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One purpose for studying the gas flow in barred spiral galaxies is 
to use the observed distribution and kinematics of the gas as a tracer 
of the underlying gravitational field. By comparing model hydro­
dynamical calculations with observations of actual systems, one would 
like to define three basic properties of barred galaxies: 

1) The bar strength. How significant is the deviation from axial 
symmetry in the region of the bar, measured by some parameter such as 
q t, maximum aximuthal force in terms of the mean radial force 
(Sanders and Tubbs, 1980). 

2) The mean radial distribution of matter. Clearly in a system with 
large deviations from circular motion, the "rotation curve" gives no 
direct information on the radial mass distribution. 

3) The angular velocity of the bar. Where is the co-rotation radius 
(or Lagrange points) with respect to the bar axes? Are other principal 
resonances present? 

Deriving these properties through the use of numerical hydro­
dynamical calulations is not unambiguous because the detailed results 
do depend upon the kind of numcerical technique used - specifically 
upon the magnitude of the unphysical numerical viscosity (G.D. van 
Albada, this volume). We can, however, place some definite constraints 
upon these properties by looking both at numerical hydrodynamics and 
the character of periodic orbits in non-axisymmetric potentials. 

It is obvious that the hydrodynamical equation of motion written in 
Lagrangian form without the pressure term is the equation of motion of 
a particle. This means that in the absence of pressure forces (thermal, 
turbulent, viscous or magnetic) a gas streamline is an orbit, and 
steady state flow in some frame would correspond to simple non-looping 
periodic orbits. But, in fact, it is possible to make a much stronger 
statement. Suppose that we consider an ensemble of particles moving on 
a variety of trajectories essentially filling the volume of phase space 
allowed by the energy or Jacobi constant. And now suppose that we allow 
particles to be "sticky" in the sense that over some characteristic 
interaction distance, random velocities are reduced; that is, we 
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introduce a 'viscous1 force which resists distortion of a fluid 
element. Then such viscous dissipation forces particle motion toward 
the simple periodic orbits, or, in the language of modern dynamics, the 
periodic orbits appear as attractors in the phase space of the 
Hamiltonian. An attractor, A, is a region of the phase space surrounded 
by a neighbourhood U such that any particle within 1[ approaches A as 
t -> « (Treve, 1978). Attractors can only arise in dissipative systems; 
in a conservative system a particle trajectory which is not periodic 
obviously cannot become periodic. In a galactic potential (axisymmetric 
or non-axisymmetric) there is one trivial attractor for a dissipative 
medium - the center of the galaxy. But I suggest here that for all 
practical purposes (t 1/H) periodic orbits also arise as attractors 
in the 4-dimensional phase space of the problem. 

We do not provide here a general proof of this statement (see 
Melnikov, 1963 and the discussion by Lake and Norman, 1982), but do 
present two striking numerical examples. 

The first involves an ensemble of particles distributed uniformly 
through the phase space of the Henon-Heiles potential (Henon and 
Heiles, 1964). If dissipation is added by an algorithm which reduces 
the velocity dispersion over some interaction distance, then it is 
found that within several orbit periods essentially all particle 
trajectories penetrate a surface of section within one of the small 
'islands' about a periodic orbit. The periodic orbit "attracts" 
particle trajectories from a wide domain of the phase space (Sanders, 
1982). The second example involves gas flow in the potential of a weak 
bar. Here there is only one simple family of periodic orbits present 
inside co-rotation, the parallel family, or in the notation of 
Contopoulos and Papayannapoulos (1980). These orbits are shown in Fig. 
la. The gas flow in this potential calculated by a time-dependent 
numerical hydrodynamical code (G.D. van Albada, this volume) is shown 
in Fig. lb. It is seen that gas streamlines inside co-rotation are 
practically identical to family X^. Moreover, because family X± is 
simple (no self-crossing or looping) there are no shocks or gas inflow 
toward the center. 

a . b. 

Fig. 1 
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But what if the lowest order periodic orbits are not so simple? 
What if all families of periodic orbits are self-crossing or looping. 
For example, if the bar becomes sufficiently strong, higher energy 
orbits of family develop loops well inside co-rotation as is 
illustrated in Fig. 2a. Clearly in this case the fully developed gas 
flow cannot be along these orbits since streamlines cannot cross. The 
flow may be attracted to these orbits but something else must happen, 
and, of course, what happens is that shocks develop. In Fig. 2a we see 
a number of particles moving in these periodic orbits of family 
some of which loop. Pure particles, with no dissipation would stay on 
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Fig. 2 

such paths forever. But now if we add a bulk viscosity by means of an 
algorithm described by Lucy (1977) we find, after a short time that the 
rings of particles develop into the form shown in Fig. 2b (van Albada 
and Sanders, 1982). Particles on looping orbits attempt to cross 
through one another, lose energy and descend more abruptly toward the 
center where they collide with particles on lower energy orbits. Or in 
fluid dynamical terms a disturbance at the ends of the bar resulting 
from the attempted looping, propagates downstream as shocks lying 
roughly along characteristic curves; that is, linear shocks develop 
along the leading edge of the bar which may be identified with the 
linear off-set dust lanes seen in some SBb galaxies. This is 
effectively the same physical idea proposed by Prendergast in 
unpublished work more than 15 years ago. 

Therefore the appearance of shocks in the gas flow in barred 
spirals may be identified with the development of loops in the basic 
parallel found of periodic orbits, X^, and this only occurs in strong 
bar potentials, q t > 30%. This tells us that in at least some barred 
galaxies, the bars are not a small density wave but a major deviation 
from axial symmetry. Moreover, it is found that the shocks are stronger 
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and more off-set if the perpendicular family of orbits is present deep 
within the bar; that is, if the two inner resonances are present within 
the bar. This tells us that the mean radial distribution of matter in 
some barred galaxies must be strongly centrally condensed with respect 
to the bar. However, the bar cannot lie within two inner resonances 
because then the gas seems to be preferentially attracted to the 
perpendicular family of orbits (X 2); i.e., the gas distribution is 
elongated perpendicular to the stellar bar. This means that, for a 
reasonable radial mass distribution, co-rotation cannot be far from the 
ends of the bar (within one bar semi-major axis). 

In summary, the clear relationship between the numerically 
calculated gas response and the character of the simple periodic orbits 
tells us that there are some barred galaxies which deviate strongly 
from axial symmetry, which are centrally condensed, and which have a 
rapidly tumbling bar figure. 
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