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1. Introduction

Our starting point is the differential equation

y" + A(z)y = 0 (1.1)

where A(z) is a transcendental entire function of finite order, and we are concerned
specifically with the frequency of zeros of a non-trivial solution /(z) of (1.1). Of course it
is well known that such a solution f(z) is an entire function of infinite order, and using
standard notation from [7],

for all beC\{0}, at least outside a set of r of finite measure. The same conclusions hold
if y" is replaced by a higher derivative in (1.1). Denoting by a(g) the order of an entire
function g, and by k(g) the exponent of convergence of its zeros we have the following,
proved in [1, 3]:

Theorem A. Let A(z) be a transcendental entire function, and let fuf2 be linearly
independent solutions o/(l.l).

(a) Suppose that a(A) is finite but is not a positive integer. Then max {^(fi), A(/2)} is
not less than a(A), and is infinite ifo(A)<\.

(b) Suppose that X(A) < a(A) < oo.

Then for any k}±2 and any non-trivial solution f(z) of

ym + A(z)y=0

we have

We remark that it is conjectured that under the hypotheses of Theorem A, part (a),
we always have
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456 S. B. BANK AND J. K. LANGLEY

The following result was proved in [4], and gives conditions under which this stronger
conclusion holds:

Theorem B. Let A(z) be a transcendental entire function of finite order p with the
following property: there exists a set H g R of measure zero such that for each real 6 not
in H either

(i) r~N\A(reie)\^ao as r-> + oo for each N>0, or

(ii) ]r\A(reie)\dr<+oo, or

(iii) there exist positive real numbers K and b, and a non-negative real number n (all
possibly depending on 6), such that (n + 2) < 2p and

\A(re?*)\£Ki» for all r^b.

Then if fi and f2 are two linearly independent solutions of

y" + A(z)y = 0

we have

This result is sharp in that (see [4]) there exist pairs of polynomials P(z), Q(z), whose
degrees dP, dQ respectively satisfy dQ + 2 = 2dP, such that the equation

has two linearly independent non-vanishing solutions. We mention two corollaries of
Theorem B.

Corollary A. Suppose that A(z) is an entire function of finite order with zero as a Borel
exceptional value. Then given any two linearly independent solutions fi,f2 of

y" + A{z)y = 0

we have

max{A(/1),A(/2)} = oo.

Corollary B. Suppose that P(z) is a non-constant, even polynomial with real coefficients
and with positive leading coefficient. Then all non-trivial solutions f of

y" + epy = O
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satisfy

= oo.

Corollary B is obtained in [4] by coupling Theorem B with the Sturm theory for
oscillation of real solutions of linear differential equations on the real line. The following
problem is posed in [4], with reference to Corollary B: if P(z) is any non-constant
polynomial, must every non-trivial solution /(z) of

y" + epy = 0

satisfy X(f) = oo? In the present paper we settle this problem and rather more, and our
methods extend to higher order equations and have a bearing on Corollary A. We shall
prove:

Theorem. Suppose that k^.2 and that /4(z) = n(z)e P ( z ) ^0 where the entire function
n(z) and the polynomial P(z) — anz" +••• +a0 satisfy:

(0 o(Tl)<n;

(ii) there exists 90eU with 5(P, 60) = Re(an e
ine°) = 0 and a positive e such that U(z) has

only finitely many zeros in

|argz-0o|<e.

Then ifn^.2 and Q is a polynomial whose degree dQ satisfies

dQ + k<kn,

all non-trivial solutions f of

)y = 0 (1.2)

satisfy A(/) = oo. The same conclusion holds ifn=l and Q is identically zero.
We remark that the theorem is sharp at least in the case k = 2 in view of the examples

mentioned after Theorem B. We do not know if condition (ii) is sharp; its presence
serves to facilitate certain asymptotic representations for the solutions of (1.2). However
we do have the following corollary to our theorem:

Corollary. / / A(z) is a transcendental entire function of finite order having finitely
many zeros, all non-trivial solutions of
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satisfy

A(y) = oo, for any k ̂  2.

The authors would like to acknowledge valuable conversations with Robert Kaufman.

2. Preliminaries

We need the following definition.

Definition. An R-set is a countable union of discs whose radii have finite sum:

We remark that the union of two R-sets is an R-set and that (see Hayman [6], also
[4]) the set of 6 for which the ray re'e meets infinitely many discs of a given R-set has
measure zero.

Also, for a polynomial

with a, P real, we define, for each real 8,

d(P, 6) = a cos nd-p sin nO

and denote the degree of P by dP.

3. Lemmas needed for the theorem

Lemma 1. Assume the hypotheses of the theorem. Then there is a constant c>0 such
that the asymptotic relation

A'{reie)
A(reie) cr"'1 as r-»oo (3.1)

holds uniformly for all real 0 satisfying \G — flo|£2e/3. In addition, for any real 8 satisfying
O<|0—0o|^e/2 the following are true:

(a) if8(P,8)>0, the function log|/l(refe)| is increasing on an interval [<x(0), +oo) and we
have

\A(reie)\^xp&(P,dy) (3.2)

there;

(b) ifS(P,8)<0, the function \og\A(rete)\ is decreasing on an interval [a(0), +oo) and on
that interval

(3.3)
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Proof. We may write

where FI^z) is an entire function of order less than n, and setting p = (o(Tll) + ri)/2
standard estimates yield the inequality

(3.4)

for all C on |(| = K and for all R outside a set of finite linear measure L. Now, if z = re'e,
with \0—0o|^2e/3 and r sufficiently large, it follows from hypothesis (ii) of the theorem
that all the zeros of II t are at a distance at least <5|z| from z for some fixed <5>0. For
such a point z with r> 1, since (3.4) must hold on some circle |(| = K, with R belonging
to [(L+2)r, (2L+3)r], a routine application of the differentiated form of the Poisson-
Jensen formula [7, p. 22] shows that

for a positive constant c2 independent of z.
Since

(3.5)

"-1, (3.6)

we obtain (3.1) from (3.5) and (3.6).
Now assume that 0 satisfies O<|0-0 o |^£ /2 . Then by definition of d{P, 0) we have

\A(reiB)\ = \nl(re>e)\ exp(*P, 0)r"). (3.7)

For r sufficiently large the point £ = re'9 is sufficiently distant from the zeros of II x that
(3.4) holds with R = r, and so (3.2) and (3.3) hold.

Now, from (3.5) we see that if ro<r are both large then, setting i/'(s) = log|n1(se'8)| we
have

)) |gc2(r-r0)r ' ' - 1 . (3.8)

It then follows that |^'C)| = O(r" " l ) as r-> + oo. Since by (3.7) the function <f>{r) = log | A{reie)\
satisfies the equation

) (3-9)

the rest of the lemma follows easily.

Lemma 2. Assume the hypotheses of the Theorem with e sufficiently small that
5(P,0)=fc0for O<|0 — 0O|<£, and assume that R(z) is analytic and satisfies

\R(z)\^K\z\M (3.10)
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on the sectorial set Ao given by

where p0 is large, and K and M are non-negative. For a fixed aeA0 define H(z) in Ao by

lk] (3.11)

for some fixed branch of A(z)llk in Ao. Then for some P i > 0 we have the following
representation for H(z) in the sectorial set At given by

|argz-0o|ge/4, |z|^Pi:

there exists an analytic function S(z) on Ax satisfying

log+|S(z)| = 0(log|z|) (3.12)

in Ax, and such that for any 6 with O<|0—0o|ge/4, we have, as r-*co,

H(reie) = S(reie) + c(0)A(reiB)1/k + O(r~2) (3.13)

if d(P, 9) > 0, where c(0) is a constant, while if 6(P, 0) < 0 we have

H(reie) = S(reie) + O(r~i). (3.14)

Proof. In view of (3.1) we may assume that p 0 is so large that

A(z)
(3.15)

on AQ. We choose Pi>p0 so that there is a fixed constant e! such that 0 < e x < l and,
for each z in Au the closed disc of radius ex\z\ and centre z is contained in Ao.

We now define two sequences (Rm) and (Sm) of functions analytic on Ao by the
equations

RX=RAIA\ S^R'u (3.16)

and for m ^ 1,

Rm+1=SmA/A', Sm+l = R'm+l. (3.17)

Now let zo = reie, with O < | 0 - 0 o | ^ e / 4 , belong to At. In view of (3.10) and (3.15), a
simple induction using Cauchy's formula for derivatives shows that for each m = l,2
we have, on \z — Zol^ejzo^""1, the estimate

z |
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where Km is a positive constant independent of z0. Integration by parts yields, for each

]R{t)A(t)-llkdt = \ -kR

•c j (3.19)
\_a "

where

S*=-kR1-k
2R2 — --krRm.

We now choose m so that M — nm g — 3. Now if Sm = 0 we need only set S = S*, while
if Sm does not vanish identically it remains only to estimate the last integral in (3.19). In
the latter case, if z = rew lies in Al (3.18) and the choice of m imply that

K \ \ C \ - 3 (3.20)

for all C in Au and it follows from (3.2) that if d(P, 6)>0, the integral

converges, where the path of integration is eventually along the ray argz = 0. Thus

] ] (3.21)

and in view of (3.20) and the fact that, by Lemma 1, the function |/4(se'e)| is eventually
increasing as s-^ + oo, we see that the integral on the right-hand side of (3.21) is
bounded by

The representation (3.13) now holds with S = S*.
Now suppose that z = rem lies in Au with 5{P, 6)<0, If r is sufficiently large the point

z* = N/re'fl also lies in Ax and we may write

} SmA -"kdt = 1 SmA ~ >'* dt + J SmA ~ l'k dt (3.22)
a a z* '

E.M.S.—F
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where as before we integrate eventually along the ray argz = 0. By Lemma 1, |/4(sei9)| is
eventually decreasing, so that in view of (3.20) and (3.3) we have, provided that r is large
enough,

where Bx is a positive constant while

Since

^Km\A(reie)\-l'k ]

log\A(se")\~5(P,6)sn

(3.23)

(3.24)

(3.25)

as s-» + oo, using (3.7) and observing that (3.4) will hold with R = s and ( = se'fl, we
deduce from (3.23) and (3.24) that (3.14) holds, again with S = S*.

Lemma 3. Suppose that A(z) is analytic in a sector S containing the ray z = re'e and
that, for some non-negative K and n, and positive b we have

for all r^.b. Then ifk}£2, any non-trivial solution w(z) of

satisfies

log +1 w(reie) | ^ M( 1

for some M>0 and for all r^b.

Proof. Take L>0 and set

= exp(](Ltnyikdt\

Then (see e.g. [7, p. 73]) we clearly have

vik)(r)/v(r) = Lrn + O(ra-1)^ (L/2)r"

for all r^b, provided L is large enough. Now set h(r) = w(reie) so that h solves the
equation

hw(r)-B(r)h = 0,
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where B{r) = — eikeA{reia). Choose a positive constant c such that

\h(b)\^cv(b),

\h'{b)\^cv'(b),

Then, since

for r'Z.b, provided L is large enough, Herold's comparison theorem [8] applies and we
deduce that |Jt(r)|gci;(r) for all r^b and the lemma is proved.

Lemma 4. Suppose that a(z) is analytic in a sector S containing the ray rew and
suppose that fc^2 and

]rk-i\a(reie)\dr<oo.

Then any solution w(z) of

satisfies

as r-> + oo.

Proof. We may write

w(z) = cl+c2z + ---+ckz
k-i-——-] (z-s)k-la(s)w(s)ds.

This gives, for z = reiB, with r> 1, and with h{z) = w(z)rl~k,

\h(z)\^O(l)+~^-]tk-1\a{teie)\\h{teie)\dt
(K I). 1

and we now apply Gronwall's lemma [5, p. 35].
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4. Proof of the theorem

The outline of the proof is as follows. Assuming that (1.2) has a non-trivial solution /
with A(/)<oo, we obtain, using the first-order differential equation satisfied by ep, a
representation / = WeG, where W is analytic and of finite order of growth in a sector.
Using the asymptotic relations of Lemmas 1 and 2, and the growth estimates of
Lemmas 3 and 4, we then obtain a contradiction.

Suppose then that f=Tlle
h is a non-trivial solution of (1.2), where k, A and Q are as

in the statement (and Q = 0 if <r(A) = 1), and suppose that I"^ has finite order. Now (1.2)
gives

(hy + Pt-iW + A + Q^O, (4.1)

where Pk-l(h') is a differential polynomial of total degree at most (k — 1) in h',h",... and
with coefficients which are polynomials in ni /n1 , . . . ,n (* ) /n1 , having constant
coefficients. Clunie's lemma (see [2]) shows that a(h') is finite. Differentiating (4.1) we
obtain

k(hf-1h" + Qk.l(h') + A' + Q'=O, (4.2)

where Qk-i(h') is again a differential polynomial of degree at most (k— 1) whose
coefficients are polynomials in U'1/TIu...,Tlf&l)/Tl1. Multiplying (4.1) by A'/A and
subtracting from (4.2) we obtain

O (4.3)

where

R = h"-(A'/kA)h'. (4.4)

From hypothesis (ii) and (3.1) R is analytic and of finite order of growth on a
sectorial set given by |argz — 90\^2e/3, \z\ large. Since Ylu A and h! are all of finite
order, standard estimates yield an AT>0 such that for /=l , . . . , fc+l ,

|xyi4|+|ny/n1|+|tf>+1)//i'|=o(|z|JV) (4.5)

at least outside an /?-set, and thus (4.5) holds as z = rc'9->oo along the ray argz = 0 for
all 9 outside a set f̂  of measure zero (see Section 2). By writing R = h'(h"/h'—(A'/kA))
we see that if O^E^ and r is large enough, the inequality |/j'(re/fl)|gl implies that
\R(reie)\^rN+l. On the other hand, solving (4.5) for R, we see that if 6^EU if r is large,
and \h'(rew)\>\, then \R{reie)\^rv for some constant U. It now follows from the
Phragmen-Lindelof principle that for some V>0, the inequality

\R(reie)\^ry a s r - + oo (4.6)

holds uniformly in 0 for \9 — 90\^e/2.
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In view of (4.4) we have, for a suitable point a, and a constant K,

h'(z) = A(z)llk ] R(t)A(t) -ilkdt + KA(z) l / \ (4.7)
a

Now (4.6) implies that the hypothesis of Lemma 2 is fulfilled, and we obtain an analytic
function S(z) on the sectorial region Av given by

which satisfies (3.12), (3.13) and (3.14), where

H(z) = A(z)llk ] R(t)A{t) ~1/k dt. (4.8)
a

We now define W(z) on A x by the equation

f(z) = W(z)A(zY exp (h(z) - ) S(t) dt\ (4.9)

where <x = (l — k)/2k. It follows easily from (3.12) and the representation f = Il1e
h, and

hypothesis (ii) of the Theorem, that W(z) is analytic and of finite order of growth in Av

Now, in view of (3.12), (4.6) and (3.1), it is easy to see using Cauchy's integral formula
that in a sectorial set A2 given by |argz — 0o|^e/8, |z|^p2> w e have, for each m=0, l,...,k,
and for some q > 0,

|S(m)(z)| + |R(m)(z)| + \(A'(z)/A(z)Ym)\ ^ \z\q. (4.10)

Now (4.5) and the remark in Section 2 imply that for 9 outside a set E2 of measure
zero, and for j = 1,..., k,

for r^r(9). (4.11)

It now follows from (4.9), (4.10), (4.11) and the representation f=Tl1e
h, that if 0<£E2

and \8—0o|ge/8, then for j=l,...,k, we have

\VfinirdB)IW{rJ*)\£i*' for r^r(9) (4.12)

where M is a fixed constant.
We choose 0U 92 such that O<|07-0o |<e/8 and

O, 5(P,02)>0, and 92£E2. (4.13)

We now assert that

W(rei0l)-+O a s r -oo . (4.14)
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We set d = dQ if G#0, and d = 0 otherwise, and note that by (3.3) and (4.13), it follows
that if <J(A) > 1 then Lemma 3 or Lemma 4 applies and we obtain

log+\f(rei$t)\ = O(rs) as r->+oo, (4.15)

where s = (d + k)/k<a(A). On the other hand, if a{A)=\ (and hence Q = 0), Lemma 4
applies and we obtain

| | asr-> + oo. (4.16)

However, by (3.14), (4.7) and (4.8) we have as z-»oo on atg z = 0u

h'(z) = S(z) + KA(z)llk + O(\z\-1) (4.17)

so that using (3.3) we have, for r sufficiently large,

re'9'

tyre*1)- J S(t)dt = 0(logr). (4.18)
a

Thus from (4.9) we have, for some b>0,

= f(reWl)A(reieiYk~ lv"0(r*), (4.19)

as r-> + oo. But then, using (3.3), (4.15) or (4.16) and the fact that s<a(A), we obtain
(4.14) from (4.19).

We now assert that there is a finite, non-zero constant J such that

W{remi)^J asr->oo. (4.20)

We remark that once this claim is established, (4.20) and (4.14) together provide a
contradiction as follows. Since 8t and 62 satisfying (4.13) can both be chosen arbitrarily
close to 90, the finite order of W in A implies, using the Phragmen-Lindelof principle,
that W is bounded in the sector between the two rays reWl, re'02 which in turn implies
that J = 0 (see [9, p. 179]), which is impossible.

To establish (4.20), we write / = WeG, where, using (4.9),

G' = h'-S + a(A'/A). (4.21)

Substituting in (1.2) we obtain an expression of the form

Ww/W + X Fji W^/W) + A + Q=0 (4.22)

where each F,- is a polynomial in G',...,G(k\ with constant coefficients, satisfying the
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following conditions:

for ;^2 , Fj has total degree at most {k-2); (4.23)

F^kiGV-' + Bi; (4.24)

Fo = (O* + (Kk - l)/2)(G')k - 2G" + B2 (4.25)

and where the total degrees of Bj and B2 are at most k-2. We need estimates for the
derivatives of G' on the ray arg z = 92 which we obtain as follows.

From (4.7), (4.8) and (3.13) it follows that for each 9 sufficiently close to 92 there
exists a constant cx(9) such that as r-» + oo,

G'(reie) = Cl{6)A{reie)llk + a(A'(reie)/A(reie)) + O(r " 2 ) . (4.26)

We take a positive 5 so small that the interval \9 — 92\<5 lies in \9 — 0o|<e/8 and such
that 5(P, 9)^dQ>0, say, on this smaller interval. Now G'A~llk has finite order of growth
as z->oo in the sectorial set A3 given by

|argz-02|<(5, |z |^p3 ,

and from (3.2), (3.1) and (4.26) we see that for each 9 in \9-92\<S,

G'(reie)A(reie)-llk^Cl(d)

as r-* + co, so that by the Phragmen-Lindelof principle cl(6) = c1 is independent of 9 in
this interval. Now Cj ^ 0 for otherwise we should have, for each j = 1 , . . . , k, and for some

for z lying in |argz — 92\^d/2, | z |^p4 , using (4.26), (4.10), the Phragmen-Lindelof
principle and Cauchy's estimate. Substituting in (4.22) and using (4.12) we would obtain

as r-> + oo, contradicting (3.2). We deduce from (4.26) that in the sectorial set A2 given
by |argz — 92\^5/2, \z\^.p5 we have

*)) (4-27)

where |<£(z)|^|z|~2, and, for some M2>0, using (4.10),

|GO>(r«"*)| g |z|Mj|G'(rci9j)| (4.28)

for each j = 2,...,k, and for all r ^ p 6 , say.
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We proceed to obtain (4.20) using the estimates (4.27) and (4.28). Now, if r ^ p 6 and
z = reWl, we have, using (4.12), (4.22H4.25) and (4.27) and (4.28),

H1 (4.29)

where ck = k{k —1)/2 and

Itf^lglzl^dG'OOl)*-2 (4.30)

for some M3 > 0. Now, from (4.26), we may write

(G')k = c\A + kc\- lA(k~ 1)lk(a(A'/A) + O(r-
2)) + H2 (4.31)

and

(G')*-2 = c*r2A(*-2)/* + tf3, (4.32)

where for some M4>0, and for all z = re'Bl with r ^ p 7 , say

\H2(z)\^\z\M\\G'(z)\)k-2 (4.33)

and

\ \ \ \ M \ \ 3 (4.34)

unless fc = 2, in which case H3 = 0.
We need a more precise estimate for G" than (4.28). Now (4.26) and the Phragmen-

Lindelof principle imply that G' — c^A1^ is analytic and bounded by a power of \z\ in a
sector about the ray re'02, so that Cauchy's formula for derivatives yields

(4.35)

for z = reWl and r^p8, say, where

|H4(z)|^rM' (4.36)

for some M5>0. Substituting (4.31), (4.32) and (4.35) in (4.29) we obtain

'f- \ W'/W)+(c\ + \)A + kd[-lAik-l)lk{a.{A'IA) + O(r~2))

= Hl-H2. .
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Using (4.27), (4.30), (4.33), (4.34) and (4.36) we obtain, noting that ck = k{k -1)/2,

where

\H5(reie2)\ SrM6{\G\reiei)\f-2 (4.37)

for some M6>0 and all r^.pg, say.
But <x = (l —k)/2k and we therefore have

2) = H5. (4.38)

Now, (3.2), (4.27), (4.37) and (4.12) imply that ^ + 1=0. The same estimates now
imply that (W/W) = 0(r-2) in (4.38) and (4.20) is proved.
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