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Abstract

This paper is a contribution to the problem of characterizing the K0-categorical Stone algebras.
If the dense set is either finite or a chain, the problem is solved by reducing it to the
Ko-categoricity of the skeleton and the dense set, solutions for these being known. If the
dense set is a Boolean algebra, we show that this type of reduction works for certain subclasses
but not for all such algebras. For generalized Post algebras the characterization problem is
solved completely.

Subject classification (Amer. Math. Soc. (A/OS) 1970): primary 02 G 20; secondary 02 H 15,
08 A 05.

A Stone algebra is a distributive lattice with 0 and 1, with pseudo-complementation
x* where x* is the largest element disjoint from x, and satisfying x*+x** = 1. This
latter property is weaker than the requirement x+x* = 1 which would make the
algebra a Boolean algebra. There is an extensive literature of Stone algebras (see
(Gratzer (1971), Balbes and Dwinger (1974), and further references therein).

A structure is categorical if it is determined up to isomorphism by its first-order
logical properties. It is a classic result that a structure is categorical if and only if
its set of elements is finite. If a is an infinite cardinal, a structure is a-categorical if
its set of elements has cardinality a and if any other structure having a elements
and with the same first-order logical properties is isomorphic to it. A reference for
categoricity results is Chang and Keisler (1973), Sections 2.3 and 7.1.

Because any infinite distributive lattice must contain an infinite chain, a result
of Shelah (see Chang and Keisler (1973), p. 424) shows that no distributive lattice
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338 Philip Olin [2]

can be a-categorical, where a is uncountable. So we shall be concerned with
Stone algebras which are X(rcategorical.

There has been considerable interest in characterizing algebraically those
structures which are Ko-categorical. F ° r example, Rosenstein (1973) showed that
a denumerable Abelian group is K0-categorical if anc* o n ly if tne re is a f™16 bound
on the orders of its elements. A well-known result, which we shall use frequently,
states that a denumerable Boolean algebra is K0-categorical if and only if its set of
atoms is finite. Other results on K0-categoricity a re referred to in the introduction
to Baur, Cherlin and Macintyre (1977).

Suppose L is a Stone algebra. Chen and Gratzer (1969) obtained the following
fundamental results. The skeleton of L, denoted SL or just S, is {x*\xeL}. The
dense set of L, denoted DL or just D, is {x\x* = 0}. Define the function pL (or
just <p) from 5 into the lattice of filters in D, ordered by set inclusion, as follows:
(p(x) = {y e D | y 3s x*}. For the triple (S, D, p) thus associated with L, S is a Boolean
algebra, D is a distributive lattice with 1, and <p is a Boolean algebra homomorpbism.
We say that two such triples (S, D, <p) and (Sv J)lt <pj) are isomorphic if there are
isomorphisms 6 from 5 onto S1 and p from D onto D1 such that if p is the
isomorphism induced by /x. from the lattice of filters of D onto the lattice of filters
of Dx then /AV = <px 6. Chen and Gratzer showed that two Stone algebras are
isomorphic if and only if their associated triples are isomorphic, every triple is
isomorphic to a triple associated wjth a Stone algebra, and in fact if 5 is any
Boolean algebra with at least two elements and D is any distributive lattice with 1,
then there is a <p and a Stone algebra L such that (S, D, <p) is isomorphic to the
triple associated with L.

It follows easily (Lemma 2(ii)) that if L is a Stone algebra then DL is a first-order
definable subset of L. Hence a characterization of all Ko-ca tegorical Stone algebras
might yield a characterization of all K<rcategorical distributive lattices with 1.
This latter problem seems quite difiicult.

On p. 164 of Gratzer (1971), Gratzer formulates "the goal of research for Stone
algebras" as reducing a given problem to two corresponding problems, one for
Boolean algebras and one for distributive lattices with 1. He points out that there
are "examples in which this program works and others in which it does not". We
shall show that there are classes of Stone algebras for which the K<rcategoricity
problem can be handled this way, but that for the class of all Stone algebras of
order 3 it cannot.

THEOREM 1. Suppose L is a denumerable Stone algebra whose dense set DL is a
chain. Then L is ^-categorical if and only if SL and DL are ^-categorical.

An algebraic characterization of the Xo"categorical chains is given in Rosenstein
(1969). Theorem 1 is proved below.
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THEOREM 2. Suppose L is a denumerable Stone algebra whose dense set DL is
finite. Then L is ^-categorical if and only if SL is %$0-categorical.

We shall not give a proof of Theorem 2. Such a proof would combine ideas
from the proofs of Theorems 1 and 3 below, and would also use the obvious
fact that any filter in a finite lattice is principal.

There is another class of Stone algebras for which we can completely solve the
K0-categoricity problem. Generalized Post algebras were defined by Chang and
Horn (see the first paragraph on p. 204 of Balbes and Dwinger (1974)). A
generalized Post algebra L is a free product C * B in the variety of all bounded
distributive lattices of a bounded chain C and a Boolean algebra B. If C is finite
then this is equivalent to the usual definition of a Post algebra of finite order. That
L is a Stone algebra follows from the second paragraph on p. 206 of Balbes and
Dwinger (1974). Note that SL = B, but in general DL is a strictly larger set than C.
The following theorem will be proved later by piecing together known results.

THEOREM 3. If L = C*B is a denumerable generalized Post algebra then L is
^-categorical if and only if C and B are ^-categorical.

The remaining results in this paper are concerned with Stone algebras whose
dense set is a Boolean algebra. These are called Stone algebras of order 3 (see
Balbes and Dwinger (1974), pp. 205-210; the only Stone algebra of order 1 is
trivial, and the Stone algebras of order 2 are the Boolean algebras). If F is a filter
in a countable Boolean algebra B and if F has a complement in the lattice of filters
in B then F is principal. (This simple fact is proved in Lemma 1 below.) If L is a
Stone algebra of order 3 we can associate with L the simplified triple (SL, DL, vL)
where SL and DL are Boolean algebras and vL maps each x in SL to the complement
in DL of the element y e DL such that <PL(X) is the principal filter in DL generated by
y. The function vL is a Boolean algebra homomorphism from SL into DL. A
simplified triple (S, D, v) has S and D Boolean algebras and v a Boolean algebra
homomorphism from S into D. Two simplified triples (S, D, v) and (Slf Dlt v^)
are isomorphic if there are isomorphisms 6 from S onto Sx and fi from D onto Dx

such that vx 6 = /u.v. The fundamental results of Chen and Gratzer now apply to
simplified triples and Stone algebras of order 3.

THEOREM 4. Suppose L is a denumerable Stone algebra of order 3 such that
vL(SL) is finite. Then L is ^-categorical if and only ifSL and DL are ^-categorical.

Examples 1 and 2 below show that the hypothesis of Theorem 4 that vL(SL) be
finite cannot be weakened to VL(SL) being Ko-categorical. Theorem 4 and Theorem
5 are proved below.
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THEOREM 5. Suppose L is a denumerable Stone algebra of order 3 such that
vL(SL) = DL and the kernel of vL has a supremum in SL. Then L is ^-categorical
if and only if SL and DL are ^-categorical.

Example 1 below shows that the hypothesis of Theorem 5 that vL(SL) = DL

cannot be weakened to vL(SL) being K<rcategorical. Example 2 below shows that
the hypothesis of Theorem 5 that the kernel of vL have a supremum in SL cannot
be deleted.

In Example 1 a Stone algebra L of order 3 is constructed such that SL, DL and
vL(SL) are denumerable atomless Boolean algebras, vL is one-to-one, and yet L
is not K(fcategorical (because vL{S£) is "badly" embedded in DL). In Example 2
a Stone algebra of order 3 is constructed such that SL and DL are denumerable
atomless Boolean algebras, vL(SL) = DL, and yet L is not K<rcateg°rical (because
the kernel of vL is "badly" embedded in SL).

Preliminaries

Our notation for Stone algebras for the most part follows Section 14 of Gratzer
(1971). Our model theoretic notation is standard (see Chang and Keisler (1973)).
Many of the proofs will be variations on the classic back-and-forth argument
which shows that a denumerable atomless Boolean algebra is Ko-Categ°r'cal> a Qd
which uses the method of "bits". We refer the reader to Chang and Keisler (1973),
especially Section 5.5.

Our language has two two-place functions (xy for infimum and x+y for
supremum), two constant symbols 0,1 and a one-place function symbol (x* for
pseudocomplement). If B is a Boolean algebra and beB then B\b is the Boolean
algebra {xeB\x^b} with + , •, 0 as usual, with largest element b, and with the
complement of x defined to be the infimum of b and the complement in B of x
(see Chang and Keisler (1973), p. 294). 0>(oi) denotes the power set of w (the set
of all non-negative integers), considered as a Boolean algebra in the usual way.

LEMMA 1. If a filter F in a countable Boolean algebra B has a complement in the
lattice of filters in B then F is principal.

PROOF. We have F,F' such that FnF' = {1} and the filter generated by FuF'
is B. Since B is countable we get Fgenerated by x^x^x^ ..., and F' generated
by yo^yi>y2> •••• Since FnF' = {1}, xt+yj = 1 for all ij. Since FuF' generates
all of B, there is an xi and a y$ such that xt j 3 - = 0. Without loss of generality we
can assume xoyo = 0, and thus xt y^ = 0 for all i,j. It now follows that each xt

is the complement of each yp and thus jq = Xj and yi = yi for all / , / So F is
generated by x0 and F' by y0 = x0, as required.
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LEMMA 2. There are first-order formulas *f'i(x),i/ti(x),ifia(x),i/ti(x,y),ipi(x) such
that ifL = (S, D, <p) is any Stone algebra then

(i) Mx) defines S in L,
(ii) tfi2(x) defines D in L,

(iii) if/3(x) defines the kernel of<p in L;
and ifL = (S, D, v) is any countable Stone algebra of order 3 then

(iv) i/>3(x) defines the kernel ofv in L,

(v) h(x>y) defines {(x,y)\v(x) = y} in L,
(vi) ifi5(x) defines v(S) in L.

PROOF. Let tfi^x) be (3y)(x = y*), and let ^2(x) be x* = 0. More informally,
<p3(x) is the formula

xeS and (V>>) (if yeD and y^x* theny = 1).

Again informally, *l>i{x,y) is the formula

xeS, yeD and y is the complement in D of the least z in D such that

Now let ip^x) be (3 z) ̂ 4(z, x).
The proofs of (i), (ii) and (iii) are immediate from the definitions of S, D, <p.

As to (iv), it follows from the definition of v that the kernel of v is the same as the
kernel of <p. Using Lemma 1 and the definition of v, (v) follows. Then (vi) is
immediate.

COROLLARY 3. IfL is an ^-categorical Stone algebra then SL is an ^-categorical
Boolean algebra and DL is an ^-categorical distributive lattice with 1. If L is an
^-categorical Stone algebra of order 3 then SL, DL, vL(SL) are ^-categorical
Boolean algebras and the kernel ofvL is an ^-categorical distributive lattice with 0.

Example 1 shows that the converse of each statement in Corollary 3 is false.

LEMMA 4. Suppose Ao, A'o, Ax, A'x are denumerable atomless Boolean algebras and
for each /e{0,1}, rt is a homomorphism from Ai onto A\ such that the supremum in
Ai of the kernel of T^ is 1. Then there exist isomorphisms 6 from Ao onto Ax and /u.
from A'o onto A'x such that rx 6 = /HT0.

PROOF. Let It denote the kernel of T{. It suffices to find an isomorphism 6 from
Ao onto Ax such that 0(JO) = Ilt since /x can then be defined as follows: for x in A'o,
choose any y in Ao such that TO(J) = x, and let IM(X) be rx 9(y).

We use a back-and-forth argument to get 6. Suppose we have defined 9 on a
finite subalgebra Bo of Ao so that 6 maps Bo isomorphically onto BX<^AX, and
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8(BonIo) = Bxnlx. Let bx,...,bn be the atoms in Bo, and cx = 6(b1),...,cn = 6(bv)
the atoms in 52. Now let x be any member of Ao. So * = xbx +...+xbn. We will
define y = j ^ + . . . +>>n in Ax as follows. If xbt — 0, let ^ = 0. If xbt = bit let
Ji = q. If xbi > 0, x ^ > 0, and both are in /„ then bt e /„ and so q e Ix. Since Ax is
atomless, get q = M+I> with wu = 0, «>0 , v>0. Let j ^ = M. If xbi$I0 and xbi$I0

then fej^/o and so q ^ i ^ Since AX/IX^A'X is atomless we can get ct = u + v with
MI; = 0, u$Ix, v$Ix. Let ^ be u.

Now suppose xbiElf,, xbt>0 and xb^I^. Hence &i£/o and thus ct^Ix. Using
formula (9) on p. 60 of Sikorski (1964), we have

Choose one such q / which is not 0 and let it be y^ Note yx q ^ /j^. The case xbi $ Io,
x^e/ , , , jcij>0 is handled similarly.

Defining 6(x) = y, the construction ensures that 6 maps the subalgebra Co

generated by Bo u {.*} isomorphically onto the subalgebra Cx generated by Bx u {y}
with 0(COn/0) = CxnIv The remainder of the proof proceeds as in the classic
back-and-forth argument.

PROOF OF THEOREM 1. One direction follows from Corollary 3 above. Now
assume S and D are Xo-Categ°rica '- Suppose Lx is a countable structure and L^L.
We require L^L. We get at once that Lx = (Sx, Dx,<px) is a Stone algebra. By
Lemma 2,S=SX and D= Dx. Hence 5 s Sx and Z>s £>i- If Z) = {1}, L^ S s ^ s i a -
So now assume D has at least two elements. Let fj. be any isomorphism from D
onto Dx. It is easy to see that a chain with largest element 1 has only two comple-
mented filters, {1} and the chain itself. Hence the induced map /LA' on the lattice of
filters in D maps D to Dx and {1^} to {lDl}. We also know that the Boolean algebra
homomorphism <p maps S onto the two-element Boolean algebra, and similarly
for <px and Sx. We will be done if we can find an isomorphism 9 from S onto Sx

such that ^(kernel of <p) = kernel of <px.

We know that S is a countable Boolean algebra with a finite number of atoms,
and 5 s Sx. Letting I denote the kernel of <p and Ix the kernel of <px, we know that I
(and similarly Ix) is proper and is also maximal; that is, for each xeS exactly one
of x, x* is in I. There are two possibilities for /. If there is an atom z of S not in /
then z is the only such atom and, using Lemma 2, Sx will also have a unique atom
zx not in Ix. It then follows from the maximality of I and Ix that any isomorphism 6
from S onto Sx such that Q(z) = zx will satisfy 6(1) = Ix. Such a 6 is easily found.

Now suppose / contains all the atoms of S. It follows that I is generated in S by
the set of atoms of S together with a strictly increasing sequence of atomless
elements whose supremum is the largest atomless element in S. Sx and Ix have
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similar properties. The classic argument that any two denumerable atomless
Boolean algebras are isomorphic can now be adapted to provide the isomorphism
we need. We shall not give the details, but a detailed proof, using the method of
"bits" (see Chang and Keisler (1973), p. 300) would use the following facts about
S and /, and the corresponding facts about Sx and /x:

(i) if JC>0, xel, x atomless and x = y+z with yz = 0, j>>0, z>0, then yel
and zel,

(ii) if x e S—I, x atomless and x = y+z with yz = 0, y > 0, z > 0, then exactly one
of y, z is in /.
There are some similarities between the detailed proof needed here and the
argument given above for Lemma 4. This completes the proof of Theorem 1.

We see from the proof of Theorem 1 that if S is an K0-categorical Boolean
algebra and D is an Xo-^tegori^l chain with 1 and with at least two elements
then

(a) if either S is finite or S contains no atoms then, up to isomorphism, there is
a unique Ko-Categ°rical Stone algebra L such that SL^S and £>£= D, and

(b) if S is infinite and contains at least one atom then, up to isomorphism,
there are exactly two K0-categorical Stone algebras L such that SL^S and

PROOF OF THEOREM 3. By Quackenbush (1972), C*B^C[B]*, the bounded
Boolean power. From Burns (1975), Theorem 4.3 (ix), we get that if C and B are
Ko-rategorical then so is L.

Suppose C is not Xo"categorical. So we get C" of the same cardinality as C,
C'=C, C'£C. Using Burris (1975), Theorem 4.3(i), we have

C* 5sC[5]*= C'[B]*^ C *B.

By Balbes and Dwinger (1974), Theorem 7 on p. 141, we get C*BgkC'*B. So
L is not Ko-categ°rical- A similar proof shows that if B is not Xo"categorical then
neither is L.

PROOF OF THEOREM 4. One direction follows from Corollary 3. We sketch the
proof in the other direction. Suppose 5, D are Ko"categorical Boolean algebras,
and v(S) is a finite subalgebra of D. Consider the sentences of the following forms
which are true in L.

(i) The sentence which states that L is a Stone algebra (S, D,v) of order 3.
(ii) The sentence which states that S is a Boolean algebra with exactly m atoms

(where m ̂  0 is the appropriate finite number) and which states whether or not S
contains an atomless element greater than 0.
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(iii) The sentence which states that D is a Boolean algebra with exactly t atoms
(where />0 is the appropriate finite number) and which states whether or not
D contains an atomless element greater than 0.

(iv) The sentence which states that v(S) has exactly 2n elements (where n>0 is
the appropriate finite number).

(v) The sentence which states that in S there exist x^x^ ...,xn such that
xo+xx+...+xn = 1; for i^j, XiXj^O; for l< /<« , v(xt) is an atom in v(S); for
1 ^ /<«, Xj is either an atom in S or is atomless in S; and which states

(a) for 1 </<w, whether Xj is an atom in 5 or whether x* is atomless in S,
(b) whether x0 = 0, how many atoms of S are contained in x0, and whether x0

contains a non-zero atomless element of S,
(c) for 1 </«?«, how many atoms of D are contained in v(xf) and whether vfo)

contains a non-zero atomless element of D.
That (i)-(v) are first-order statements follows from Lemma 2.

To complete the proof we have to show that if Lj is a countable structure and
L^~L then L^L. Since L\=L, we get that L^ satisfies exactly the same sentences
of the form (i)-(v) as L does. We obtain easily from (i)—(iv) that Lj = (Sv Dlt Vj)
is a Stone algebra of order 3, SxsS, DX=D and ^(SJsj^S). Hence by our
hypotheses S^S, D^D, v^SJ^viS). But we must choose these isomorphisms
carefully, and (v) is designed to enable us to do so. Let yo,yi, ...,ynbe the elements
in 5 t given by the truth of (v) in L±. For 1 < i<», define /i(v(x4)) = v ^ ) (both
v(x0) and vjfj,,) being 0). Then (v)(c) ensures that we can extend fi to an isomorphism
from D onto Dv For O^i^n, define 0(xi) = yi. It follows now that 6 can be
extended to an isomorphism from 5 onto Slt with ^(kernel of v) = kernel of vv

If l < / < « and Xj is atomless in S, we would use the method of Theorem 1 to
define 6 from S|x4 onto S^y^ If 1 </<« and xi is an atom in S, d has already
been defined on S|x{ = {0,xJ. Since v(x0) = 0 and Vjiy^ = 0, (v)(b) ensures that 6
can be extended from S\x0 onto S^o- Having done these things, 6 can now be
extended to all of S in only one way. The isomorphism of L and L^ follows,
completing the proof of Theorem 4.

By way of contrast with Theorem 5 below, it can be seen that if L = (5, D, v) is
a Stone algebra of order 3 with v(S) finite, then the kernel of v has a supremum
in S. (In the notation of the proof of Theorem 4 this supremum is xo+the sum
of those xu l^i^n, such that xt is atomless in S.)

PROOF OF THEOREM 5. Again, one direction follows from Corollary 3. Now
assume S and D are Ko-categ°rical. Remark that because v maps 5 onto D, v maps
an atom of S to either 0 in D or to an atom of D. Consider the sentences of the
following forms which are true in L.

(i) The sentence which states that L is a Stone algebra (5, D, v) of order 3, and
that v(S) = D.
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(ii) The sentence which states that S has exactly m atoms, and that exactly r
of these atoms are mapped by v to 0 in D (where m^r^O, and m and r are the
appropriate finite numbers).

(iii) The sentence which states that D has exactly t atoms (where t>0 is the
appropriate finite number, and where it must be the case that t^tn—r).

(iv) The sentence which asserts, with n = t—(m—r), the existence in S of
atomless elements xo,x1,...,xn,xn+1 such that if i^j then xtXj = 0, and that
*o+*i+••• +*n+*n+i is the largest atomless element in S, and which states

(a) that x0 is the largest atomless element in S such that if 0 < z s? x0 then v(z) ̂  0;
and whether x0 = 0;

(b) that for 1 < i^n, v(xt) is an atom in D;
(c) that xn+1 is the supremum in S of those z^xn+1 such that v{z) = 0; and

whether xn+1 = 0; and whether v(xn+1) = 0.
From Lemma 2, (i}-(vv) are first-order statements.

We must show that if L^ is a countable structure and L^sL then L^L. From
(i) we get that L^ = (S ,̂ Z)lf vj) is a Stone algebra of order 3. We define 6 and /x
in stages. Let 6 map the set of atoms x of S one-to-one and onto the set of atoms
y of Slt such that v(x) = 0 if and only if v^x)) = 0. This is possible by (ii). If x
is an atom of S and v(x) is an atom of D, define /*(v(;c)) = v^{Q{xj).

From (iv) we get x0, x1 xn, xn+1 in S and the corresponding y0, ylt..., yn, yn+1

in Sv Note x0 = 0 if and only if y0 = 0. If x0 > 0 then v is an isomorphism from
S\x0 onto D|v(x0); in addition }>0>0 and vl is an isomorphism from S^yo onto
Dil^Oo). From (iv)(a), S|x0 and .S^o are denumerable atomless Boolean
algebras. Let 6 be any isomorphism from S\x0 onto S^yQ, and let /* be vx 6v~x on
Dl^Xg). For U i ^ i i , let fj-(y(x^)) = ^(yj , and using ideas from the proof of
Theorem 1, define 6 to be an isomorphism from 5 1 ^ onto S^yt so that
V10 = (IV.

Finally consider xn+1 and yn+1. Note xn+1 = 0 if and only if yn+1 = 0. If xn+1 > 0
and v(xn+1) = 0 then let 0 be any isomorphism from S| jrn+1 onto St\yn+1, since
each is a denumerable atomless Boolean algebra. Now suppose v(xn+1)^0, and
thus i^O'n+i)'40- W e n°tice that S\xn+1, S^y^, v restricted to S\xn+1, vx

restricted to Sx\yn+1, D\v(xn+^),D1\v1(yn+^) satisfy the hypotheses of Lemma 4.
Applying Lemma 4 we get 8 defined on S\xn+1, and /x defined on •D|v(xn+1) so
that vx 0 = /xv.

The maps 6 and /*, as defined so far, now extend uniquely to give the required
isomorphisms, and complete the proof of Theorem 5.

REMARK. If L is a countable structure and {8n}nea is a denumerable sequence of
members of L with the property that for i=fcj there is a first-order formula &,(*)
which is true of 8t in L but false of Sj in L, then L is not X<rcategorical. This fact
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is an immediate consequence of the fundamental characterization of Ko~
categorical structures (see Ryll-Nardzewski (1959)). We shall use it in both of the
following examples.

EXAMPLE 1. We will construct a Stone algebra of order 3, L = (S,D,v), with
S, D and v(S) denumerable atomless Boolean algebras, v a one-to-one function
and yet L not Ko-categorical.

Let {<*„}„ e a be a partition of <o into denumerably many denumerable and pairwise
disjoint sets. For each n, let ifif}ieu and {y?}iea satisfy

(a) 0 = ftcjBjc . . . c y £ c y » c y » = <*«, and
(b) for i>0, j3?+1—/?? aQd y"~y?+i are infinite.

For each «^0, />0, let //> be a denumerable collection of subsets of /3?+1—ft?
with the property that if xeHv then there are j>, z in i/£ such that y, z are
denumerable sets, ynz = 0, yuz = x. Let K$ be defined similarly for Y?~Y?+v

Let 71 be the subalgebra of ^(ca) generated by

Let D be the subalgebra of ^>(w) generated by Tu{y?}ieaineu\Juie(i>tneaK?.
Note that D and T are denumerable atomless Boolean algebras. Let S be any
denumerable atomless Boolean algebra and let v be any isomorphism from S onto
T. This defines L = (S, Z>, v).

From Lemma 2, Z) and v(S) are definable subsets of L. Consider the sequence
{Sn}n6W, where 8n = aQ+ix1+... + (xn. Note that 8n has been given as the sum
of n +1 pairwise disjoint elements JC, each with the property that x > 0, x e v(S) and

{yeD\y<x and (Vz) (z^y-+z$v(S))}

has no supremum in D. This first-order property of 8n is not a property of 8m

for 7M<n. The reason is that any element x as described above must contain at
least one element of the form c^./J|, and any pairwise disjoint collection of such
elements contained in Sm has cardinality at most m +1. The result now follows from
the remark preceding this example.

EXAMPLE 2. We will construct a Stone algebra of order 3, L = (5, D, v), with
S, D denumerable atomless Boolean algebras, v(S) = D, and yet L not
Ko-categorical.

Let <xn,{S?;yf,Hf,K? be defined as in Example 1. Let S be the subalgebra of
^(ca) generated by the collection of all <xn, j8?, yf, and all members of each H? and
each Kf. Note S is denumerable and atomless. Let / be the ideal in S generated by
all /?£. Note H^^I. Notice also that any x in S—I must contain some member y
of some K?. By the definition of A> we can get y = u+v, uv = 0, u e S-1, v e S-1.
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This shows that the Boolean algebra S/I is denumerable and atomless. Let D be
S/I and let v be the canonical map from S onto D.

Consider the sequence {8n}neu, where 8n = O^+OLX+ ... + <xn. By Lemma 2,
5 and / are definable subsets of L = (S, D, v). Note that 8n has been given as the
sum of n+1 pairwise disjoint elements x, each with the property that xeS—/and
{y e I\ y < x} has no supremum in S. This first-order property of Sn is not a property
of 8m for m < n. The reason is that any element x as described above must contain
at least one element of the form y".p?, and any pairwise disjoint collection of such
elements contained in 8m has cardinality at most m + l. The result now follows
from the remark preceding Example 1.
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