A CLASS OF ALMOST COMMUTATIVE NILALGEBRAS

HYO CHUL MYUNG

1. Introduction. The purpose of this paper is to investigate a class of nonassociative nilalgebras which have absolute zero divisors. If a nilalgebra is nilpotent, it, of course, possesses an absolute zero divisor. For the nilpotence of nonassociative nilalgebras, the situation however becomes quite complicated even in the finite-dimensional case. For example, Gerstenhaber [3] has conjectured the nilpotence of commutative nilalgebras. While Gerstenhaber and Myung [4] prove that any commutative nilalgebra of dimension $\leqq 4$ in characteristic $\neq 2$ is nilpotent, Suttles [9] discovered an example of a 5dimensional commutative nilalgebra which is solvable but not nilpotent. Thus this is a counterexample to the conjecture of Gerstenhaber. All algebras considered are finite-dimensional over a field and nilalgebras are assumed to be power-associative. If A is a finite-dimensional nilalgebra, it is well-known that $a^{\mathrm{dim} A+1}=0$ for all $a \in A$. A nonzero element a of an algebra A is called an absolute zero divisor if $a A=A a=0$. In terms of the right and left multiplications in A, this is to say $R(a)=L(a)=0$ on A. If A is a commutative nilalgebra, all $R(x), L(x)$ are nilpotent, which is proved by Gerstenhaber [3] in characteristic 0 and by Oehmke [7] in characteristic >2. In the noncommutative case, this result still holds for many of the well-known noncommutative Jordan nilalgebras in which case the algebras turn out to be nilpotent. However, the situation is quite different for anticommutative algebras (nilalgebras of nil-index 2). In fact, in view of Engel's Theorem, all $R(x)$ are nilpotent in a Lie algebra A if and only if A is nilpotent. A closer look at the example of Suttles reveals the interesting fact that a commutative nilalgebra may not possess an absolute zero divisor. It seems thus quite natural to look for a class of nilalgebras possessing absolute zero divisors from noncommutative nilalgebras where all $R(x)$ and $L(x)$ are nilpotent. In this paper we obtain such a class from "almost" commutative nilalgebras.

For an algebra A, the minus-algebra A^{-}of A is defined as the same vector space as A but with a multiplication given by $[x, y]=x y-y x$. Then A is said to be Lie-admissible if A^{-}is a Lie algebra. If a Lie-admissible algebra A is flexible; that is, A satisfies the flexible law $x(y x)=(x y) x$, then all $D(x) \equiv$ $R(x)-L(x)$ are derivations of $A ;[x y, z]=x[y, z]+[x, z] y$ for all $x, y, z \in A$. The plus-algebra A^{+}of A is defined by $x \cdot y=\frac{1}{2}(x y+y x)$ on the same vector space as A if the characteristic is not 2 . Then A is called Jordanadmissible if A^{+}is a Jordan algebra, and it is shown in [8] that A is flexible Jordan-admissible if and only if A is a noncommutative Jordan algebra. It will

[^0]be worthwhile to point out that flexible Lie-admissible algebras may not be power-associative, while every flexible Jordan-admissible algebra is powerassociative in characteristic $\neq 2$. It is not difficult to find such examples, but they seem not to have been shown in a literature. Let L be a Lie algebra over a field Φ of characteristic $\neq 2,3,5$. Let $A=L+\Phi e$ be a vector space direct sum of L and a one-dimensional space Φe. For a fixed $\alpha \in \Phi$, we define a product in A by
(1) $(a+\lambda e)(b+\mu e)=a b+\alpha(\mu a+\lambda b)+\lambda \mu e$
for $a, b \in L$ and $\lambda, \mu \in \Phi$. One easily checks that A is flexible Lie-admissible, and that $x^{2} x^{2}=x^{3} x$ for all $x \in A[\mathbf{1}, \mathrm{p} .557]$ if and only if $2 \alpha^{3}-3 \alpha^{2}+\alpha=0$, so that A is power-associative if and only if $\alpha=0, \frac{1}{2}$, or 1 .

A noncommutative algebra A is said to be almost commutative if A contains a commutative subalgebra of codimension one. Similarly, a nonabelian Lie algebra is called almost abelian if it contains an abelian subalgebra of codimension one. An almost abelian Lie algebra is not necessarily nilpotent, as shown by certain solvable Lie algebras; for example, the 3 -dimensional solvable Lie algebra L with multiplication $x y=x, x z=y z=0$, where we notice that $B=\Phi y+\Phi z$ is an abelian subalgebra of codimension one, but not an ideal in L. Let L be an almost abelian Lie algebra over a field Φ of characteristic \neq $2,3,5$ and B be an abelian subalgebra of codimension one of L. Then we note that the algebra $A=L+\Phi e$ constructed by (1) is an almost commutative algebra and that $S=B+\Phi e$ is a commutative subalgebra of codimension one but is not an ideal of A. However, in case A is a nilalgebra, we will see that any codimension one subalgebra of A is an ideal, provided all $R(x), L(x)$ are nilpotent in A (this will be the case if all $D(x)$ are nilpotent; for example, A^{-}is a nilpotent Lie algebra). We now state the main theorem.

Theorem. Let A be a finite-dimensional, flexible, strictly power-associative algebra over a field Φ of characteristic $\neq 2$. If A is a nilalgebra such that A^{-}is an almost abelian, nilpotent Lie algebra, then A contains absolute zero divisors and furthermore the center Z of A^{-}is an ideal of A.

We have observed that the condition that A^{-}is nonabelian and nilpotent is essential in the theorem.
2. Proof of the theorem. We begin with the following lemma.

Lemma. Let A be a finite-dimensional, flexible, strictly power-associative nilalgebra over a field Φ of characteristic $\neq 2$.
(i) If x is an element in A such that $D(x)$ is nilpotent then $R(x)$ and $L(x)$ are nilpotent in A.
(ii) If S is a subalgebra of codimension one of A such that $D(x)$ is nilpotent in A for all $x \in S$, then S is an ideal of A. In particular, if A is almost commutative, every commutative subalgebra of codimension one is an ideal of A.

Proof. (i) Consider the commutative nilalgebra A^{+}and let $T(x)=\frac{1}{2}(R(x)$ $+L(x))$. Then, if the characteristic is 0 , it is shown in [3] that $T(x)$ is nilpotent. If the characteristic is greater than 2 , then we adjoin an identity to A^{+}to get a commutative algebra $\left(A^{+}\right)^{\prime}$ of degree one. Then Oehmke [7] proves that $T(x)$ is nilpotent on $\left(A^{+}\right)^{\prime}$ and so on A^{+}for all $x \in A$ (his proof does not use the simplicity of the algebra). Thus in any case $T(x)$ is nilpotent for all $x \in A$. Using the flexible law $R(x) L(x)=L(x) R(x)$, we have that if $D(x)$ is nilpotent then $R(x)=\frac{1}{2} D(x)+T(x)$ and $L(x)=T(x)-\frac{1}{2} D(x)$ are nilpotent too.
(ii) Let S be a codimension one subalgebra of A. Let a be an element of A but not in S. Suppose that S is not an ideal of A. Then, since S and a span A, we may assume there exists an element $x \in S$ such that $a x \equiv \lambda a(\bmod S)$ for some $\lambda \neq 0$ in Φ. Since S is a subalgebra of A, we have $a R(x)^{n} \equiv \lambda^{n} a(\bmod S)$ and $0 \equiv \lambda^{n} a(\bmod S)$ for some n since $R(x)$ is nilpotent. This forces $\lambda=0$, a contradiction, and so $a x \in S$ for all $x \in S$. Similarly, we have $x a \in S$ for all $x \in S$ and hence S is an ideal of A.

For the proof of the theorem, let B be a codimension one, abelian subalgebra of A^{-}. Since A^{-}is nilpotent, applying the lemma to A^{-}implies that B is an ideal of A^{-}. We first show that B is a subalgebra of A. Let $A=\Phi h+B$ be a vector space direct sum. Then $[A, A]=[B, h] \neq 0$ since B is abelian in A^{-}. Let $x, y \in B$ and let $x y \equiv \alpha h(\bmod B)$. For $g \neq 0$ in $[A, A]$, let $g=[b, h]$ for $b \in B$. Since $D(b)$ is a derivation of A and B is abelian, applying $D(b)$ to $x y \equiv \alpha h(\bmod B)$ implies $0=\alpha[h, b]=\alpha g$ and $\alpha=0$. Hence B is a subalgebra of A and is again an ideal of A by the lemma.

Since $D(h)$ induces a nilpotent linear transformation on B, B can be expressed as a direct sum

$$
B=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{r}
$$

of cyclic subspaces M_{i} in B relative to $D(h)$ such that $n_{1} \geqq n_{2} \geqq \ldots \geqq n_{r}$ where $n_{i}=\operatorname{dim} M_{i}$ and n_{1} is the nil-index of $D(h)$ in B. Let $x_{i, 1}, \ldots, x_{i, n_{i}}$ be a basis of M_{i} such that $\left[x_{i, k-1}, h\right]=x_{i, k}$ and $\left[x_{i, n i}, h\right]=0, k=2,3, \ldots, n_{i}$. Since B is abelian and $[B, h] \neq 0$, the center Z of A^{-}is contained in B, and hence Z is the centralizer of h in B. Therefore, if we let $x_{1}=x_{1, n_{1}}, \ldots, x_{r}=$ $x_{r, n_{r}}, x_{1}, \ldots, x_{r}$ form a basis of Z. Recalling that B is an ideal of $A, h x_{i}=$ $x_{i} h \in B$ and so $\left[h x_{i}, h\right]=h\left[x_{i}, h\right]=0$. Hence
(2) $h x_{i}=x_{i} h \in Z, \quad i=1,2, \ldots, r$.

Since $[B, h] \neq 0, n_{1} \geqq 2$. Let p be such that $n_{1} \geqq n_{2} \geqq \ldots \geqq n_{p} \geqq 2$ and $n_{i}=1$ if $i>p$. For $x \in B$, if $i \leqq p$ then

$$
0=\left[x_{i, n_{i}-1}, x h\right]=x\left[x_{i, n_{i-1}}, h\right]=x x_{i}
$$

and similarly $x_{i} x=0$ (again recall B is abelian and is an ideal of A). Hence we have
(3) $B x_{i}=x_{i} B=0, \quad i=1,2, \ldots, p$.

If $j>p$, by (2) we see

$$
\begin{aligned}
& 0=\left[x_{i, k}, x_{j} h\right]=x_{j}\left[x_{i, k}, h\right]=x_{j} x_{i, k+1} \\
& i=1,2, \ldots, p \text { and } 1 \leqq k \leqq n_{i}-1 .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
x_{j} x_{i, k}=x_{i, k} x_{j}=0, \quad 1 \leqq i \leqq p, \quad 2 \leqq k \leqq n_{i}, \quad p<j \tag{4}
\end{equation*}
$$

If $i \leqq p$ and $j>p$, by (4)

$$
\left[x_{j} x_{i, 1}, h\right]=x_{j}\left[x_{i, 1}, h\right]=x_{j} x_{i, 2}=0
$$

and since Z is the centralizer of h in B, this implies that $x_{j} x_{i, 1}=x_{i, 1} x_{j} \in Z$ for $j>p$ and $1 \leqq i \leqq p$. Therefore by (2), (3), and (4) we see that Z is an ideal of A.

Finally, we show that

$$
\begin{equation*}
h([A, A] \cap Z)=([A, A] \cap Z) h=0 \tag{5}
\end{equation*}
$$

Let $z \in[A, A] \cap Z$ and let $h^{2} \equiv \lambda h(\bmod B)$ for $\lambda \in \Phi$. Then $z=[b, h]$ for $b \in B$ and $\left[b, h^{2}\right]=h[b, h]+[b, h] h=2 z h$, while $\left[b, h^{2}\right]=\lambda[b, h]=\lambda z$. Hence $2 z h=\lambda z$ and since $R(h)$ is nilpotent, either $z=0$ or $\lambda=0$. In any case, $z h=0$, thus showing (5). Since $x_{1}, \ldots, x_{p} \in[A, A] \cap Z$, it follows from (3) and (5) that x_{1}, \ldots, x_{p} are absolute zero divisors of A. This completes the proof of the theorem.
3. Examples. Since any nonabelian nilpotent Lie algebra of dimension $\leqq 4$ is almost abelian and is completely known [2, p. 120], the theorem can be used to determine all noncommutative flexible Lie-admissible nilalgebras A of dimension $\leqq 4$ such that A^{-}is nilpotent. In this case, $\operatorname{dim} A=3$ or 4 and if $\operatorname{dim} A=4$ then $\operatorname{dim} Z\left(A^{-}\right)=1$ or 2 . In the theorem, "strict" powerassociativity is needed only to show that all $T(x)$ are nilpotent on A. However, if $\operatorname{dim} A \leqq 4$, then, without the condition that A is strict, it is shown in [4] that A^{+}is nilpotent and so all $T(x)$ are nilpotent. In the following we assume that A is a noncommutative algebra over the field Φ.
(I) A is a flexible nilalgebra such that A^{-}is a nilpotent Lie algebra of dimension 3 if and only if A is given by the multiplication

$$
x^{2}=\alpha z, x y=\beta z, y x=(\beta-1) z, y^{2}=\gamma z, \alpha, \beta, \gamma \in \Phi
$$

and all other products are 0 .
(II) A is a flexible nilalgebra such that A^{-}is a nilpotent Lie algebra of dimension 4 and $\operatorname{dim} Z\left(A^{-}\right)=1$ if and only if A is given by

$$
\begin{aligned}
& x^{2}=\alpha z, x h=-\frac{1}{2} y+\beta z, h x=\frac{1}{2} y+\beta z, \\
& y h=-h y=-\frac{1}{2} z, h^{2}=\gamma z, \quad \alpha, \beta, \gamma \in \Phi
\end{aligned}
$$

and all other products are 0 . In this case A is a nilalgebra of nil-index 3 and is a Lie algebra if and only if $\alpha=\beta=\gamma=0$.
(III) A is a flexible nilalgebra such that A^{-}is a nilpotent Lie algebra of dimension 4 and $\operatorname{dim} Z\left(A^{-}\right)=2$ if and only if A is given by

$$
\begin{aligned}
& x^{2}=\alpha y+\beta z, x z=z x=\gamma y, x h=\delta y+\lambda z \\
& h x=(\delta+1) y+\lambda z, z h=h z=\nu y, z^{2}=\mu y, h^{2}=\sigma y+\tau z
\end{aligned}
$$

and all other products are 0 , and $\alpha, \beta, \gamma, \delta, \lambda, \mu, \nu, \sigma, \tau \in \Phi$ with $\mu \beta^{2}=\mu \lambda^{2}=$ $\mu \tau^{2}=0$. In this case A is a nilalgebra of nil-index 4 if $\mu=0$ and of nil-index 3 if $\mu \neq 0$. A is a Lie algebra if and only if $\delta=-\frac{1}{2}$ and all other parameters are 0 .

Here we only prove Case (III) and the other cases are entirely similar. In this case A^{-}has a basis x, y, z, h such that $[h, x]=y$ and all other Lie products are 0 (see [$\mathbf{2}, \mathrm{p} .120]$). Then $B=\Phi x+\Phi y+\Phi z$ is an ideal of A^{-}and $Z=$ $\Phi y+\Phi z$ is the center of A^{-}. Hence by (5) y is an absolute zero divisor of A. From $\left[h, x^{2}\right]=2 x y=0$, we obtain $x^{2}=\alpha y+\beta z$ and $\left[h, h^{2}\right]=0$ implies $h^{2}=\sigma y+\tau z$. Since $[h, x h]=[h, x] h=y h=0, x h=\delta y+\lambda z$ and $h x=$ $(\delta+1) y+\lambda z$. Setting $z x=x z=\gamma y+\gamma^{\prime} z$ (recall Z is an ideal of A), we get that $(x z) x=\gamma^{\prime} x z$ and since $R(x)$ is nilpotent, $\gamma^{\prime}=0$. Similarly $h z=z h=$ νy. Since $z^{3}=0, z^{2}=\mu y$. That $x \in B$ implies $0=x^{2} x^{2}=(\alpha y+\beta z)^{2}=\beta^{2} z^{2}=$ $\beta^{2} \mu y$ and hence $\beta^{2} \mu=0$. Since h belongs to the subalgebra $\Phi y+\Phi z+\Phi h$, $h^{2} h^{2}=0$ implies $\mu \tau^{2}=0$. Similarly we obtain $\mu \lambda^{2}=0$ from $(x h)^{2}(x h)^{2}=0$. Therefore A has the multiplication table given in (III). Conversely, it can be shown that the algebra A in (III) is a flexible, (power-associative) nilalgebra such that A^{-}is a nilpotent Lie algebra and $\operatorname{dim} Z\left(A^{-}\right)=2$.

Incidentally we see that the algebras above are all nilpotent such that all products of any 4 elements in A are 0 . In fact, in (I) we get $A^{3}=0$. In Case (II) $A^{3} \subseteq \Phi z$ and since z is an absolute zero divisor and $A^{2} A^{2}=0, A$ is nilpotent. In Case (III) $A^{3} \subseteq \Phi y$ (again note y is an absolute zero divisor). Also $A^{2} A^{2} \subseteq \Phi \cdot \mu y$, and if $\mu \neq 0, \beta=\lambda=\tau=0$ and so in any case $A^{2} A^{2}=0$, thus A is nilpotent. Combining this with the known result [4] for the commutative case, we can state

Proposition. Let A be a flexible, power-associative nilalgebra over a field of characteristic $\neq 2$ such that A^{-}is a nilpotent Lie algebra. If $\operatorname{dim} A \leqq 4$ then A is also nilpotent such that all products of any 4 elements in A are 0 .

Therefore, there is no simple nilalgebra of dimension $\leqq 4$ described in the proposition. It is not known whether or not there exists a simple, flexible, Lie-admissible nilalgebra A such that A^{-}is nilpotent. This question was raised in [6] from attempting to classify simple flexible Lie-admissible nilalgebras. We have resolved this for dimension $\leqq 4$ and for the algebra A described in the theorem. The proposition for an arbitrary dimension does not
hold as remarked for the commutative case in Introduction. We however conjecture that the algebra A described in the theorem is nilpotent.

A noncommutative nilalgebra may have an absolute zero divisor without being almost commutative. Such an example easily comes from Lie or associative algebras. We close this section with an example of a nonassociative nilalgebra of nil-index 3 that is not almost commutative but has an absolute zero divisor. The following characterization might be interesting.
(IV) Let A be a flexible nilalgebra of dimension $\leqq 4$ over an algebraically closed field Φ of characteristic 0 . Then A^{-}is a nonsolvable Lie algebra if and only if A is one of the following:
(i) the 3 -dimensional simple Lie algebra;
(ii) a nonsolvable Lie algebra of dimension 4;
(iii) an algebra of dimension 4 with the multiplication given by

$$
x y=z+\frac{1}{2} h, y x=z-\frac{1}{2} h, x h=-h x=\frac{1}{2} x, h y=-y h=\frac{1}{2} y, h^{2}=-z,
$$

and all other products are 0 . In Case (iii) A is a nilalgebra of nil-index 3 .
Proof. Since any Lie algebra of dimension $\leqq 2$ is solvable, $\operatorname{dim} A=3$ or 4 . If $\operatorname{dim} A=3$, then A^{-}is the 3 -dimensional simple Lie algebra [5, p. 14] and hence by [$\mathbf{6}$, Theorem 3.1] A is a Lie algebra isomorphic to A^{-}.

Suppose $\operatorname{dim} A=4$. Let N be the solvable radical of A^{-}and $A^{-}=S \oplus N$ be a Levi-decomposition of A^{-}where S is a maximal semisimple subalgebra of A^{-}. Since A^{-}is not solvable. $\operatorname{dim} N \leqq 3$. It is well-known that there is no semisimple Lie algebra of dimension 1,2 , or 4 in characteristic 0 . Thus we have $\operatorname{dim} S=3$ and $\operatorname{dim} N=1$. Therefore S is the 3 -dimensional simple Lie algebra under [,] and $N=\Phi z$. For any finite-dimensional Lie algebra L of characteristic 0 , it is easy to see that if L has one-dimensional radical N, then N is the center of L. Hence Φz is the center of A^{-}. Let x, y, h be a basis of S such that $[x, h]=x,[y, h]=-y,[x, y]=h$. Then $H=\Phi z+\Phi h$ is a Cartan subalgebra of A^{-}, and since H is a (commutative) nil subalgebra of A [6, p.81], $u^{3}=0$ for all $u \in H$. Hence it follows from [6, Lemma 3.2(i)] that $u^{2} \in \Phi z$ for all $u \in H$. Thus $H^{2} \subseteq \Phi z$ since H is commutative, and so by the lemma, $H z=0$. Let $h^{2}=\alpha z$ for $\alpha \in \Phi$. Then $0=\left[x, h^{2}\right]=h[x, h]+[x, h] h=h x+$ $x h$ and this together with $[x, h]=x$ implies $x h=-h x=\frac{1}{2} x$, and similarly, $h y=-y h=\frac{1}{2} y$. Since Φx and Φy are the root spaces of A^{-}for H corresponding to the roots 1 and -1 , we have $x z=y z=0$ since $R(z)$ is nilpotent (also see [6, p. 80]). Thus z is an absolute zero divisor of A. Let $x y=\beta z+\gamma h$, so $y x=\beta z+(\gamma-1) h$. Using the foregoing relations, the flexible law $(x y) h-$ $x(y h)+(h y) x-h(y x)=0$ gives $\beta=-\alpha$ and $\gamma=\frac{1}{2}$. If $\alpha=0, A$ is a nonsolvable Lie algebra. If $\alpha \neq 0$, replace $-\alpha z$ by z to obtain the algebra given in (iii). In this case, it is easy to see that A is a flexible nilalgebra of nil-index 3 .

References

1. A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
2. N. Bourbaki, Groupes et algèbres deLie, Actualites Sci. Indust., no. 1285 (Herman, Paris, 1960).
3. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. II, Duke Math. J. 27 (1960), 21-31.
4. M. Gerstenhaber and H. C. Myung, On commutative power-associative nilalgebras of low dimension, Proc. Amer. Math. Soc. (to appear).
5. N. Jacobson, Lie algebras, Interscience Tracts in Pure and Appl. Math. no. 10 (Interscience, New York, 1962).
6. H. C. Myung, Some classes of flexible Lie-admissible algebras, Trans. Amer. Math. Soc. 167 (1972), 79-88.
7. R. H. Oehmke, Commutative power-associative algebras of degree one, J. Algebra 14 (1970), 326-332.
8. R. D. Schafer, Noncommutative Jordan algebras of characteristic 0, Proc. Amer. Math. Soc. 6 (1955), 472-475.
9. D. Suttles, A counterexample to a conjecture of Albert, Notices Amer. Math. Soc. 19 (1972), A-566.

University of Northern Iowa, Cedar Falls, Iowa

[^0]: Received April 2, 1973 and in revised form, January 30, 1974.

