2.1 we state the following lemma, which was proved in
[2, Corollary 4.11].

Lemma 2.2 Consider the abstract Cauchy problem

(2.1) {i(u(ﬂ) = Au(t),t > 0;

u(0) =x,x € X.

The following are equivalent.

(1)  The operator A generates a locally equicontinuous semigroup.
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(ii) There exists a unique mild solution of 2Z.I) for all x € X.

Although this lemma was proved in the Fréchet space, it can be easily extended to
the general locally convex space. We leave it to the interested reader.

Proof of Theorem[2.1] By Proposition[[.2} we may assume that {T(¢) }o<;<T is a lo-
cal I'-contraction Cy-semigroup. Let

(2.2) So)x=T)x for0<t<T,xeX

and define S, (¢) inductively by
t
(2.3) S,a)x= / T(t — s)BS,(s)xdsfor0 <t < T,x € Xandn=0,1,2,....
0

From this definition it is obvious that for each x € X andn > 0,t — S,(¢)x is
continuous mapping from [0, T] into X. From (2.2) and (2.3) we see that

151 Oxe = | / T(t — $)BT(s)xds||r
0

g/ Tt — s)BT(s)x||rds
0

t
< |1Bx]lr / ds = t]|Bx]lr
0

forany 0 < t < T and for any x € X. This implies that ||S;(t)|lr < ¢t||B||r. By
induction, one can show that

£k
| Se(®)|lr < —||B||I& foreveryk € Nand0 <t < T.

~ k!
Let
o0
(2.4) St)x=>_S,(t)x foreveryx € Xand0 <t < T,
n=0
then

o S T
IS < 132 Skl < D IS®)lr < 3 Bl = €.
k=0 —o k=0 K-

This implies that the series (Z.4]) converges uniformly in B (X) under the uniform
operator topology on 0 < t < T. Therefore for each x € X, t — S(t)x is continuous
mapping from [0, T] into X. According to and ([2.3) it follows that for any x € X
and any r € [0, T], S(¢)x satisfies the equation

S(H)x=T(t)x + / T(t — s)BS(s)xds.
0
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This shows that S(¢)x is a mild solution of (I3). To prove the uniqueness of the
solution we let {V'(¢) : 0 < t < T} be a family of operators for which + — V (¢)x is
continuous for every x € X, and it satisfies that

t
V(t)x =T(t)x+ / T(t — s)BV (s)xds for every x € X and for every 0 <t < T.
0

Estimating the difference of S(¢) and V' (¢) yields

1S = Vsl < / 1Bl [1(S(5) = V()]s
0

Gronwall’s inequality implies that S(t) = V (¢) for every t € [0, T]. According to
Lemmal2.2} {S() }o</<7 is alocally equicontinuous Cy-semigroup generated by (A +
B). [ ]

To solve the photon transport problem (L.€]), where the inhomogeneous term Q(¢)
is not a constant function, we should consider the initial value problem

(2.5) {dd(f) = Au(t) + f(t),t > 0;
u(0) = up € D(A);

where A is a generator of an equicontinuous Cy- semigroup and f is a Bochner inte-
grable function on Xr. Instead of proving that (Z.5) has a mild solution directly, we
prove the more general case that (2.5) has a mild solution as long as A is the generator
of a quasi-equicontinuous Cy- semigroup. In fact we have following theorem.

Theorem 2.3 If A is the generator of a quasi-equicontinuous Co- semigroup {T(t) }+>o
and f is a Bochner integrable on X, then [2.5)) has a unique mild solution given by

u(t) = T(t)uy +/ T(t —s)f(s)ds.
0

Moreover, if f is continuous, then u(t) is a solution of [2.5)).

Proof If u is a solution of (2.3)), then the Xt valued function g(s) = T(¢t — s)u(s) is
differentiable for 0 < s < t and

%g(s) = —AT(t — s)u(s) + T(t — s)u'(s)

= —AT(t — s)u(s) + T(t — s)Au(s) + T(t — s) f(s)
=Tt —s)f(s).

Moreover, if f is Bochner integrable on Xp, then T(t — s) f(s) is also Bochner
integrable. Integrating it from O to ¢ yields

u(t) = T(H)ug +/ T(t —s)f(s)ds.
0
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To see that u(t) is a solution of (2.5) when f is continuous, we need only to show
that u(t) satisfies (2.5)). Since

u'(t) = }lllirg)%(u(t +h) — u(t))
t+h
= }llli‘% % ( T(t+ h)ug + /0 Tt +h—s)f(s)ds — T(t)ug

_ /0 T ) F()ds)

= lim +(T(¢ + By — T(0)u)
1 t+h t
+ lim 7( / T(t+h— s) f(s)ds — / T(t —s) f(s)ds)
h 0 0
— AT()ug + lim ~(T(h) — I) / T F(s)ds
h—0 h 0

1 t+h
+ lim ; / T(t+h—s)f(s)ds
t

h—0
— AT()up + A / T(t — 5)f(s)ds + f()
0

= Au(t) + f(1),
we see that u(t) is differentiable on (0, c0), and it satisfies (2.3]). [ |

3 Generalized Solution of the Photon Transport Problem

To find a generalized solution of the photon transport problem, we let X be an sclcs
and {T(t)};>0 C L(X, X) be an equicontinuous Cyp-semigroup. Also, let X! be the
dual space of X endowed with the seminorm pp, = sup{q(Lx’) : x’ € B} for
every L C L(X!,X!), and let T*(¢) denotes the dual operator of T(¢), where B is an
arbitrary bounded subsets of X’. Then the family {T*(¢)};>¢ of linear operators are
in L(X/, X/) and satisfy the semigroup property

T*()T*(s) = T*(t +s), T*(0)=1I",

where I* is the identity operator on X/. Notice that { T*(t) };>¢ is not a Co-semigroup
in general. However, T. Komura [3] showed the following theorem.

Theorem 3.1 Let X be an sclcs such that its strong dual space X/ is also sequentially
complete. Let {T(t)};>0 be a Co-semigroup with the generator A. Let us denote by X*
the closure of the domain D(A*) in the strong topology of X!. If T*(¢) is the restriction
of T*(t) of to X*, then {T*(t)}1>0 C L(XT,X") and {T*(t)}1>0 is a Co-semigroup
with the generator A™, which is the largest restriction of A* with domain and range in
X*. In particular, if a Co-semigroup {T(t) };>o is locally equicontinuous (resp. equicon-
tinuous), then {T*(t)},>0 is also locally equicontinuous (resp. equicontinuous).
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Now we are able to show the existence of a solution for the photon transport prob-
lem (L.6). As we mentioned in Section 1, it is reasonable to assume that o(t) = o
and o,(t) = o, are independent of ¢ and (L&) may be rewritten as

o) {iU(f): [S—col+co JIU(t) +Q, Vit >0,

We will show that problem (3.1 has a unique generalized (or weak) solution U*
in some space )~((: D'(R x (—1,1))). To describe the space X, we use following
notations: Let {K,,}2°, be a sequence of compact subsets of R x (—1, 1) such that
Ki CK,C---andR x (—1,1) = U, Ky, and let D, be the set

D, (Rx (—1,1)) ={¢p € C°(R x (—1,1)) : supp ¢ C K,,}(m € N)
with the calibration of seminorms I' = {p,, »;m € N, € N§} such that

(3.2) Pmal(@) = sup [(0"9)(x,p)|, ¢ € Dk,

(2,1) EKp

Here, N is the set of all nonnegative integers. Let the space D = D(R x (—1,1))
be defined by

D=DRx (-1,1)) = | Dk, (R x (—1,1)).
m=1
Then D is a Fréchet space with topology induced by the calibration of seminorms

(3.2). Since every Fréchet space is a barrelled space, this implies that D is a barrelled
space. Let X = D' be the dual space of D.

It can be shown that (see e.g., [8]) X = LY (Rx (—1,1)) C X = D’ in the following
sense. We say that f € D’ can be identified with f € L! if

o] 1
(f, ) = / [ [ e mote mdu] dx v e D.
—0o0 -1
We also extend the operator T = col — S — co, ] to the operator

T:X=D' —-X=D'

such that

(oo}

(Tf,0) = (T1,0) = / [ /_ TS (e du] dx 6 € D.

— 00
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Now we define the operator Ton D by

-~ dp(x, !
To(x,p) = cop(x, p) — cu% - cos/ k(p, ") p(x, p")dp' Vo € D.
—1

Then we have the relation <T]7, o) = (f, To) Vf € D', ¢ € D.In other words, T is
the adjoint of T. Let L denote the operator % +T and let L* denotes its formal adjoint
of L. We say that a distribution U* is a generalized solution of B1) if { L*U*, ¢) =
(U*, Lo) = (Q, ¢) is satisfied for every ¢ € D.

Let the operator A, B, C be on the space D as follows

0
AQD(X, M) = _C/’LTa

Bo(x,p) = cos [ k(p, 1" )p(x, p')dp', and

—1
Cop(x, p) = cop(x, p).

Meri Lisi and Silvia Torato [5] showed that there exists a I'-contraction Cy-semigroup
{W(#)};>o0n D that is generated by —A, and B and C are in B (D) with the operator
norm ||B||r = cok and ||C||r = co, respectively.

By Theorem 21} there exists a locally equicontinuous Cop-semigroup {V (¢)}:>¢
on D generated by ~T. Let {V*(t)}+>0 be the Cy-semigroup on D’ generated by
~T. According to Theorem Bl {V*(#)},>¢ is also locally equicontinuous on D’
since T (the adjoint of f) is an automorphism on D’, i.e., the domain of Tis X (see
[5, Remark 3.2]). Clearly, Q belongs to Df.. This implies that (3.I)) can be considered
the special case f(t) = Qforallt € [0, T]. Then by Theorem 2.3] we conclude that
(B has a unique generalized solution U*.
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