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ABSTRACT

We introduce the notion of completed F-crystals on the absolute prismatic site of a
smooth p-adic formal scheme. We define a functor from the category of completed
prismatic F-crystals to that of crystalline étale Z,-local systems on the generic fiber of
the formal scheme and show that it gives an equivalence of categories. This generalizes
the work of Bhatt and Scholze, which treats the case of a mixed characteristic complete
discrete valuation ring with perfect residue field.
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1. Introduction

Let p be a prime. In [BS22], Bhatt and Scholze introduced the notion of prisms and the relative
prismatic ringed site ((X/(A,1))p,Op) for a bounded prism (A, I) and a smooth p-adic formal
scheme X over A/I. Surprisingly, the cohomology RI'((X/(A, 1))y, Op) gives a good integral
p-adic cohomology of X: it recovers the crystalline cohomology of the special fiber as well as the
étale cohomology of the generic fiber. The prismatic formalism also gives a site-theoretic construc-
tion of the Aj,-cohomology and the Breuil-Kisin cohomology when (4, I) = (Aint(Oc,), ker 0)
and (6, (F)), respectively (see [BS22, Example 1.9] for the details).

Another advantage of this site-theoretic approach is that it provides a natural framework
of the coefficient theory. In the case of the relative prismatic site, Tian [Tia23] studied the
cohomology of prismatic crystals when X is proper over A/I.

One can study crystals on the absolute prismatic site as well. Let Og be a com-
plete discrete valuation ring (CDVR) of mixed characteristic (0,p) with perfect residue
field k£, and let X be a smooth p-adic formal scheme over Og. In the subsequent paper
[BS23], Bhatt and Scholze studied sheaves on the absolute prismatic site X,. Recall that
the site X) has a sheaf O, of rings equipped with a Frobenius ¢ and an ideal sheaf Z)
(see Definition 3.2 for the details). They introduced the category Vect?(X,) of prismatic
F-crystals of vector bundles on (X),0)) as well as the category Vect(Xp,Op[1/Zp]0)¢=" of
so-called Laurent F-crystals on X.

The main theorem [BS23, Theorem 1.2] of Bhatt and Scholze states that Vect?((Ox),) is
equivalent to the category of lattices in crystalline representations of K. They also showed that,
for general X, Vect(Xp, Op[1/Z)p]5)¥=" is equivalent to the category of Z,-local systems on the
generic fiber of X. Part of their work is reproved or generalized by Du and Liu [DL23], Wu
[Wu21], and Min and Wang [MW21]. For other works on the prismatic site, we refer the reader
to the recent survey [Bha21].

The present article studies the relationship between lattices in crystalline representations and
suitable F-crystals on the absolute prismatic site in the relative situation. For this, we need to
enlarge the category Vect? (X ) of prismatic I'-crystals on X. To explain the enlarged category, we
first focus on the small affine case. More precisely, let Ry be the p-adic completion of an integral
domain that is étale over W (k)[T:!, .. .,Tjﬂ] for some d > 0 and set R := Ry @y ) Ox. We
also fix a uniformizer = of Ok with monic minimal polynomial E(u) over W (k). We consider
the following type of sheaves on the absolute prismatic site .

DEFINITION 1.1 (Definition 3.16, Remark 3.17). A completed prismatic F-crystal on R is a sheaf
F of Op-modules on R) together with a (p-semilinear endomorphism ¢r: F — F that satisfies
the following properties:

(i) for each (A,I) € Ry, the A-module Fy = F(A,I) is finitely generated and classically
(p, I)-complete;
(ii) for any morphism (A, TA) — (B, IB) of bounded prisms over R, the map B&F4 — Fp is
an isomorphism;
(iii) for the Breuil-Kisin prism (& = Ry[u], (E(u))) € R) (see Example 3.4), Fg is torsion free,
Fs[E~]) is finite projective over S[E~1]), and Fe = Fe[p~ '] N Fs[E7]);
(iv) the cokernel of 1 ® ¢r, : p*Fg — Fg is killed by E" for a non-negative integer 7.

We write CR/\’@(RA) for the category of completed prismatic F-crystals on R.
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Condition (iii) in the definition is technical but plays a crucial role in our theory. The cate-
gory CR/\’“"(RA) contains, as a full subcategory, the category Vect?;(R)) of effective prismatic
F-crystals of vector bundles on R) in the sense of [BS23, Definition 4.1]. We note that there
exists a completed prismatic F-crystal which is not a prismatic F-crystal of vector bundles (see
the following and Example 3.36) and, thus, CR™¥(R)) is strictly larger than Vect%;(R)) in
general.

The main goal of this paper is to describe lattices in crystalline representations of the Galois
group G of R[p~!] in terms of completed prismatic F-crystals. The following is our main result.

THEOREM 1.2 (Theorem 3.29). There is a contravariant equivalence of categories
T: CR™?(Rp) — Rep%®5(Gr)

from the category of completed prismatic F-crystals on R to the category of crystalline
Z,-representations of R[p~'] with non-negative Hodge—Tate weights, which is functorial in R.

Following [BS23|, we call T the étale realization functor. Since T is compatible with
Breuil-Kisin and Tate twists, one can further enlarge CR"¥(R)) and obtain an equivalence
of categories with the category of all crystalline Z,)-representations of R[p~!] (see Example 3.28
and Remark 3.30).

Once Theorem 1.2 is obtained, we can globalize our equivalence to that for a smooth p-adic
formal scheme over Og.

THEOREM 1.3 (Theorem 3.46). Let X be a smooth p-adic formal scheme over Ok. Then there
is a natural equivalence of categories

T: CR#(%X,) = Locg™,(%,)

between the category of completed prismatic F-crystals on X and the category of crystalline
Z,-local systems with non-negative Hodge—Tate weights on the adic generic fiber X, of X (see
§ 3.6 for the precise definitions).

The main theorems give a prismatic description of crystalline Z,-representations in the rel-
ative case. Note that when R = Ok, Kisin [Kis06] gave a description of lattices in crystalline
representations of K in terms of Breuil-Kisin modules. His work was generalized by Brinon and
Trihan [BTO08] to the case of CDVRs with imperfect residue field with a finite p-basis. Further-
more, Kim [Kim15] introduced the notion of Kisin &-modules over R as a generalization of
Breuil-Kisin modules of E-height < 1 in the relative case. Kim attached to a p-divisible group
over a general R a Kisin G-module and showed that the category of p-divisible groups over R
is equivalent to the category of Kisin &-modules when p > 3 (see [Kim15, Corollary 3]). How-
ever, it has not yet been known how to describe crystalline Z,-representations of R[p~!] with
non-negative Hodge—Tate weights in terms of suitable Breuil-Kisin-type modules in the relative
case. In fact, even a suitable description of rational crystalline representations of R[p~!] has
not been given yet in general: whereas crystalline Q,-representations of K can be classified by
weakly admissible filtered ¢-modules [CF00], the correct weakly admissibility has not been found
in the relative case. We hope that the notion of completed prismatic F-crystals clarifies these
complications.

Examples of crystalline Z,-representations of R[p~!] with Hodge Tate weights in [0,1]
arise from p-divisible groups over R. Anschiitz and Le Bras [ALeB23| developed the prismatic
Dieudonné theory. It follows from their work that the category of p-divisible groups over R
is equivalent to the category of effective prismatic F-crystals of vector bundles of Z)-height
<1 (see §3.5 for the details). It is easy to see that their formulation is compatible with ours.
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Following [VZ10], we also provide an example of a completed prismatic F-crystal over R
that does not arise from a p-divisible group over R (Example 3.36). This implies that our
category CR/\’“D(RA) is strictly larger than the subcategory of effective prismatic F-crystals
of vector bundles on R and that the former category is necessary to describe crystalline
Z,-representations in the relative case. It is an interesting question whether a completed prismatic
F-crystal on R becomes a prismatic F-crystal of vector bundles on X by the pullback along an
admissible blow-up X — Spf R. A related question is whether a crystalline Z,-representation
of R[p~!] with Hodge Tate weights in [0,1] comes from a p-divisible group on X for some
admissible blow-up X — Spf R. We note that admissible blow-ups X — Spf R usually yield
non-smooth p-adic formal schemes X and, thus, these questions diverge from our current
work.

Now let us explain the construction of the étale realization functor 7' in Theorem 1.2 (see
Proposition 3.27). This can be explained best in the following commutative diagram.

Vecté;(Rp) — Vect(Rp, Op[1/Z,]) )50— — Rep (QR)

fH‘Fet 7

M(Ry

Here Vect(Ry, Op[1/Z)]))?=" denotes the category of Laurent F-crystals, namely, prismatic
F-crystals of vector bundles of O[1/Z,]7-modules on R, and Repzp(g r) denotes the category

of finite free Z,-representations of the Galois group Ggr of R[p~!]. The functor Vect?; (Rp) —

Vect(RA,OA[l/ZA] )#=! is the scalar extension functor. Bhatt and Scholze [BS23] and Min
and Wang [MW21] showed the (covariant) equivalence of categories Vect(Rp, Op[1/Z,]0)#=" =
Repy, (QR) Hence, to define the contravariant functor 7': CR™?(R)) — RepZ (Gr) or its dual

TV, 1t suffices to show that the functor Vectf;(R)) — Vect(Ryp, Op[1/Zpl) )‘p I extends to a
functor

CRM(Rp) — Vect(Ry, Op[1/T)10)7=",  F i Fa.
The construction of the latter functor uses the following fact on the Breuil-Kisin prism
(6, (£(u))): it covers the final object of Shv(R)) and, thus, a sheaf on R) is described by a
descent datum involving the self-product (61, (E(u))) and the self-triple-product (63, (E(u)))

of the Breuil-Kisin prism. In particular, completed prismatic F-crystals are described by the
following data.

PROPOSITION 1.4 (Proposition 3.26). The association F — Fg gives rise to an equivalence of
categories CR™?(R)) =, DDg. Here DDg consists of triples (M, o, f) where:

(i) 9 is a finite S-module satisfying condition (iii) of Definition 1.1 in place of Fs;
(ii) @on: MM — M is a p-semi-linear endomorphism such that the cokernel of 1 @ gy @*IM — M
is killed by E" for a non-negative integer r;
(iii) f: S ®pr,e M =6 ®po,e M is an isomorphism of &M -modules that is compatible
with Frobenii and satisfies the cocycle condition over &2,

Since Vect(Rp, Op[1/Zpl5)?~ ! has a similar description in terms of descent data involving
sW[E- ') and & A[E- ']}, the base change along the map e - sME-1 » yields the desired
functor CR/\ P(R)) — Vect(RA, Op[1/Zp)7)?=". To put things together, the contravariant
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functor T is explicitly given by

T(F) = (FalAimt(R), (€)))77)".

See Example 3.7 for the definition of the Aj,¢-prism (Amf( R), (£)). Once T is defined, it is not
difficult to see that T is fully faithful and that T'(F)[p~!] is a crystalline Q,-representation of
Gr with non-negative Hodge—Tate weights.

The hardest part of the proof of Theorem 1.2 concerns the essential surjectivity of 7', and
§4 is devoted to proving it. For this, take Ty € Rep%;fzo(gR). We will attach to Ty an object
(M, oo, f) € DDg.

To explain the outline of the construction, let us introduce several rings. Let Og denote the
p-adic completion S[E~!] of S[E~!]. We write Or, (respectively, Op) for the p-adic completion
of the localization of Ry at the prime (p) (respectively, the localization of R at the prime ()):
Op, is an absolutely unramified CDVR with imperfect residue field having a finite p-basis, and
O = OLO ®W(k) Og. We set &, == OLO [[u]] and OgL = GL[E_l]Q.

On the one hand, the theory of étale p-modules attaches to Ty a finite free Og-module
M together with a Frobenius and a descent datum. On the other hand, Brinon and Trihan’s
theory [BT08] of Breuil-Kisin modules associates with 7| 0|Ga1@ /1y @ finite free Gr-module My,
with a Frobenius. We set 9t := M N My, inside Og, ®p, M = O¢, ®g, Mr. Naturally, M is
equipped with a Frobenius pgy. With careful study of the structures, we are able to show that
the pair (9, pgn) satisfies conditions (i) and (ii) of Proposition 1.4. Finally, the connection
on Deis(To[p~!]) equips M[p~!] with a descent datum. Combined with the descent datum on
M, it yields a descent datum f on 9t and, thus, an object (9, pon, f) € DDg. The associated
completed prismatic F-crystal F satisfies T'(F) = Tp.

Remark 1.5. After we posted our paper on arXiv, we learned that Guo and Reinecke indepen-
dently proved Theorem 1.3 [GR22, Theorem A, Remark 1.8]. Their proof generalizes the method
in [BS23] and is different from ours. Our category CR™¥(X)) corresponds to the category of
effective analytic prismatic F-crystals on X in their terminology [GR22, Definition 3.2]. Note
that one can deduce from Theorem 1.3 together with the compatibility of T" with Breuil-Kisin
and Tate twists (see Example 3.28 and Remark 3.30) that the category of analytic prismatic
F-crystals on X is equivalent to the category of all crystalline Z,-local systems on X, as in
[GR22, Theorem A].

Organization of the paper
Section 2 reviews basic concepts in relative p-adic Hodge theory. In § 2.1, we explain the assump-
tions on our base ring R and objects attached to R, which we use throughout this article. We
review crystalline representations developed by Brinon [Bri08] in §2.2, and étale ¢-modules
in §2.3. The topics in the latter two subsections are standard, and the reader may skip them.
Section 3 introduces the notion of completed prismatic F-crystals and states the main
theorems. In §3.1, we recall the definition of the absolute prismatic site of a p-adic formal
scheme and explain key examples of prisms in the small affine case. In §3.2, we define finitely
generated completed prismatic crystals and completed prismatic F-crystals in the small affine
case. Then we describe the category of completed prismatic F-crystals in terms of descent data
in §3.3. Section 3.4 introduces the étale realization functor T': CR™V¥(R)) — Rep%;fzo(gR) and
states the main theorem in the small affine case (Theorem 3.29). We also prove part of the main
theorem that 7" is fully faithfully and T'(F) is crystalline for 7 € CR"¥(R)) in this subsection.
In §3.5, we consider the height-one case and compare the étale realization functor with pris-
matic Dieudonné theory by Anschiitz and Le Bras [ALeB23]. We also present an example of
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a completed prismatic F-crystal that is not an effective prismatic F-crystal of vector bundles
(Example 3.36). In §3.6, we define the notion of completed prismatic F-crystals on a general
smooth p-adic formal scheme and the étale realization functor. We end the subsection with the
main theorem in this general case (Theorem 3.46), which is a direct consequence of Theorem 3.29.

Section 4 is devoted to the proof of the remaining part of the main theorem (the essential
surjectivity of Theorem 3.29). In §4.1, we define the notion of quasi-Kisin modules and show
that such an object yields a rational Kisin descent datum. Section 4.2 proves the general fact
that for a finite torsion-free p-module (9M, pgn) of finite E-height over &, M[p~!] is projective
over G[p~!] (Proposition 4.13). In §4.3, we consider the CDVR case. With these preparations,
we attach a quasi-Kisin module to a lattice in a crystalline representation in §§4.4 and 4.5, and
complete the proof of Theorem 3.29 in §4.6.

Appendix A follows the work of Tan and Tong [TT19] and defines the notion of crystalline
local systems on the generic fiber of a smooth p-adic formal scheme.

Notation and conventions

Let p be a prime and let k be a perfect field of characteristic p. Write W = W (k) and let K be a
finite totally ramified extension of Ky := W[p~!]. Fix a uniformizer 7 of K and let E(u) € W{u]
denote the monic minimal polynomial of .

For derived completions and relevant concepts, we refer the reader to [BS22, §1.2]. In this
article, most rings are classically p-complete, and we also call them p-adically complete. Similarly,
a p-adically completed étale map from a p-adically complete ring A refers to the (classical) p-adic
completion of an étale map from A.

We also follow [BS22] for the definitions of §-rings and prisms. However, to avoid confusion,
we say that a map of prisms (A, I) — (B, J) is (p, I)-completely (faithfully) flat if the map A — B
is (p, I)-completely faithfully flat (compare [BS22, Definition 3.2]).

We write VV(TfEl7 .. ,Tjﬂ> for the p-adic completion of the Laurent polynomial ring
WITE, ... T di] In this article, the braces {- - -} denote the p-adically completed divided power
polynomials, and for a fixed prism (A, I), the notation {--- }4 stands for adjoining elements in
the category of derived (p, I)-complete simplicial J-A-algebras.

For an element a of a Q-algebra A and n > 0, write 7, (a) for the element a™/n! € A.

Our convention is that the cyclotomic character Z,(1) := T}, (pp~) has Hodge-Tate weight
one.

2. Review of crystalline representations and étale ¢p-modules

2.1 Base ring
In this subsection, we introduce our base ring R.

DEFINITION 2.1. A p-adically complete Og-algebra is called small and smooth (or small for

short) if it is p-adically completed étale over O (T: lﬂ, el Tdﬂ> for some d > 0.

Remark 2.2. Let R be small over Ok. Since R/7R is étale over k[T:!, ... T, there exists
a subalgebra Ry C R such that Ry is p-adically completed étale over W(Tlﬂ, o ,Tdﬂ> and
R = Ry @w Ok

Let R’ be p-adically completed étale over R. If one fixes a subring Ry C R as above, then
the étale map Ro/pRo = R/mR — R'/mR’ lifts uniquely to a p-adically completed étale map
Ry — Ry{,. Moreover, R, w Of is isomorphic to R’ as R-algebras.
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In this paper, we use the crystalline period rings developed in [Bri08]. For this, we consider
the following class of p-adic rings that contains connected small Og-algebras.

SET-UP 2.3. A connected p-adically complete Og-algebra R is said to be a base ring if it is of
the form R := Ry ®w Ok, where Ry is an integral domain obtained from W(Tlﬂ, e ,T5ﬂ> by
a finite number of iterations of the following operations:

— p-adic completion of an étale extension;
— p-adic completion of a localization;
— completion with respect to an ideal containing p.

Remark 2.4. To apply Faltings’ almost purity theorem, Brinon [Bri08, p. 7] further assumes that
WIT, 111’ oo T fl] — Ry has geometrically regular fibers and that £ — R ®o, k is geometrically
integral. By [And06, Proposition 5.12] and the fact that any ideal-adic completion of an excellent
ring is excellent [KS21, Main Theorem 2], we see that W[TE! ... ,Tjd] — Ry has geometrically
regular fibers for a ring Ry as in Set-up 2.3. We also note that the latter assumption can be
dropped. Indeed, if we let &’ be the integral closure of k inside Frac(R Qo k), then R ®p, k is
geometrically connected (and, thus, geometrically integral) over k', and R is an O ®@w W (K')-
algebra. The claim now follows since Brinon’s period rings for R are defined without any reference
to Ok . Finally, we note that if R is a base ring, then it satisfies Brinon’s good reduction condition
(BR) in [Bri08, p. 9].

Let R be a base ring as defined in Set-up 2.3. In the rest of this subsection, we introduce
basic objects attached to R that we use throughout this article.

Let ¢: Ry — Ry denote the lift of the Frobenius on Ry/pRy with ¢(T;) =T7F; this
uniquely determines ¢. Let Q R, denote the module of continuous Kéhler differentials
liiln Q(Ro/p"Ro)/(W/p"W)‘ By [Bri()8, PrOpOSitiOn 2.0.2], we have QRO = @gzl R() : dlogTi.

Let R denote the union of finite R-subalgebras R’ of a fixed algebraic closure of Frac R such
that R'[p~1] is étale over R[p~!]. Set

Gr = Gal(R[p~"]/Rlp™"])-

Let Repr(gR) denote the category of finite-dimensional Q,-vector spaces with continuous
Gr-action. We call its objects Qy,-representations of G for short. Similarly, let Repy (Gr) denote
the category of finite Z,-modules equipped with continuous Gr-action and let Repl%p (Gr) denote
the full subcategory consisting of finite free objects.

Remark 2.5. Assume that R is of topologically finite type over O (for example, R is small
over Ok). If we equip R with the p-adic topology, then Rep‘z’i(g Rr) (respectively, Repq, (Gr)) is
equivalent to the category of Z,-local systems (respectively, isogeny Z,-local systems) on the étale
site of the adic space Spa(R[p~!], R) by [Hub96, Example 1.6.6 ii)] and [KL15, Remark 1.4.4].
Note also that Spa(R[p~!], R) is the adic generic fiber of Spf R.

Let B be the p-adic completion of R and let R’ be its tilt @50 R/pR. Set Aye(R) =
W(Eb). The first projection Rb — R/pR lifts uniquely to a surjective W-algebra homomorphism
0: Ae(R) — R
NOTATION 2.6. Let & = S = Ry[u] equipped with the Frobenius given by ¢(u) = uP. Let O¢
be the p-adic completion of &[u~1], equipped with the Frobenius ¢ extending that on &. Note
that E is invertible in Og and the map &[E~1] — Og induces an isomorphism G[Efl]]/)\ — Of.

We recall a result about the Frobenius on S.

1107

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007097

H. Du ET AL.

LEMMA 2.7. The map p: 6 — & is classically faithfully flat. Moreover, & as a module over
itself via ¢ is finite free.

Proof. By [Bri08, Lemme 7.1.5], ¢: & — & is classically flat. Let ¢ C & be any maximal ideal.
Since & is p-adically complete, we have p € q. Thus, ¢(q) C q, which implies p: & — & is
classically faithfully flat.

For the second part, consider & as a module over itself via ¢. Note that &/(p) has a finite
p-basis. By Nakayama’s lemma, a lift of a p-basis to & generates &. There cannot be any
non-trivial relation among such a lift, since & is p-torsion free. O

NoTATION 2.8. Note that (p) (respectively, (7)) is a prime ideal of Ry (respectively, R). We
let Of, (respectively, Op) denote the p-adic completion of the localization (Rp)(, (respectively,
R(r)). Then O, and O, are CDVRs with the same residue field Frac(Ro/(p)) = Frac(R/(r)).
Set Lo := Or,[p~!] and L := Op[p~!]. The Frobenius ¢ on Ry extends to ¢: Or, — Or,. Note
that O is also a base ring. When we work on O for a fixed base ring R, we simply write
R = Op, by abuse of notation.

Define Ok, , to be the p-adic completion of li_n)lsp Or, and let Ok, = Ok, , @w Ok. Set
Kog = OKO,g[p_l] and K, = Ok, [p~1]. Note that there is a unique @-compatible isomorphism
Ok, , = W(k,) that reduces to the identity modulo p, where k, denotes hi% Frac(Rp/(p)). Hence
Ok, , and Ok, are CDVRs with the same perfect residue field k;. Note that the structure map
Ry — Ok, , factors through O, — Ok, , = W(ky).

We often deduce our statements over & from those over Og and Oy, (or Og,) by taking
certain intersections of modules (e.g. Construction 4.19 and the proof of Theorem 3.29(i)). For
proofs, we need the following localization method (cf. [Bri08, §3.3]): fix an algebraic closure K,
and let Ong denote its ring of integers. Let P be the set of minimal prime ideals of R containing p.

For each p € P, fix a continuous ring homomorphism (Rp)" — (Ox;)" extending Ry — Ox,
where (---)" denotes the p-adic completion. Taking the product over the p’s induces injective
maps

BN B A A ol b
R = [[@®@)" - [[(Ok)" and R — H(’)K—g.
peP peP peP
In §3, we consider the absolute prismatic site on a p-adic formal scheme. In the affine case,
we usually make the following additional assumption.

ASSUMPTION 2.9. The base ring R is small over O or R= Or. We equip R with p-adic
topology. In particular, Spf R is a smooth p-adic formal scheme over Ok (or Of, in the second
case). Note that Rep%i(gR) is equivalent to the category of étale Z,-local systems on the adic

generic fiber Spa(R[p~!], R) of Spf R (cf. Remark 2.5).

2.2 Crystalline representations
Let R be a base ring. In this subsection, we review the crystalline period ring OBe;s(R) and
the notion of crystalline representations of the Galois group Gr of R[p~!] developed in [Bri08,
Chapitre 6].

Recall the surjective W-algebra homomorphism 6: At (R) := W(Eb) — R". Define Ais(R)
to be the p-adic completion of the divided power envelope of Aj,(R) with respect to Ker 6.
Choose a non-trivial compatible system of p-power roots of unity: €,, € R witheg = 1, e1 # 1, and

en=2¢b 1. Set e = (en)n € R and t = log[e] € Ais(R). Define Beis(R) i= Aeris(R)[p~ 1, t71.
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Extend the map 6 to fg,: Ro @w Ape(R) — . Defgle OA.is(R) to be the p-adic com-

pletion of the divided power envelope of Ry ®w Ains(R) with respect to Kerfp,. Define
OBcriS(R) = OAcris(R) [p_la t_l]-

Remark 2.10.

(i) Our period rings Beis(R) and OBis(R) are written as BziS(R) and Bis(R), respectively,
in [Bri0g].

(i) When K is absolutely unramified and R is of topologically finite type over O = W, Tan
and Tong define the crystalline period sheaves B and OBgs on the pro-étale site of
Spa(R[p~!], R) (see [TT19, Definitions 2.4 and 2.9]). In this case, U = Spa(ﬁA [p_l],EA)
is an affinoid perfectoid object of the pro-étale site. We then have Beyis(R) = Beyis(U) and
OB,is(R) = OBis(U). See Proposition A.4.

(iii) The ring Of = (R(Tr))A is also a base ring. In this case, Beis(Or) and OBis(Of) are
studied in [Bri06] and written as Bgis and Be,s, respectively. The notation B is also used
in [BT08].

The crystalline period ring OB,,is(R) has a natural Gr-action and a Frobenius endomorphism

¢ extending those on Ry @ Ainf(R), and there is a natural Be,is(R)-linear integrable connection
V: OBgis(R) — OBis(R) ®g, Q Ro- Moreover, R ®pg, OBuis(R) is equipped with a filtration
by R[p~!]-modules, which is compatible with the natural PD-filtration on A;s(R). See [Bri08,
Chapitre 6] for the detail of these structures.

The following result on the crystalline period ring is used later.

LEMMA 2.11 [Bri08, Proposition 6.1.5]. Choose a compatible system (T;,) of p-power roots

of T; in R with Tio =1T;, and Ietjib S Eb denote the corresponding element. The map X; —
T,1-1® [Tf} induces an A is(R)-linear isomorphism

Acris(ﬁ){le C) Xd} = OAcris(R)y

where the former ring denotes the p-adically completed divided power polynomial with variables
X; and coefficients in Ais(R).

Let us recall the definition of crystalline representations.

DEFINITION 2.12. For V' € Repq, (Gr), set

Deis(V) = (OBuis(R) ®q, V)% and DYy (V) = Homg, (V, OBeis(R)).

cris

Then Des(V) is a finite projective Ro[p~!]-module of rank at most dimq, V' equipped with a

natural ¢ and V structure induced from OBgis(R), and R @, Deris(V') has a filtration induced

from R ®p, OBeis(R). The natural map

Oécris(v): OBcris(R) ®R0[p*1] Dcris(v) — OBcris(R) ®Qp V

is injective by [Bri08, Proposition 8.2.6]. We say that V is Rg-crystalline if acs(V) is an
isomorphism. By [Bri08, Proposition 8.3.5], this notion depends only on R, not on Ry. Hence,
we simply say that V' is crystalline from now on.

By [Bri08, Théoréme 8.4.2], V is crystalline if and only if V'V is crystalline. Note also that
DYis(V) = Deris(VY) = Homp, -1 (Dexis (V) Ro[p~']). We mainly use Dy (V) in this paper.

A finite free Z,-representation T € Rep%rp(g r) is called crystalline if the associated

Qp-representation T'®z, Q, is crystalline.
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Finally, let us explain the functoriality. Let R’ = R{, ®w Ok be another base ring and assume
that there exists a p-equivariant ring homomorphism g: Ry — R{, that extends to g: R — R'. By
the change of paths for étale fundamental groups, ¢ induces a continuous group homomorphism
Gr — Gr and, thus, a natural ®-functor RepQP(gR) — Repq, (Gr'). The map g also induces
a ring homomorphism OB¢is(R) — OBis(R'), and the latter is compatible with Frobenii and
Galois actions.

LEMMA 2.13. With the notation as previously, for V' € Repq, (Gr), the map Ry[p~!] @ Rolp-1]
OB.is(R) ®q, V — OBis(R) ®q, V induces a yp-equivariant morphism of Ry, [p~1]-modules

R6[p_1] ®R0[p_1] DCriS(V) - Dcris(V|gR/)- (21)
Moreover, if V' is crystalline, then V|g,, is crystalline and the above map is an isomorphism.

Proof. The first assertion is obvious. Now assume that V' is crystalline. Consider the composite

of OBis(R')-linear maps
a: OBeris(R) @ gy 11 (Ro[p™ '] ©pojp-1) Dexis(V)) = OBeris(R') ©py (p-1) Dexis (Vg )
O‘criS(VlgR/) —
— OBcris(R/) ®Qp V.

Observe that a is the base change of is(V) along the map OBis(R) — OBepis(R'). Since
V' is crystalline, a is an isomorphism. Moreover, the second map aeris(V|g,,) in « is injective.
Hence, acris(V|g,, ) is an isomorphism and, thus, Vg, is crystalline. We also see that the first
map in « is an isomorphism. Since the map Rj[p~!] — OBeis(R/) is faithfully flat by [Bri0s,
Théoreme 6.3.8], the morphism (2.1) is an isomorphism. O

2.3 Etale w-modules

The classical theory of étale ¢p-modules and Galois representations is generalized to our relative
setting in [Kim15]. We briefly review some necessary facts discussed in [Kim15] and [LM20].
Recall Notation 2.6: & = &g = Ry[u] equipped with the Frobenius given by p(u) = u?; Og¢ is
the p-adic completion of &[u~1], equipped with the Frobenius ¢ extending that on &.

DEFINITION 2.14. An étale (p, Og)-module is a pair (M, prq) where M is a finitely generated
Og-module and pr: M — M is a p-semi-linear endomorphism such that 1 ® pr: *M — M
is an isomorphism. We say that an étale (¢, Og)-module is projective (respectively, torsion) if
the underlying Og-module M is projective (respectively, p-power torsion).

Let Modp, denote the category of étale (¢, Og)-modules whose morphisms are Og-linear
maps compatible with Frobenii. Let Mod%rg and Mod%);, respectively, denote the full subcate-
gories of projective and torsion objects. Note that we have a natural notion of tensor products
for étale (¢, Og)-modules, and duals are defined for projective and torsion objects.

We use étale (¢, Og)-modules to study certain Galois representations as follows. We refer the
reader to [Sch12] for definitions and facts on perfectoid algebras. Recall that m denotes a uni-
formizer in O . For integers n > 0, compatibly choose 7, € K such that m9 = 7 and ﬂﬁ 11 = Tn,
and let K be the p-adic completion of J,~, K (m,). Then K is a perfectoid field, and

(EA[pfl],EA) is a perfectoid affinoid K..-algebra. Let K’ denote the tilt of K., and set
7 = (m,) € K2,. .
Let EEOO = 6/p6, and let EEOO be the wu-adic completion of lii% EEOO. Let Egp,_ =

EEOO [u='and Ep_ = EEO@ [u=1]. By [Sch12, Proposition 5.9], (Er._, EEOO) is a perfectoid affinoid
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b

K’ _-algebra, and we have a natural injective map (EROO,EEOO) — (R [(Wb)_l],ﬁb) given by

u— 7.
Consider

Reo = W(E} ) @w (i) 0 Oue- (2.2)

By [Sch12, Remark 5.19], (Roo[p_l],f%oo) is a perfectoid affinoid K..-algebra whose tilt is
(EROO,EEOO). Furthermore, we have a natural injective map (Rso[p™!], Roo) — (R [p~ ', R")
whose tilt is (EROO,EEOO) — (Eb[(ﬂb)_l],ﬁb). If we write G for 7$t (Spec Roo[p~1]), we then
have a continuous map of Galois groups G R Gr, which is a closed embedding by [GRO03,
Proposition 5.4.54]. By [Sch12, Theorem 7.12], we can canonically identify Rb[(wl’)_l] with the
n’-adic completion of the affine ring of a universal pro-étale covering of Spec E R, Let G o be
the Galois group corresponding to the universal pro-étale covering. Then we have a canonical
isomorphism G o =g J

There exists a unique W (k)-linear map Ry — W(Rb) which maps T} to [T7] and is compatible
with Frobenii (see Lemma 2.11 for the definition of [T7]). This induces a @-equivariant embedding
G — W(Rb) given by u + [7°], which further extends to an embedding Qg — W(Eb[(wb)*l]).
Let O be the union of finite étale Og-subalgebras of W(Eb[(ﬂl’)_l]), and let @gr be its p-adic
completion. We also define &' := @gr N W(Eb) C VV(Eb [7°]~1). We note that the definitions

of these rings in [Kim15, p. 8201] are incorrect but that the results concerning these rings in
[Kim15] hold with the correct definitions: since (Og, (p)) is a henselian pair, Og"/(p) = Og"/(p)

is the union of finite étale Er_-subalgebras of Eb[(ﬂb)_l]. In particular, we have Auto, (OF")
Gppn.. =7 (Spec ER.. ). By [GRO3, Proposition 5.4.54] and [Sch12, Lemma 7.5], we have G, _

g B = Gf..- This induces Gp_-action on @gr . The following is proved in [Kim15].

~
o~

LEMMA 2.15 (Cf. [Kiml5, Lemmas 7.5 and 7.6]). We have (@gr)géw = O¢ and the same
holds modulo p". Furthermore, there exists a unique Gy -equivariant ring endomorphism ¢

on @gr lifting the pth power Frobenius on @gr/ (p) and extending ¢ on Og. The inclusion
@gr — W(Eb[(ﬁb)_l]) is p-equivariant where the latter ring is given the Witt vector Frobenius.

Let Repz, (Gp ) denote the category of finite Z,-modules equipped with continuous
Gp_-action, and let Rep%rp(g 7.) and Reptzolf(g 7..), respectively, denote the full subcategories

of free and torsion objects. For M € Modp, and T € Repzp(g i), define
T(M) = (OF ©0, M)¥~! and M(T) = (OF @g, T)%R=

For a torsion étale p-module M € Mod%);, we define its length to be the length of (Og)(p) R0,
M as an (Og)(y-module. The following equivalence is proved in [Kim15] (see also [LM20,
Proposition 2.5]).

ProOPOSITION 2.16 (Cf. [Kim15, Proposition 7.7] and [LM20, Proposition 2.5]). The assignments
T(-) and M(-) are exact equivalences (quasi-inverse of each other) of ®-categories between
Modp, and Repz (G ). Moreover, T(-) and M(-) restrict to rank-preserving equivalence of
categories between 1\/Iod1()9r‘g and Rep%i(géoo) and length-preserving equivalence of categories

between Modg’z and Rep%’:(gém). In both cases, T(-) and M(-) commute with taking duals.

For T ¢ Repzp(géoo), the natural map @Er ®oe M(T) — (5§r ®z, T is an @gr—h’near iso-
morphism compatible with ¢ and G ., -actions, and a similar statement holds for Modp, .
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Proof. All statements except the last are in [Kim15, Proposition 7.7], whose proof is based
on [Kat73, Proposition 4.1.1]. The last statement also follows from the proof of [Kat73,
Proposition 4.1.1] by the standard dévissage. O

For M € Modp)_ and T € Repy, (G ), we can consider the contravariant functors
E P fo%)

TV (M) = Homp, ,(M, @Er) and MY(T) = Homg, (T, @gr)
We have natural isomorphisms
V(M) =2T(MY) and MY(T)= M(TV),

and these contravariant functors give equivalences of categories between 1\/Iodgi€ and Rep%i (G Roo)
by Proposition 2.16.

We now explain certain functoriality of above constructions. Let R{, be another base ring
over VV(k)(TljEl Ti1> as in § 2.1 equipped with Frobenius, and suppose a @-equivariant map
Ry — R, of VV(k)(TjEl Ti1> algebras is given. Consider the induced O-linear extension
R = Ry ®wr) Ok — R =R Bw (k) Ok. By fixing an algebraic closure of Frac(R’), we have
a map R — R, and this induces R — R'so by the constructions given in (2.2). Hence, the
corresponding map of Galois groups Grr — Gp restricts to G B g h..- Let Gp = R{[u] and
let Og p' be the p-adic completion of Sp/[u~!]. Let Mp/(-) be the functor for the base ring
R’ constructed similarly as previously. If T € Rep%rp(g Rw), then T can be also considered as a
gé,oo—representation via the map QR/OO — Gp_ . We claim that there is a natural isomorphism

O¢ r' ®o, M(T) = Mp(T) of étale (p,Og gr)-modules. Indeed, the W (k)(T:E!, .. Ti1>

algebra homomorphism Og — O¢ g extends to a map (’)5 — (’)5 r» which defines the desired
map O¢ rr @0, M(T) — Mp/(T). To see that this is an isomorphism, observe

Ot ®0, 1 (Ve @0 M(T)) = Of'p, D Gur (O ®0, M(T))
= O Do (OF ®7, T) = OF p @7, T.

Hence, we conclude that Og pr ®0, M(T) — Mp/(T) is an isomorphism since it is so after the
base change along the faithfully flat map Og¢ p — @ETR,.

We use this functoriality for the maps of base rings R — Op and R — Ok, as in
Notation 2.8 in later sections. For O and Ok, the relevant rings will be denoted by Og 1, 67,

O€g7 and G‘g”.

3. Completed prismatic F-crystals and crystalline representations

This section introduces the notion of completed prismatic F-crystals on the absolute prismatic
site of R and formulates the main theorem. In § 3.1, we recall the definition of absolute prismatic
site and consider some important examples of prisms. In §§3.2 and 3.3, we define completed
prismatic F-crystals and study their basic properties in the small affine case. In § 3.4, we study
the étale realization and formulate our main theorem. In § 3.5, we consider the special case where
crystalline representations have Hodge—Tate weights in [0, 1] and study the relation to p-divisible
groups. Finally, we globalize the étale realization functor and the main theorem in § 3.6.
We frequently use the following lemma.
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LEMMA 3.1. Let A be a ring.

(i) Let M be a flat A-module, and Ny, Ny submodules of an A-module N. Then as submodules
of M ® 4 N, we have

M ® 4 (N1 ﬂNg) = (M XA Nl) N (M XA Ng).

(ii) Let M be a finite projective A-module, and N an A-module. Let T be a (possibly infinite)
index set. Suppose for each i € T, we are given an A-submodule N; of N. Then as submodules

M ®4 N, we have
M ®4 <ﬂNz> = ﬂ(M ®a N;).
€T 1€l

Proof. Part (i) is well known. For part (ii), it suffices to show that the natural injective map

fiM®a (mNZ> — ﬂ(M®ANi)
1€ €L
is also surjective. Let M’ be an A-module such that M @& M’ is finite free over A. Then the map

(ros () (s () = (1)
> (VMo M) @4 N; = [J(M @4 N;) & (M @4 N;))
i€l 1€T

is an isomorphism. This implies that the above map f is also surjective. O

3.1 The absolute prismatic site

We first recall the definition of the absolute prismatic site from [BS22] and [BS23|. Let X be a
smooth p-adic formal scheme over Ok (or a CDVR of mixed characteristic (0, p) such as Of, in
Notation 2.8).

DEFINITION 3.2 [BS23, Definition 2.3]. The absolute prismatic site X of X consists of the pairs
((A,I),Spt A/I — X), where (A, I) is a bounded prism and Spf A/I — X is a morphism of p-adic
formal schemes. For simplicity, we often omit the structure map Spf A/I — X and simply write
(A, T) for an object of X . The morphisms are the opposite of morphisms of bounded prisms over
X, i.e. those compatible with the structure morphisms to X. We equip X) with the topology
given by (p,I)-completely faithfully flat maps of prisms (A,I) — (B, J) over X. If X = Spf R
is affine, then we also write R) for X). Note that the associated topos is replete by [BS23,
Remark 2.4].

The prismatic site X, has a sheaf O) of rings defined by Op(A,I) = A and an ideal sheaf
I) C Op given by Z)(A,I) =1 (cf. [BS22, Corollary 3.12]). A similar argument shows that for
each n > 1, the association (A,I) — A/(p,I)" defines a sheaf O) , on X). Moreover, we have

Op =, lim | OA,n =~ Rlim Oﬂ,n (see Lemma 3.13). Finally, the d-structure on each (A,I) € X)
induces a ring endomorphism ¢: Op — Op.

Let us explain the functoriality of the prismatic topoi. Let f: 2 — X be a morphism of
smooth p-adic formal schemes over O . Then f induces a cocontinuous functor

Hence, we have a morphism of topoi

fa= (3" fa): Shv(Dy) — Shv(Xy).
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Observe that if f is an open immersion, then Shv(Z),) is an open subtopos of Shv(X ) by f).

LeEMMA 3.3. Let (B,IB) & (A, 1) % (C,IC) be a diagram of maps of bounded prisms over X
with b being (p, I)-completely faithfully flat, and let (B ® 4 C)é\p 1) denote the classical (p,I)-

completion of B®4 C. Then the pushout of b along c is represented by the map (C,I1C) —
(B®a C’)E\p 1 LB ®a C’)@7 1) and is (p, 1C)-completely faithfully flat.

Proof. By the proof of [BS22, Corollary 3.12], the pushout of the diagram is represented by

the derived (p, I)-completion B ®% C of B ®% C. Moreover, it is discrete and classically (p, I)-
complete, and the map from C' is (p, IC)-completely faithfully flat. By the proof of [Wu2l,

_— —

Proposition 3.2], we also have H°(B &% C) = (B®a C’)@D’[), i.e. B®% C is nothing but the

classical (p, I)-completion of B ®4 C. O
Let R be small over Ok or R = Op, (Assumption 2.9). We now explain several objects of R
that we use later.

EXAMPLE 3.4 The Breuil-Kisin prism and its self-products. Consider the pair (&, (E)) where
S = Rp[u] and E = E(u) is the Eisenstein polynomial for 7 € Ox over W as before. Equip
S with the d-structure defined by extending the fixed Frobenius ¢ on Ry to & via ¢(u) = uP.
Then (&, (E)) € R), where the structure map R — &/(E) is given by the natural isomorphism
R=G/(E). We call (6, (FE)) the Breuil-Kisin prism attached to = and Ry.

The self-product of (&, (E)) exists in R) as follows. Consider the p-adically complete
tensor—proAduct 6®z,6 equipped with the induced ®-product Frol)enius. We have a projec-
tion d: 6®z,6 — R given by the composite of the multiplication 5®z,& — & and the natural
projection & — &/(F) = R. Let J be the kernel of d, and let

1 > J\"
s — (6®Zp6){E}6.
Here 6®zp6 is regarded as an G-algebra via a — a ® 1, and {-}}{ means adjoining elements in the
category of derived (p, E')-complete simplicial 6-G-algebras. Note that the E in {J/E}§ denotes
E®1 but using 1 ® F instead also gives the same &) (see [BS23, Construction 7.13]). By
[BS21, Corollary 3.14], (61, (E)) is a (p, E)-completely flat prism over (&, (E)). Furthermore,
(6, (E)) is bounded by [BS22, Lemma 3.7 (2)], so (W, (E)) € Ry. Let (B,I) € Ry. If we are
given maps fi, fo: (6, (E)) — (B, I) such that two maps R = &/F — B/I induced by f; and
f2 agree, then we have a natural induced map f1 ® fa: 6®zp6 — B of d-rings, and (f1 ® f2)(J)
C I. Thus, by the universal property of prismatic envelope ([BS21, Corollary 3.14]), we obtain
a map (60, (E)) — (B,I) in R) uniquely determined by fi, fo. Thus, (W (E)) is the self-
product of (&, (E)) in R. Similarly, the self-triple-product (&), (E)) of (&, (E)) exists in R).
Write py, pa (respectively, g1, g2, g3) for the maps from (&, (E)) to (61, (E)) (respectively, to
(6@, (F))).

A little more explicit description is given in [DL23, §4.1] as follows. Recall that Ry is a

W(Tfﬂ,...,Téﬂ)—algebra. Let B2 denote the completion of & ®z, & with respect to the

ideal Ker(6 ®z, & — &). We have two natural maps py,p2: & — B®M and regard B2 a5 an
G-algebra via py. If we set s; := po(7}) and y := pa(u), then

s®l — Sly —u,s1—T1,...,84 — T4

can be naturally considered as an G-subalgebra of pen. Similarly, let B2 denote the com-
pletion of & ®z, 6 ®z, & with respect to the ideal Ker(& ®z, 6 ®z, 6 — S). We have maps
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q1,92,q3: G — B®. Via q1, we can naturally consider
&0 = [y — w,w —u, {s; — Tj,r; — Tj}jo1,..d]
as an G-subalgebra of B®[2], where s; = ¢2(T3), 7 = q3(T}),y = ¢2(u) and w := g3(u). Let
T = (B,y —u,{s; = Ty}y=1,..a) C &1
and
J = (E,y —u,w —u,{s; — Tj,r; — Tj}j=1. .a) C &%l
For i = 1,2, 6%l is naturally a (p, E)-completed §-G-algebra and &) = 6®[i]{J(i)/E}g\.

LEMMA 3.5. The maps p;: & — 60 (respectively, ¢;: & — &@)) for i =1,2 (respectively,
i =1,2,3) are classically faithfully flat.

Proof. We only consider p;: & — &), The proof for ¢;: & — & is similar. Note that &™)
is classically (p, F)-complete by [BS22, Lemma 3.7 (1)], and p;: & — &) is (p, E)-completely
flat. In particular, the induced map &/(p, E)™ — &M /(p, E)" is flat for each n > 1. Since & is
noetherian, p;: & — 6 is classically flat by [Sta22, Tag 0912]. Note that p; is a section of the
diagonal map &) —» &. Thus, if N is any non-zero G-module, then &) ®p;,e N # 0. Thus, p;
is classically faithfully flat. d

COROLLARY 3.6. We have that &) is p-torsion free and E-torsion free. Furthermore,
W n6WE = e,
and 6W[E~1] is p-adically separated.

Proof. Since & is torsion free and p;: & — &0 is classically flat, &) is p-torsion free and
E-torsion free. We deduce by Lemma 3.1(i) and S[p~!| N S[E~1] = & that

sWpneWET = (6w, s6p])N(6Y @,,e6[F ) =6

Since M) is p-adically complete, this also implies that 6(1)[E*1] is p-adically separated. ]
EXAMPLE 3.7 The Ajy-prism. Let (£) be the kernel of 6: Aju¢(R) — R". Then (At (R),
(€)) € Ry, with the structure map R — Aju¢(R)/(§) given by the natural inclusion R — R
Note that the map f, m»: & — Aint(R) given by u+ [1°] and T; ~— [T?] induces a map of
prisms (&, (E)) — (Aiﬁ(ﬁ),(f)) over R. Moreover, each ¢ € Gg induces a map of prisms
(Ainf(R)7 (5)) - (Ainf(R)> (5)) SatiSfying g o fﬂ—b,TZP = fa(ﬂb),g(TZP)-
ExamMpPLE 3.8 The OAs-prism and its Frobenius twists. Consider the surjective map
Ory: OAqis(R) — R". The map

¢: OAcis(R)/(p) — OAqis(R)/(p)
factors through

OAcis(R)/(p) — OAcis(R)/((p) +ker(fr,)) = R/(p) %> OAcis(R)/(p).

The pair (OAcis(R), (p)) defines a prism in Rj, where the structure map R — OAcis(R)/(p)
is given by the composite of R — R/(p) and h (defined in the above factorization). Consider

the composite Ajne(R) 2, Aii(R) — OAis(R), where the second map is the natural inclusion.
This induces a map of prisms (Aips(R), (€)) = (OAuis(R), (p)) over R, which is compatible with
Frobenii and Ggr-actions.
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On the other hand, consider the prism (Rp,(p)) in Ry, where the structure map R —
Ro/(p) is given by the natural projection R — R/(w) = Ro/(p). For any integer j > 1, write

(¢jOAis(R), (p)) for the prism in R, whose underlying d-pair is (OAqis(R),(p)) and the

structure map R — OA.s(R)/(p) is given the structure map of (OAcs(R),(p)) composed
with ¢/ : OAqis(R) — OAis(R). For a sufficiently large j, there exists a map of prisms
(Ro, (p)) — (¢jOAis(R), (p)) given by Dwork’s trick. Indeed, let e = [K : Ko] be the ramifi-
cation index, and choose an integer I such that p! > e. Consider ¢!*1: OA s (R) — OA4is(R).

Taking modulo the ideal (p) C OAis(R), this induces a map R/(p) — OAis(R)/(p) as previ-
— I+1 —
ously, which further factors through R/(7). Thus, the ring map Ry —— OAcis(R) induces a

map (Ro, (p)) = (¢1OAis(R), (p)) of prisms over R.

EXAMPLE 3.9 The Breuil prism. Let S denote the p-adically completed PD-envelope of G with
respect to (E), equipped with the Frobenius extending ¢ on &. Note that ¢ := ¢(F)/p is a unit
in S. So (9, (p)) € Ry, with the structure map given by R = & /(E) %, S/(p), and we have a map
of prisms ¢: (&, (E)) — (S, (p)).

For i =1,2, let S@ = Dgap (J(i))/\ be the p-adically completed PD-envelope of @l with
respect to the ideal J®. We set

y—u

s: — T
0= T and z; = J J

E
Let Al be the p-adic completion of the G-subalgebra of (&[p~!])[20, 21, .. ., 2z4] generated by
E/p and {v,(2;)}n>10<j<d- By [DL23, §2.2],! we have a ring endomorphism ¢: AD AL,
extending ¢: & — G and satisfying

G=1,...,d).

o) = L and ple) = Ll (= 1ed)

Since ¢: & — G is injective, @: Al(ﬁz)ix — Ag;x is injective. By [DL23, §2.2], we have a natural

ring map s — Ar(rﬁx which is injective and compatible with ¢. In fact, AS,%;X is isomorphic to
SW(E/p), the p-adic completion of SW[E/p] by [DL23, Remark 2.2.11].

Let S1 ="M (E), yu(y — ), {yu(sj = Tj)}nz1,=0....d] € &*M[p~"]. Note that SicC
AL, since (Y —u) = vn(20)E™ € AR and similarly for v,(s; —T;). Since E, y —u, and
{s; — Tj}j=1,...d form a regular sequence in 6®m, S is the PD-envelope of &®l for JW by
[BS22, Corollary 2.39]. Then S is the p-adic completion of Si. As a subring of (Ro[p~])[u,y —
u, 81 —T1,...,84 — Tq], we have

S(l) = { Z iy, ....ig+1Vio (E)’Yil (y - U)’Yig (31 - Tl) T ’Yid+1(sd - Td)

®[ - .
ig,...igr1 € G [ }7ai07--.7id+1 —0 (as 0+t igrr — OO)},

where the sum goes over the multi-index (i, ..., i4+1) of non-negative integers and a;, . ;, , — 0
means in the p-adic topology. Note that SV is a d-ring by [BS22, Corollary 2.39]. We similarly
construct a d-ring S2).

LEMMA 3.10. For i = 1,2, we have an embedding s & g6),

1 We warn the reader that our ring AS;X is denoted by Ag;x in [DL23, §2.2].

1116

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007097

COMPLETED PRISMATIC F-CRYSTALS AND CRYSTALLINE Zp—LOCAL SYSTEMS

Proof. We prove the statement for ¢: &) — S and the proof for p: 62 — S is analogous.
It suffices to show ¢(6™(z;)) € SM for j =0,...,d. Since S1) is a d-ring, we have

_ —w)P

©(20) = YY) _ <(y Wt Sy — U)) e s,
p p

and similarly ¢(z;) € SM) for j =1,...,d. Again since SU) is a d-ring, we have ¢(6™(z;)) =

§™(¢(z)) € SU for any n > 0. O

3.2 Completed prismatic F'-crystals in the small affine case
In this subsection, we introduce completed prismatic crystals and completed prismatic F-crystals
on the absolute prismatic site.

We first introduce the notion of finitely generated completed prismatic crystals. Let X be a
smooth p-adic formal scheme over Ok (or a CDVR of mixed characteristic (0, p)).

DEFINITION 3.11. A finitely generated completed crystal of O)p-modules on X is a sheaf F of
O)-modules on X such that:

(i) for each (A,I) € X, the evaluation Fy := F(A,I) of F on (A, I) is a finitely generated and
classically (p, I)-complete A-module;
(ii) for any morphism (A, I) — (B,IB) of bounded prisms over X, the canonical linearized
transition map
BRaFs — Fp

is an isomorphism, where B&4F4 denotes the completed tensor product @n(B ®Ra
Fa)/(p, 1)"(B @4 Fa).

We also call such a sheaf a finitely generated completed prismatic crystal on X, or a completed
prismatic crystal on X for short.

Similarly, a finitely generated crystal of OAn-modules on X is a sheaf F, of OAn—modules
on X such that:

(i) for each (A, TI) € X, the evaluation F, 4 = F,,(A,I) of F,, on (A,I) is a finitely generated
A/(p, I)"-module;

(ii) for any morphism (A,I) — (B,IB) of bounded prisms over X, the canonical linearized
transition map B ®4 F,,4 — Fp B is an isomorphism.

Remark 3.12. Let F be a finitely generated completed prismatic crystal on X and let (A,1) —
(B,IB) be a map of bounded prisms over X. Since F4 is a finitely generated A-module and B
is classically (p, I B)-complete, the natural map

B®aFa — BOaFa — Fp (3.1)
is surjective. Since (p, I B) is a finitely generated ideal of B, the map (3.1) induces an isomorphism

B/(p,IB)" ®4 Fa =N Fr/(p,IB)"Fp by [Yekl8, Theorem 1.2(2)]. Moreover, the map (3.1) is
an isomorphism if A and B are both noetherian or if A is noetherian and the map A — B
is classically flat. The latter case follows from [Sta22, Tag 0912]. It is also an isomorphism if F4
is a finite projective A-module.

LEMMA 3.13. Let F be a finitely generated completed crystal of O p-modules on X ). Then for
each n > 1, the association (A,I)— Fa/(p,I)"F4 represents the quotient sheaf F/(p, Zp)"F
and defines a finitely generated crystal F, of O -modules on X,. Moreover, we have

isomorphisms of O )-modules OA,n ®0p i1 Frs1 =N F, and F = linn Fn = Rlim F,.
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Conversely, let (F,), be an inverse system of sheaves of O)-modules such that F, is a
finitely generated crystal of O)  -modules and such that the projection F, 1 — JF, induces an

isomorphism O) , ®o, - Fn+1 =N Fy for each n. Then F := llnn Fn is a finitely generated
completed crystal of O A—modu]es on X, and we have isomorphisms of O)-modules O) = ®o,
F =2 F, and F = Rlim F,.

Proof. Let F be a finitely generated completed crystal of Op-modules on X,. Let (A,I) —
(B,IB) be a (p,I)-completely faithfully flat map of bounded prisms over X. Set B’ = (B ®4
B)(APJ). By Lemma 3.3, B’ is (p, I)-completely faithfully flat over A and (B’,IB’) € X, is the
self-fiber product of (B,IB) over (A,I). Let p1,p2: (B,IB) — (B',I1B’) be the two maps of
bounded prisms over X. Since B/(p,I)"B is classically faithfully flat over A/(p, )™ and since

B/(p, I)"B ®4/(p,ny» B/(p, 1)"B = B'/(p, I)" B', we have an exact sequence

P1®1—p2®1
—_—

0— Fna— B/(p,I)"B®@a/p,ym Fna B'/(p, 1)"B' ®4/(p,1y» Fn.A-

On the other hand, since F is a completed prismatic crystal, we have the isomorphisms B& 4 F4 =
Fpand BRaFa 2 F . It follows that the above exact sequence is identified with

Oﬁfn,A_’fn,Bﬂ)}_ﬂ,B"
This implies that 7, is a sheaf on X, representing the quotient sheaf F/(p, Z))"F. Since Fy
is a finitely generated classically (p, I)-complete A-module, F,, is a finitely generated crystal of

O ,,-modules. Moreover, we have isomorphisms of Op-modules O) . ®o At Frt1 =N F. and

FS @n Fn. Finally, since the absolute prismatic topos is replete and F,11 — F, is surjective
for every n, we obtain lim F;, = Rlim 7, by [BS15, Proposition 3.1.10].

Conversely, let (F,), be an inverse system of sheaves of O)-modules satisfying the prop-
erties as in the lemma. An argument similar to the previous paragraph shows that the
association (A,I) — A/(p,I)" @/ 1yn+1 Fnt1,4 represents the sheaf Op . R0y 4y Fnt1- Set
F :=lim F, and take any (A,I) € X). Then we have F(A,I) = (lim F,)(A,I) =lm F, 4

—n —n —n ’
and A/(p, )" ®a/(p,yn+1 Fn1,4 = Fn a. It follows from [Yek18, Theorem 2.8] that F(A, ) is a
finitely generated and classically (p, I)-complete A-module with F(A,I)/(p,I)"F(A,I) = Fan.
Moreover, for a morphism (A,I) — (B,IB) of bounded prisms over X, we have B ®4 Fy, 4 =
Fp.p- Tt follows that the canonical map B&aF(A,I) — F(B,IB) is an isomorphism. Hence, F
is a finitely generated completed crystal of O)-modules. Now the remaining assertions follow
easily. O

To define completed prismatic F-crystals in the affine case, let us first introduce the following
terminologies.

DEFINITION 3.14. Let R be a base ring and keep the notation as in §2.1.

(i) We say that a finite G-module N is projective away from (p, E) if N is torsion free, N[p~!]
is projective over &[p~!], and N[E~']} is projective over S[E~1])) = Og.
(ii) We say that a finite G-module N is saturated if N is torsion free and

N=Np YnN[E].

(iii) Let r be a non-negative integer and let N be an &-module equipped with a ¢-semi-linear
endomorphism ¢y : N — N. We say that the pair (N, pn) has E-height < r if

1®@N:6®¢,6N—>N

is injective and its cokernel is killed by E(u)". We say that (N, ¢xn) has finite E-height if it
has F-height < r for some 7.
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We also use these terminologies for a finite module over an G-algebra.
Remark 3.15.

(i) By the Beauville-Laszlo theorem, any finitely generated G-module which is saturated and
projective away from (p, E') is the pushforward of a vector bundle on Spec & \ V(p, F) to
Spec &. In fact, let NV be a torsion-free finite &-module. Then N is saturated if and only if
the natural map

N/pN — N[E']/pN[E™!

]

is injective. Since N[E~']/pN[E~'] = N[E~]}/pN[E~']} = Nu~']/pN[u~"'], we deduce
that N is saturated if and only if N = N[p~']n N[E~']7, or equivalently, N = N[p~'] N
N[u~1']. Moreover, if N is projective away from (p, E), then N[E~!] is finite projective over
S[E7Y].

(ii) Assume that either R is small over Ok or R = Or. We show that if (IV,¢x) is a torsion-
free finite &-module with Frobenius of finite E-height, then N[p~!] is projective over G[p~!]
(Proposition 4.13).

We now introduce the notion of completed prismatic F-crystals on R, which will be our main
object of study. We make Assumption 2.9: R is small over Og or R = Of,.

DEFINITION 3.16. A completed F-crystal of O)-modules on R is a pair (F,¢r), where F is
a finitely generated completed crystal of O)-modules on R, and

pr: F—F
is a p-semilinear morphism of O)-modules such that:

(i) Fs = F(6, E) is projective away from (p, E') and saturated,;
(ii) the pair (Fg,prs) has finite E-height.

We also call such an object a completed prismatic F-crystal on R. The morphisms between
completed F-crystals of O)-modules are O)-module maps compatible with Frobenii.

We write CR¥(R),) for the category of completed F-crystals of Op-modules on Rj. Let
Vect?;(R) ) denote the full subcategory of CR™¥(R)) consisting of objects (F, px) where F is a
locally free Op-module. For a fixed non-negative integer r, we let CREE)”“:] (R)) and Vect?%yr](RA)
denote the full subcategories consisting of objects for which (Fg, p£,) has E-height < r.

Remark 3.17. When R is small over Ok, the above definition agrees with Definition 1.1 by
Remark 3.15(i) and (ii). In §3.6, we define completed prismatic F-crystals on a smooth p-adic
formal scheme by gluing.

Remark 3.18. When R = Op, = RE\W) (i.e. a CDVR with residue field having a finite p-basis and
a uniformizer finite over W (k)), any finite &r-module which is projective away from (p, E)
and saturated is free over &p, since Sy, is a regular local ring of dimension 2 (e.g. [Hor64,
Corollary 4.1.1]). Thus, by Proposition 3.26, the category CR™#((Op),) is equal to the cate-
gory Vect?:((Or) ). Furthermore, when R = O (i.e. a CDVR with perfect residue field), our
category Vect!;((Ok),p) coincides with the full subcategory of Vect?(Spf(Ox)p,O)) defined in
[BS23, Definition 4.1] consisting of effective prismatic F-crystals of vector bundles.

Let us explain that the definition of completed prismatic F-crystals is independent of the
choice of a Breuil-Kisin prism, namely, a uniformizer m € Og and a W-subalgebra Ry C R
(Corollary 3.22). For this, we need the following two lemmas.
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LEMMA 3.19. Let F be a finitely generated completed prismatic crystal on R equipped with a
morphism 1 ® pr: ¢*F — F of O p-modules. Fix a uniformizer = € Ok with minimal polynomial
E(u) and associated Breuil-Kisin prism (&, (E)), and let (&, (E)) — (B, EB) be a classically
flat map of bounded prisms over R. Then the following properties hold:

(i) if Fg is projective away from (p, E') and saturated as an &-module, then Fp is projective
away from (p, F) and saturated as a B-module;

(ii) for a non-negative integer r, if the pair (Fg,prs) has E-height < r, then (Fp,yr,) has
FE-height <.

Moreover, the converse also holds if & — B is classically faithfully flat.

Proof. Note B @ Fs = Fp by Remark 3.12.

(i) Suppose Fg is projective away from (p, E) and saturated as an &-module. Then Fp is
p-torsion free, and Fg[p~!] is projective over Blp~!]. It follows that Fg C Fg[p~!] is torsion
free. Since & is noetherian and Fg is finitely generated, the induced map G[E_l];)\ — B[E‘l]l/,\
is classically flat and B[E~1])) RslE-1] FelE~1) = Fp[E']) by [Sta22, Tag 0912]. We deduce
that Fp [E*1]£ is projective over B[Eil];\. Thus, Fp is projective away from (p, ). Since Fs
is saturated, Lemma 3.1(i) implies that

Fp=B®sFs=B®s (Felp ' |NFs[E~')) = Falp 1N Fp[E~].

This means that Fp is saturated.

(ii) The assertion follows from Coker(1 ® pr,) ®s B = Coker(1 ® ¢r,).

Finally, if the map & — B is classically faithfully flat, then so is G[E_l]]/)\ — B[E_l]z/o\. Hence,
the converse direction follows similarly. g

Suppose R is small over Ok. Let ' € Ok be another uniformizer of Ok, E'(y) € W[y| the
Eisenstein polynomial for 7/, and Ry a W{(T{)*!, ..., (T})*!)-algebra with R ®@w Ok = R as
in Remark 2.2. Set &' := R{[y] equipped with Frobenius given by ¢(T7) = (T})? and ¢(y) = y*.
Then we have a Breuil-Kisin prism (&', (E')) € Ry with the structure map R = S'/(E).
LEMMA 3.20.

(i) The absolute product of (&, (E)) and (&',(E")) exists in R). Write (GS},,I) for the
absolute product. We also have I = EG(l), — e

™, '

(i) The maps & — &', and &' — &), are classically faithfully flat.
Proof. (i) Consider the p-adically complete tensor-product 6<§>zp6’ , and let
d: 22,6 — R

be the composite of the natural projection G®z, &' — &/(E)®z,6'/(E') = R®z, R and the
multiplication R@sz — R. Let J be the kernel of d. We claim that the absolute product of
(6,(F)) and (&', (E")) in Ry is given by

o), — &g e L1
7! P E 67

where {-}{ means adjoining elements in the category of derived (p, E)-complete simplicial
)-G-algebras. Indeed, by [BS21, Corollary 3.14], (6(1)

T,

over (6,(E)). We have a natural map of prisms (6’,(E’))H(6(1)

)

(E)) is a (p, E)-completely flat prism
(E)) and, thus,
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(E')Ggrlzr,:(E)G(l) by [BS22, Lemma 3.5]. Thus, the construction is symmetric, and

7!

(6(1) (E)) is also a (p, E')-completely flat prism over (&', (E’)). By [BS22, Lemma 3.7(2)],

!
(GSZF,, (E)) is bounded. The universal property can be checked similarly as in Example 3.4.

(ii) The classical flatness follows by a similar argument as in the proof of Lemma 3.5:
note that 6( ), is classically (p, E')-complete by [BS22, Lemma 3.7(1)]. Since & — GSZH is

p, E/)-completely flat an is noetherian, & — , 1s classically flat by [Sta ag .
E letely flat and & herian, & — G\, is classically flat by [Sta22, Tag 0912
(1)

Consider the composite Ry — & — &, 7,, where the first map is given by the natural

inclusion Ry — Ry[u] = & (which is classmally faithfully flat). Since 6;’;, is classically (p, E(u))-
complete, it is u-complete and u lies in the radical of GS’;,. Thus, to prove G — 653;, is
classically faithfully flat, it suffices to show that Ry — GEBT, is classically faithfully flat by [Sta22,
Tag 00HQ)]. Let P C R be a maximal ideal, and let m = RyNP and m’ = R, NP be the cor-
responding maximal ideals of Ry and Ry, respectively. Let (Rp)4, denote the m-adic completion
of the localization (Rp)y. It is shown in the proof of Proposition 4.13 below that (Rp)}, is
equipped with the Frobenius induced from Ry, and that (Rg)jy = W (ky)[t1,...,tq], where
ki == R/ is a finite extension of k. Similarly, we have (Ry)%, = W (k1)[t],...,t)].

Let A( ) be the absolute product of ((Ro)mlu], (E)) and ((R))av[v], (E')) constructed as in
(i) with RO (respectively, R{)) replaced by (Ro)p (respectively, (Rj)%,). Note that the map

ot W(kn)[t1, . tal = (Ro)p — Ay (3.2)

is classically flat similarly as above. Consider the induced map

W (k)[t1, - tal /(1. ) = Wkt) — AY /(. tg) Ay
(1)

From the explicit construction of the absolute product Aq3

1¢(tyg,... ,td)A%), and so A%)/(tl, e ,td)A%) is not the zero ring. Furthermore, since A%)

is classically p-complete, p lies in the radical of A%) /(t1, ... ,td)A%). Thus, A%) has a maxi-
mal ideal which lies over the maximal ideal (p,t1,...,tq) of (Ro)4, and the map fn in (3.2) is
classically faithfully flat.

Now, consider the map (Ro)h — GSL/ ®Rr, (Ro)h induced from Ry — 6( )/ We claim that

(Ro)h — 67(:;, ®R, (Ro)n is classically faithfully flat. The classical flatness is clear. Note that
by [BS21, Corollary 3.14], the construction of the absolute product in part (i) commutes with

(p, E)-completely flat base change. Thus, the map fu: (Ro)h — A%) in (3.2) naturally fac-
tors through (Rp)j — 6(1)/ ®R, (Ro)a- Since fy is classically faithfully flat, so is the flat map

(Ro)h — 6( ), ®nr, (Ro)h. Now since the claim holds for any maximal ideal m C Ry, Ry — 6(1)
is classically falthfully flat.

in part (i), we deduce that

(1)

By symmetry, &' — & ! is also classically faithfully flat. O

Remark 3.21. When R = Z,,, the above lemma follows from [BL22, Proposition 2.4.5 and 2.4.9]
and [Sta22, Tag 0912]: for any (A,I) and (B,J) in Rp with (A, ) non-zero and transversal in
the sense of [BL22, Definition 2.1.3], the product of (A, I) and (B, J) exists in R, and it covers
(B, J).

COROLLARY 3.22. Definition 3.16 of completed prismatic F-crystals is independent of the choice
of a uniformizer w € Ok and a W-subalgebra Ry of R.
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Proof. This follows from Lemmas 3.19 and 3.20. U

Remark 3.23 Restriction of completed prismatic F-crystals. Suppose R is small over Ok, and
let R — R’ be a p-adically completed étale map. Let Rj C R’ such that Rj®w Ox = R’
with a p-adically completed étale map Ry — R, as in Remark 2.2. Note that the Frobenius
on Ry extends uniquely to a Frobenius on Rj. For F € CRA’“"(RA), consider its restriction
Flrry, to (R)p- Since & = Ro[u] — Rylu] is classically flat, we deduce from Remark 3.12 and
Lemma 3.19 that F|gn, (Ro[u], (£)) = Ry[u] ®e Fe and Fl(p:), € CR™¥((R')p). We similarly
have the restriction of completed prismatic F-crystals for the maps R — Of and R — Ok, as
in Notation 2.8.

We now study some properties of completed prismatic F-crystals on R. Let &, := Or,[u]
equipped with Frobenius given by ¢(u) = uP. Note that (&, (E)) € Ry with R — &1/(F) =
Or = R@T) and that the natural map & — &, induces a map of prisms (&, (E)) — (&, (E))
over R. Let Og 1, denote the p-adic completion of &y [u~1].

LEMMA 3.24. Let F € CRA"p(RA). Then the following properties hold.

(i) We have Fg, = 6, ®g Fg. Furthermore, Fg, is finite free over &p,.
(ii) We have Fg = Fg, N fg[E*1]£ as submodules of O¢ |, ®¢ Fe.
(iii) The natural map

6W @, Fs — GVE) ®,.6 Fs

is injective for i = 1, 2.
(iv) For any map of bounded prisms (6, (E)) — (A, EA) over R, the natural map

A7 ®e Fe — Falp™']
is a p-compatible isomorphism of A[p~!]-modules. Similarly, the natural map
AE7| ®@e Fo — FalE™']

is an isomorphism of A[E~!']-modules. Furthermore, the classical p-adic completions
(A[E7'] ®s Fs), and (Fa[E'])] have naturally induced Frobenii, and the induced
isomorphism (A[E™'] ®e Fe)) = (FalE~Y])) is -compatible.

Proof. (i) Since &, is noetherian and & — &, is classically flat, we deduce by a similar argument
as in Remark 3.23 that Fg, = 61, ®¢ Fs, Fs, is torsion free, and

JTGL[p_l] ﬂfGL[E_l] =Fe&,-

Thus, by Remark 3.18, Fg, is finite free over &y..
(i) It suffices to show Fs, N Fs[E~!]) C Fe. Since Fe[p~'] is projective over &[p~'] and
SN Og = 6, we have by Lemma 3.1(i) that

Fe o INFs[Epp~ 1= (6Ll ®ep-1) Fslp ™) N (Oclp™] @epp-1) Folp™'1) = Felp™']-
Thus,

Fe, NFelET') C Felp ' INFslE']) = Fe.

P
(iii) The natural map
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is injective since Fg — Fglp~!] is injective and p;: & — &W is classically flat by Lemma 3.5.
Furthermore, since Fg[p~'] is projective over G[p~!] and M [p~1] — &™) [E~1]) [p~ 1] is injective
by Corollary 3.6, the natural map

Y @y, ep-1 Felp ] = 6V [EN ] ®,, ep-1 Felp ]
is injective. Thus, the composite map
6W @6 Fs — 6V M@, 6 Fs — SVE 7 @p6 Fo
is injective. The composite factors through the map
&Y @, 6 Fs — GWET @, s Fe,

which is therefore injective.

(iv) We first show that the first map is an isomorphism of A[p~!]-modules. By the definition
of a finitely generated completed prismatic crystal, the map A®sFe — Fa is an isomorphism.
Since Fg is finitely generated over & and A is classically (p, F')-complete, the natural map

fl@?@.fé;—%44é§6]is

is surjective. Thus, it suffices to show that the induced surjective map (A ®g Fe)p~!] —
(ABsFs)[p~ 1] is also injective.

Since Fg[p~!] is finite projective over G[p~!], there exists an &[p~!]-module @ such that
Fs[p~'] @ Q is finite free over G[p~!]. We have an G-submodule N C Fs[p~'] & Q with N[p~!] =
Fs[p~!] @ Q such that N is free over & and that the inclusion Fg < N[p~!] factors through
Fs— N C N[p_l].

Consider the induced map A ® s Fs — A ®g N. Note that A ®g N is (p, E)-complete since
N is finite free over &. Thus, this map factors through

A@GfGHA(%GfgﬂA@GN.
On the other hand, since Fg[p~!] is a direct summand of N[p~!], the map (A ®s Fs)[p~!] —
(A®g N)[p~1] is injective. Since it factors through
(A®e Fe)p™'] = (ABsFe)lp™'] — (A@e N)[p7'],

the map (A ®s Fe)[p!] — (A®eFs)[p~!] in question is also injective.

Similarly, the second map is an isomorphism of A[E~!]-modules since Fg[E~!] is finite
projective over G[E~!] by Remark 3.15(i). Hence, it remains to show the statements for
p-compatibility. Note that o((p, E)™) C (p, E)™ for each m > 1. It follows that A®eFs admits
a Frobenius endomorphism induced from that on A ® g Fg. Thus, the natural map A ®s Fs —
AR®sFs is ¢-compatible, and so are

(Aos Fe)lp™'] — (ABeFe)p™'] and ((A®e Fe)lE)/p" — (ABeFs)[E~])/p"

for each n > 1. OJ

3.3 Completed prismatic F'-crystals in terms of descent data
Keep Assumption 2.9. We can explicitly describe the category CR/\’W(RA) in terms of certain
descent data as follows.

DEFINITION 3.25. Let DDg denote the category consisting of triples (9, won, f) where:

(i) 9 is a finite G-module that is projective away from (p, E) and saturated;
(i) pom: MM — M is a @-semi-linear endomorphism such that (M, pon) has finite E-height;
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(i) f: 6W ®p,e M = 6W ®py,e M is an isomorphism of &M-modules that is compatible
with Frobenii and satisfies the cocycle condition over &(2).

The morphisms of DDg are G-linear maps compatible with all structures.

For a fixed non-negative integer r, let DDg [g,) denote the full subcategory consisting of
objects for which (9, pgn) has E-height < r.

We call an object of DDg an integral Kisin descent datum. One can also consider a triple
(I, pon, f) where (9, pon) is as above and f: GWp~| @, &M =, SWp™ @p,.6 M is an
isomorphism of 6(1)[p_1]—modules that is compatible with Frobenii and satisfies the cocycle
condition over &) [p~!]. Such an object is called a rational Kisin descent datum.

PROPOSITION 3.26. The association F — Fe = F(&, (E)) gives rise to a functor CR*¥(R)) —
DDg and induces equivalences of categories

CR/\’(‘D(RA) >~ DDG aﬂd CR{B:STO] (RA) = DD67[07T]'

Furthermore, under this equivalence, (M, ¢, f) corresponds to an object in Vect?;(R)) if and
only if 9 is finite projective over &.

Proof. Let F € CR™¥(R)). By Lemma 3.5 and Remark 3.12, we have an isomorphism of
SW-modules
f: W ®p,6 Fs = Fem = cW® ®po,s Fo

satisfying the cocycle condition over &), Thus, any completed crystal in CRA’W(RA) naturally
gives an object in DDg via F — Fg, which gives a functor from CRA’“’(RA) to DDg.
Conversely, let (I, pon, f) € DDe. Take any prism (A, 1) € R). By [DL23, Lemma 4.1.8],
there exists a prism (B,IB) € R) which covers (A,I) and admits a map (&, (E£)) — (B,1B)
over R. By Lemma 3.3, the pushout of the diagram (B,IB) < (A,I) — (B,IB) of maps of

bounded prism over R is represented by (B ® 4 B)a) I and (B®y B®a B)& n satisfies a similar

property for the self-triple cofiber product. By the universal property of &) and &), we have

maps 61 — (B®a B)&J) and 6@ — (B®aB®a B)E},,I)-

Consider the B-module B ®g 9. The base change of the descent datum f: &) ®p1,&

m= s Dpy.c M along &) — (B®y B)E\p 1) gives a descent datum of B ®e M, namely, a

(B®a B )é\p’ 7y linear isomorphism

Bt (B®aB)}, 1y @pr.5 (B@sM) = (B®aB)() 1) @ps (B R M)

A

satisfying the cocycle condition over (B ®4 B ® 4 B)(p

a compatible system of isomorphisms

1 By reducing modulo (p, I)", fp induces

fBn: (B®aB)/(p,1)" @p,,5 (B®eM) — (B®a B)/(p,1)" @py,5 (BReM)
satisfying the cocycle condition over (B ®4 B ®4 B)/(p,I)" for each n > 1.

Since A — B is (p,I)-completely faithfully flat, each fp, defines a finitely generated
A/(p,I)"-module F, 4 by the usual faithfully flat descent. We claim that F,, 4 is independent
of the choice of the cover (A,I) — (B,IB) and that the association (A,I)— F, 4o defines a
sheaf F, of Op-modules on R). To see the former, take another prism (B’,IB’) € R) which
covers (A, I) and admits a map (&, (E)) — (B',IB’) over R. Let F, , denote the finitely gen-
erated A/(p, I)"-module given by the descent of ((B' ®g M)/ (p, I)V”,fBgn). By Lemma 3.3,
the pushout of the diagram (B,IB) « (A,I) — (B',IB’) of maps of bounded prism is rep-

resented by (B ®4 B’)@)’I). Since the maps B — (B ®4 B')@,J) and B’ — (B®a B’)(AP,I) are
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(p, I)-completely faithfully flat, we can canonically identify both F, 4 and F, .4 With the descent

of (B®a B’)E\pl) ®s Sﬁ)/(p,l)",f(B@)AB/)(A " n)- To see that the association (A1) — Fpoa
) p,

defines a sheaf 7, of O)-modules on R, take a (p, I)-completely faithfully flat map of prisms
(A, I) — (A, IA") over R. Then the pushout of the diagram (A’,TA") — (A,I) — (A", TA) is
represented by (A’ @4 A’ )(A 1) Hence, we need to show the exactness of the sequence

0—>.7: A—>.7: A/—>.7: (A @4 AN (33)

(RN

On the other hand, we see that (A’ ®4 B), ) (respectively, (A’ ®4 A’ ®4 B)(, 1)) together with
the ideal generated by I gives a bounded prism over R that admits a map from (&, (F)) over R
and covers (A’ TA") (respectively, ((A’' @4 A’ )a} 1 I(A @4 A )(p I))). By construction, we have

a left exact sequence
0— (BeeM)/(p.I)" — (A'® BosM)/(p,I)" — (A ©4 A’ ®4 BosM)/(p,1)".

Since this left exact sequence is the base change of the sequence (3.3) along the classically
faithfully flat map A/(p,I)" — B/(p,I)", we conclude that the sequence (3.3) is left exact. This
completes the verification of the claim.

The sheaf F,, is equipped with an induced Frobenius, since ¢((p, I)™) C (p, I)". Furthermore,
Fn is a finitely generated crystal of OA -modules. This follows from a similar argument as in
the above paragraph and the verification is left to the reader. We also remark that {Funln>1
forms an inverse system of sheaves of Op-modules such that Oy, 1 @0, Fn+1 = Fn. Hence
F = hm Fn is a completed prismatic crystal on R equipped with Frobenius by Lemma 3.13.
By constructlon we see F (S, (E)) = M. As a result, F € CR™?(R)). This proves the essential
surjectivity.

The fully faithfulness also follows directly from a similar argument as above (alterna-
tively, one can check that the above two functors are quasi-inverse to each other). Obviously,
this equivalence also induces CR[O ](RA) DDg (o). The last assertion follows from [Sta22,

Tag 0D4B]. 0

3.4 Etale realization and the main theorem in the small affine case
We now formulate our main theorem. For this, we first attach to a completed prismatic F-crystal
F on R a finite free Z,-representation T(F) of Gr. This will be based on the results in [BS23,
§ 3] (see also [MW21]). Keep Assumption 2.9: R is small over Ok or R = Of,.

Recall that Vect(Ry, Op[1/Z)]7)?=" denotes the category of Laurent F-crystals, i.e. crystals
of vector bundles V on (R, Op[1/Z,]7)) together with isomorphisms @y : @*V =V (see [BS23,
Definition 3.2]). There is an equivalence of categories

Vect(Ry, Op[1/Z))))#=" = Repl) (Gr)

given by (V, py) — V(Apt(R), (£))?v=! (see [BS23, Corollary 3.8], [MW21, Theorem 3.2]), which
is functorial in R.

PROPOSITION 3.27.
(i) The assignment F +— Fg :=lim Op[1/I)]/p" ®o, F defines a faithful functor
CR™M?(Ry) — Vect(Rp, Op[1/Z)]0)%=!

Moreover, if F € Vect;(R)p), then the canonical morphism Op[1/I)]) ®o, F — Fe is an
isomorphism.
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(ii) Define a contravariant functor T: CR™?(R)) — Reprz)rp(gR) by

T(F) = ((Fa(Aime(R), (€))% =1)".

Then it satisfies the following properties:
(a) there is a Ggr-equivariant identification
_ —b — — =
TEP = WERIE) D™ On, . Fan)

where the Ggr-action on the right-hand side is the tensor product of those on

W(Rb[(ﬂb)*l]) and on Fp @ = F(Aint(R), (9));

(b) FslE™']) is the étale p-module associated with T(F)"|g. via Proposition 2.16;

(c) if R is small over Ok and if R — R’ is a p-adically completed étale map together
with a compatible W-map Ry — R{,, then T is compatible with the restrictions
CRM?(R)) — CR/\#(R’A) (see Remark 3.23) and Rep%rp (Gr) — Rep%rp(gR/); we also
have the analogous compatibility for the base changes along R — Op, and R — Ok,,.

We call the functor 1" the étale realization functor. We remark that our functor is contravari-
ant and it is the dual of the covariant étale realization functor in [BS23]. Our contravariant
convention agrees with that in the theory of Breuil-Kisin modules [Kis06, BT08], which is heavily
used in this paper.

Proof. (i) We start with a description of Vect(Rj, OA[I/IA]]{,\)‘P:l in terms of the category of
certain descent data: let DD, denote the category of triples (M, oy, g) where (M, o) is a
finite projective étale ¢-module over Og as in §2.3, and ¢ is an isomorphism of 6(1)[E_1];,\—

modules
g9: 8WET) @, 0, M — SW[ET]) @), 0. M

that is compatible with Frobenii and satisfies the cocycle condition over &%) [Eil]]/j\. We claim

that evaluating on the diagram & noesh 22 s gives an equivalence of categories from
Vect(Ryp, Op[1/Z)p]1)?=" to DDo,; for any prism (A,I) € Ry, take a prism (B,IB) € Ry
which covers (A, ) and admits a map (S, (F)) — (B,IB) over R. Then (B ®y B)@,,[) and
(B®a B®a B)(Ap’ D represent the self-cofiber product and the self-triple cofiber product of the
map (4, I) — (B, IB) of bounded prisms over R. Moreover, for each n, the map A/p" — B/p"™
is I-completely faithfully flat, and the self-cofiber product and the self-triple cofiber product
for I-completely flat topology are given by (B/p" ®4/pn B/p™)} and (B/p™ ®a/pm B/P" @ 4/pn
B/p™)}, respectively. Now the claim follows as in the proof of Proposition 3.26 with faithfully
flat descent replaced by [Mat22, Theorem 7.8] (see also [Wu2l, §3] when R = Ok). Moreover,
the proof shows the following: if G is the Laurent F-crystal associated to (M, @y, g), then
g(B,J) =lim B/p" ®e M for any prism (B, J) that admits a map from (&, (E)).
Let F € CRA"p(RA). By Proposition 3.26, we have an isomorphism of &M-modules

f:6W e, sFs—6W0ae, sFs

satisfying the cocycle condition over 6@, Let M = Fg [E_l];)\, which is a finite projective étale
p-module over O¢. By extending scalars, f induces a descent datum (M, oy, g) with

g: 6(1)[E_1]1/0\ ®@p1,0e M — 6(1)[E_1]1/0\ Bps, 0 M.

Via the equivalence Vect(R), (’)A[l/IA];\)‘F’Zl = DDy, it defines a Laurent F-crystal F, such
that 7 (B,J) =lim B/p" ®g M for any prism (B,J) € R) with a map (&, (E)) — (B, J).
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For such a prism, Lemma 3.24(iv) gives the natural isomorphism B[E~!]/p" ®g M /p" =
FplE~'/p™ and, thus, yields an identification Ff, (B, .J) = Fp[E~']). Since every prism over R
admits a map from (S, (E)) locally in the (p, I)-completely faithfully flat topology, one can check
that 7, coincides with Fe¢; == lim O, [1/Z)]/p" ®o, F, which is obtained as the sheafification
of the presheaf (A, 1) — lim A[1/1]/p" @4 Fa.

Let us verify the remaining assertions: the faithfulness of F — Fg = F., follows from the
construction of F, and Lemma 3.24(iii). Now assume F € Vect/;(R)) and consider the canonical
morphism O, [1/Z AH)\ ®o, F — Fs. We need to show that it is an isomorphism, which can be
checked locally on R). Since F is locally a direct summand of Oim for some m, the statement
follows from the case 7 = O,.

(ii) By the paragraph before the proposition, ((F¢i(Aint(R), (€))7~ is a finite free
Z,-representation of Gg for F € CR™?(R)), and T is well-defined.

First we verify part (a). By construction in part (i), we have

Fa(Aine(R), () = Aue(R)E) ®0, M= W(R'[(7")7)]) ®s Fe.
On the other hand, it follows from Lemma 3.24(iv) and Example 3.7 that
FAm(R),())p 12 An(R)p '] ®6 Fes.
Thus, we deduce
T(F)p ") = FelAumt(R), ()77 7] = (Fael Aint(R). (€)[p™']) 7!
WER [(x) "] @6 Fe) 7!
> (WER((2) D™ ©a,, @ Fanm) ™

Since Fy is a crystal, the Gg-action on the prism (Aj(R),(¢)) induces the

Ggr-action on the last term (W(Eb[(ﬁb)fl])[zfl] B ae(®) T A (E))‘pzl, for which T(F)[p~1]¥ =

(W(Eb[(ﬁb)*l])[pfl] O ne®) T Amf@))ﬂ"zl in the above paragraph becomes Ggr-equivariant.

Next we prove part (b). Since T'(F)Y & (W(Rb[(wl’)_l}) ®0, M)P=L, it suffices to show that

the natural injective map

12

inf

b

(OF @0 M)?P=! — (W(R'[(x") 1)) ®0, M)*~"

is bijective. Indeed, this holds for any étale (¢, Og)-module; as in the proof of [GL20,
Lemma 2.1.4], one can reduce it to the p-torsion case, where the étale (¢, Og)-module is finite
projective over Og/(p) by [Kim15, p. 8200] and, thus, the result follows from F, = (Eg_)¥=! =
(=) 1)),
We now prove part (¢). Let R — R’ be a p-complete étale map. From the above construction,
we have an induced map of Z,-modules
T(F) — T(Flr)",

which is compatible with Gr/-actions. By part (b) and the functoriality of étale p-modules as in
the end of §2.3, this map T(F)Y — T(F|g)" is an isomorphism. The statements for R — O,
and R — Ok, follow from a similar argument. O

EXAMPLE 3.28. Recall the Breuil-Kisin twist O){1} € Vect¥(R)) from [BS23, Example 4.5].
It is an invertible Op-module with ¢*O),{1} = Iil(’) a1} and is given informally by
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Op{1} = ®i20(goi)*IA. For n € Z, set Op{n} = (Op{1})®". This is an invertible (QA—module
such that ¢*Op{n} =T,"O){n}. By [BS23, Example 4.9], we have T(Op{n}) = Z,(—n).2

For F € CR"¥(R)), consider a sheaf of O)-modules f{n} = F ®0, Op{n}. Suppose that
the image of the induced map ¢*(F{n})s — (F{n})s[E~!] lies in (f{n})g It follows directly
from the definition that F{n} € CR?(R)). We claim that T(F{n}) = T(F) ®z, Zy(—n).
To see this, note that we have a natural Gr-equivariant map T'(F)" ®gz, Z,(n) = T(]-')v ®z,
T(Op{n})"¥ — T(F{n})". Since the equivalence in Proposition 2.16 is compatible with tensor
products and duals, it follows from the proof of Proposition 3.27(ii)(b) that this map is bijective,
which shows the claim.

cris cris

Now we state our main theorem. Let Repz °.((Gr) (respectively, Repz " (0.1] (Gr)) denote the
category of crystalline Z,-representations of Gr with non-negative Hodge-Tate weights (respec-
tively, with Hodge-Tate weights in [0, 7]). Note that Z,(1) has HodgeTate weight one by our
convention.

THEOREM 3.29. We keep Assumption 2.9.

(i) The étale realization T as in Proposition 3.27 gives a fully faithful functor from CR™¥(R))
to RepZz°~(Gr). Moreover, T' restricts to CR[O ](RA) — Repcm[0 1(GR).

(ii) The functor T gives an equivalence CR[O’f} (Rp) = RepCHS 0,1] (g Rr), which is functorial in R.

Remark 3.30. Note that for every crystalline Z,-representation Ty of Gr, there exists n € Z such
that Tp ®z, Zy(n) € Rep%;fzo (Gr), and that the étale realization functor 7" is compatible with
Breuil-Kisin twists by Example 3.28. Hence, as in [Kis10, § 1.2], one can extend the definition of
completed prismatic F-crystals in a way that the resulting category is equivalent to Repms(g R)s
the category of Z,-crystalline representations of Gr. We leave it to the reader to make a precise
formulation.

The functor T is functorial in R since so are the étale realization for Laurent F-crystals and
the functor F — Fg. We prove the first part here. The essential surjectivity in the second part
is proved in the next section.

Proof of Theorem 3.29(i). Let F € CR[O ](RA) Consider the map R — Of, as in Notation 2.8.
By Remarks 3.23 and 3.18, we have f\(ng)A € CR[AO’%((OKQ) ) = Vect‘[%r]((OKg)A). Thus,
by [BS23, Proposition 5.3] (see also [DL23, Theorem 4.1.10]), we have T(.7:|(@KQ)A)€
Repczrj[oﬂ(GKg) where G, = Go,,- Note that by Proposition 3.27(ii)(c), T(.’F\(@KQ)A) is equal
to T(]:)‘GKQ.

We first show that the essential image of T' is contained in Repz °.((Gr). Let V(F) =

T(F)[p~!] denote the corresponding Q,-representation of Gr. By Proposition 3.27(ii)(a), we

see

b

V(F)' = W(R )e=t.

() D™ e Fawe(®

By Lemma 3.24(iv), we have F  g)[p~ e Ape(R)[pY Qalp-1] Fs[p~!], which is finite pro-
jective over Ajn(R)[p~!]. Since fet(Alnf(R)7 (£)) is an étale p-module finite projective over
W (R'[(x")"1]), we obtain

R D" @q, VIF)' = WER) D 0a,@py Fam@b ] (34)

% Recall that our étale realization functor T is the dual of that of [BS23].
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Consider each p € P and R - (Rp)" — (OE)A as in Notation 2.8. Equation (3.4) induces
WO () N 9a, VIF) = WO D™ @iy Pl

—b _ _ .
by th? base change along W (R [(7°)~1]) — W((’)%[(ﬂb) ). Set T, = T(f‘(ng)A)' Since Ty €
Repz "0.1(GK,), the proof of [BMS18, Lemma 4.26] shows fAinf(OTg) C T, @z, Aint(Og;) and
T) CF Aint(O72) ©Aine (O) Ainf(OE){r}. Here Ainf(OE){T} denotes the base change of the
rth Tate twist /f’"Ainf(Ong) ®z, Zy(r), defined in [BMSI8, Example 4.24] with p =[] — 1,
along the Frobenius inverse ¢~ : Ainf(OE) — Ainf(OE); note that our functor T is contravari-

ant and the cokernel of 1 ® ¢r, is supported on (E), whereas [BMS18, Definition 4.22]

mf(ng)

uses (p(E)). Since ¢~ !(u) divides p, we obtain inclusions of W(O%) [p~!]-modules
g9

WO @ a1 Fawmp™'1 € WO ©q, VIF)
1 b N1 1
C WO 1 @n, @p-y Faw@P 1 (35)

Since the Aju¢(R)[p~!]-module Fans(®) [p~1] is finite projective, (3.4) and (3.5) together with

f

Lemma 3.1(ii) and Lemma 3.32 yield
At Bl ®q, V(F)Y = Fa, @l e (3.6)

Consider the map of prisms (&, (E)) — (Ro, (p)) over R given by u — 0. Let D(F) =
Fro[p~!]. We have D(F) = Ry[p~!] ®s Fs by Lemma 3.24(iv), and 1® ¢: ¢*D(F) — D(F)
is an isomorphism. Choose a positive integer [ with p! > e as in Example 3.8 so that we have the
map of prisms (Rp, (p)) RAAEN (91OAis(R), (p)) over R. Thus,

OAcriS(R) [p_l] Qi+ Ry D(F) = f(QSlOAcriS(R)a (p))[p_l]

= OAais (R) [pil] ®<Pl ;OA s (R) f(OAcris (R) ’ (p) )

by Lemma 3.24(iv), and we obtain

OBais(R) ®yt+1 gy D(F) = OBuais(R) @, oa,,. &) F (OAcis(R), (p))- (3.7)
On the other hand, again by Lemma 3.24(iv),
F($10Aais(R), (p)lp™'] = OAcis(B)p ™1 @pts a,e(m Faem P
Thus, (3.6) gives
OBo(R) 8, V(F)" = OBuww(B) 1 4., (1) F(OAais(R), (). (3.5)

By (3.7), (3.8), and OBgyis(R) ®y 141 g, D(F) = OBeis(R) ®r, D(F) obtained by (I + 1)-times
iterations of the isomorphism 1 ® ¢, we deduce the isomorphism
OBuiis(R) ®pg, D(F) = OBeyis(R) ®q, V(F)Y (3.9)

that is compatible with Gp-actions and . Since (OBis(R))9% = Ry[p~'], we deduce from this
isomorphism that OB,s(R) ®q, V(F )V is spanned by its Gr-invariants as an OB¢js(R)-module.
It follows that aeris(V (F)Y) is surjective and, thus, V(F)Y is crystalline. So V(F) is crystalline.
Note that V(F) has Hodge-Tate weights in [0,r], since it has Hodge-Tate weights in [0, 7]
considered as a representation of Gk, .
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The faithfulness follows from the construction of the étale realization T' in Proposition 3.27.
For the fullness, let Fi,F, € CR™¥(R)), and suppose we have a map h: T'(F) — T(F3) of
representations of Gr. By Proposition 3.27(ii)(b), h|g, induces a map

(F2)slE7']) — (F)slET'])

of étale p-modules over Og. On the other hand, by Lemma 3.24(i) and [Gao20, Proposition 4.2.7],
h[g@ induces a p-equivariant map
L,c0

(F2)e, — (F1)e,

of &r-modules. These two maps are compatible after the base changes to Og 1, and thus we
obtain an induced @-equivariant map of G-modules

(Fa)slE ') N (F)s, — (F)sE) N (Fi)e,,

ie.amap f: (F2)s — (F1)s by Lemma 3.24(ii).
By the construction of the étale realization, f is compatible with the descent data

6(1)[E_1]I/’\ ©p1,0g (E)G[E_lm — 6(1)[E_1];7\ Qpg,0¢ (fi)G[E_l];\

for i = 1,2. So by Lemma 3.24(iii), the map f: (F2)s — (F1)s is compatible with the descent
data

6(1) Op1,& (*7:1)6 i 6(1) @py,& (‘7:1)6
for ¢ = 1,2. Thus, the fullness follows from Proposition 3.26. O

Remark 3.31. For F € CR¥(R)), the isomorphism (3.9) in the above proof shows that there is
an isomorphism F(Ry, (p))[p~}] = DY...(T(F)[p~!]) as p-modules over Ro[p~]. Since ¢ is an iso-

cris
u—0

morphism on DY.. (T(F)[p~']), Lemma 3.24(iv) for the map of prisms (&, E) === (Ry, (p)) =

cris

(Ro, (p)) gives a p-equivalent Ro[p~!]-linear isomorphism
(Ro @Ry Fe/uFs)lp™'] = Do (T(F) ™).

In Remark 4.35, we explain how to obtain the connection on DY, (T(F)[p~!]) and the filtration
on R®pg, DY (T(F)[p~']) from F under the above isomorphism.

We used the following lemma in the proof of Theorem 3.29(i).
LEMMA 3.32. As subrings of [[,cp W(fgb),

7b _ R
WE (@) n [ W(0k) = Au(R).
peP

Furthermore, we have

WR (=) D10 ] WO = Aw(R)[p"].

peP

Proof. Recall that Aj,¢(R) denotes W(Eb). For any x € Rb[(wb)*l], if its 7’-adic valuation as

element in fgb is non-negative for all p € P, then x € R. Thus, Eb[(ﬂb)_l] N lper (9% g
g
as subrings of (J[,cp (’)%)[(ﬂb)*l]. By considering the Teichmiiller expansion of p-typical Witt
g
vectors, we deduce both statements. O
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3.5 Height-one case
This subsection discusses the case where crystalline representations have Hodge—Tate weights in
[0, 1], and studies the relation to p-divisible groups. We keep Assumption 2.9: R is small over
Ok or R = Op. We first recall a main result in [ALeB23] on classifying p-divisible groups over
R via prismatic F-crystals on R. Let BT(R) denote the category of p-divisible groups over R
For a p-complete R-algebra with bounded p>-torsion, let Rgsyn denote the big quasi-
syntomic site of R (cf. [ALeB23, §3.3], [BMS19, §4]). By [ALeB23, Corollary 3.24], the functor
R) — Rqsyn sending (A,I) to R — A/I is cocontinuous, so it defines a morphism of topoi

u: Shv(R)) — Shv(Rqsyn).

For a p-divisible group H over R, we consider the sheaf M) (H) = &Et}%(u_lH, Op) on Ry.
Let @gn, (mr) be the endomorphism of 9y (H) induced from ¢ on O). The following is proved in
[ALeB23].

THEOREM 3.33 (Anschiitz—Le Bras). The assignment
H — (M) (H), oo, (1))

gives an equivalence of categories from BT(R) to Vectﬁ;,l] (Rp)-

Proof. Let H € BT(R). By [ALeB23, Theorem 4.71, Lemma 4.38], we see that (9 (H), oo, (m))
is an object in Vect“[f)vl}(RA). So the assignment defines a functor from BT(R) to Vect“[al](RA).
From [ALeB23, Theorem 4.74, Proposition 5.10], we deduce that this is an equivalence: note that
the proof of [ALeB23, Proposition 5.10] uses the existence of a quasi-syntomic cover R, of R,
which is constructed in the proof of [ALeB23, Proposition 5.8]. In our case, R = Ro[u]/(E(u))

with Ry unramified, so we can do a similar construction by extracting p-power roots of u. [

Remark 3.34. In [ALeB23], an equivalence between BT(R) and the category of admissible
prismatic Dieudonné crystals over R is proved for any quasi-syntomic ring R.

For H € BT(R), we write T,(H) for its Tate module. Note that we have a natural
Gr-equivariant isomorphism

Tp(H) = HomBT(EA)((Qp/Zp)EA , Hyn ).
PRrOPOSITION 3.35. There exists a natural Gr-equivariant isomorphism
Tp(H) = T(Mp(H)),

where T(MM)(H)) is the étale realization of My (H) € Vecty

0 1](RA) C CR™M(R)) as in
Proposition 3.27.

Proof. Since R is an integral perfectoid ring, the prism (Ai.¢(R), (£)) is the final object of

(RA)A. Let M = M) (H)(Aint(R), (€)). By [MT21, Proposition 1.39] (where the covariant version
of M (-) is used), we have a Gr-equivariant isomorphism

T, (H) = (M¥)>=,

We claim that the natural injective map
b

()"

is also surjective. Note that the natural map (MV)¥=!/p — (MY /p)¥=! is injective, and
(MY Jp)¥=1 c (M"Y /p)[(7*)~1])¥=!. On the other hand, by Proposition 2.16, we have

dimFP((MV/p)[(Trb)fl])s":l =rank, M = rankg,T,(H).

(MV)L’DZI — (Mv ®Ainf(§) W(E
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Thus, we deduce that the map (MY)?=!/p — ((M" /p)[(7*)~1])¥=! is bijective, and the claim
follows. Since (MY ®, @ W(E [(7) )P~ = (M @5, 7 WE [(x)71)#=")", it follows
from the definition of the étale realization functor that T),(H) = T'(9) (H)). O

Based on an example in [VZ10, §5.4], we now present an example of a crystalline rep-
resentation with Hodge—Tate weights in [0,1] that does not come from a p-divisible group.
By Theorems 3.29, 3.33, and Proposition 3.35, such an example implies that the inclusion
Vect?:(R)) C CR™M?(R)) is strict in general.

EXAMPLE 3.36. Let Ry = W (k)(T*!) and R = Ry Qw (k) Ok Suppose p > 3 and the ramifica-
tion index [K : Kp] is p. Let M be a free & /pS-module with a basis {e1, es, e3}, equipped with
Frobenius given by

A+T)Pt—u 0 u
o= 0 wP™t 1+ T)PuP~! — (14 17)
1 0 0

and with the trivial connection V(e;) = 0 for i = 1,2, 3. Note that for

0 0 uP
b= Q+T) - A+ TP o (w— QE TP+ T) — (1+T)Pu)
up~! 0 wPt(u — (1+T)P1)

we have o) = 1 = uPI3. Thus, M; € (Mod FI)El(¢, V0) in the sense of [Kim15, Definition 9.2].
By [Kim15, Theorem 9.8], 9t; is associated with a finite flat group scheme H; over R.

Let My be a free & /pS-module with a basis { f}, equipped with Frobenius given by o(f) = f
and with the trivial connection V(f) = 0. Then M, € (Mod FI)E!(¢, V°) and it is associated with
a finite flat group scheme Hs over R.

Let h: My — My be a map of torsion Kisin modules given by (1+7 u (14 T)u).
Since h is not surjective, the associated map Ho — H; of finite flat group schemes is not a
monomorphism. On the other hand, the induced maps Ha[p~!] — Hi[p~!] and Hy xg Of —
Hy x g O, are monomorphisms of finite flat group schemes over R[p~!] and Oy, respectively.

By [BBMS82, Théoreme 3.1.1], there exists a € R with a ¢ (7,1 +T) C R such that (H;)g
can be embedded into some p-divisible group H over R’, the p-adic completion of R[a~"']. Consider
the p-divisible group H' over R'[p~!] given by

H, = HR/[p—l]/(Hg)Rl[p—l],

and let V' be the associated representation of Gp. Since V 2 T,,(H)[p~!] by construction, V is a
crystalline representation of Gr with Hodge-Tate weights in [0, 1].

On the other hand, we claim that H’ cannot be extended to a p-divisible group over R’.
Suppose otherwise, i.e. suppose that H' extends to a p-divisible group Hp, over R'. Let R; be
the (m, 1+ T')-adic completion of the localization RzmlJrT). Let m € Spec Ry be the closed point,
and let U := Spec R; —m be the open subscheme of Spec R;. Note that by the construction
of h: My — My above, the induced map (Ha)r, — (Hi)gr, is not a monomorphism whereas
the restriction (Hz)y — (Hi)y to U is a monomorphism. In particular, by [Tat67, Theorem 4],
we have Hp, xp U = (H xp U)/(Ha)y as p-divisible groups over U. The isogeny H xp U —
Hp, X pr U extends to an isogeny i: H X g Ry — Hp, X Ry. The kernel of 7 is a finite flat group
scheme over R; whose restriction to U is (Ha)y. Since R; is a regular local ring of dimension
2, the kernel of i is then equal to (H2)g,, and (H2)g, embeds into H X gz R;. This contradicts
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that (H2)r, — (H1)R, is not a monomorphism, so H cannot be extended to a p-divisible group
over R'.

In the above example, the ramification index e := [K : Kj] needs to be large. In fact, when
e < p—1, such an example does not exist.

THEOREM 3.37 [LM20, Theorem 1.2]. Suppose e < p—1 (so that p > 3). Assume moreover
that Ry/pRy is a unique factorization domain (UFD), and that Ry is complete with respect
to some ideal J C Ry containing p such that Ry /J is finitely generated over some field. Then
for any T' € Repz "1 ) (GR), there exists a p-divisible group G over R such that T,(G) =T as
representations of Gp.

In particular, we have Vect[0 1](RA) CR[O 1 (R)p) under the assumptions of the above
theorem.
Remark 3.38. In fact, we have a little stronger result: Vect[o 1 (Rp) = CRE(\] %(RA) ife<p—1
and Ry is small over Ok. To see this, we use arguments in our proof of Theorem 3.29(ii) (the

cris

essential surjectivity) in §4. More precisely, for T' € Repzp [0,1] (Gr), the associated completed

prismatic F-crystal F € CRfE)’f](RA) satisfies Fg = 91 where 9 is given by the construction in
§4.4. By Remark 4.23, Fg is projective over & when e < p — 1. Hence, Proposition 3.26 implies

Vect‘[%ﬂl](RA) CR[O f] (Rp) when e < p —1 (even without the additional assumptions on Ry in

Theorem 3.37). By [LM20, Remark 4.6], we can similarly deduce Vect[0 }(RA) CRES w](RA)

when er < p — 1. In particular, when r = 0, we have Vect[o o](RA) = CR[O o}(RA) for any e.

3.6 Completed prismatic F-crystals on a smooth p-adic formal scheme

This subsection globalizes the construction and the main theorem in §3.4. Let X be a smooth
p-adic formal scheme over O . To define the category CRA""(%A) by gluing, we need to show
the descent property of completed prismatic F-crystals with respect to Zariski open coverings.

LEMMA 3.39. Let X = (¢ Spf Ry be an affine open covering of X. For a sheaf F of O \-modules
on X, it is a finitely generated completed prismatic crystal on X if and only if Flgprr, is a
finitely generated completed prismatic crystal on Spf Ry for every A.

Proof. The necessity is obvious. To show the sufficiency, assume that F|s g, is a finitely
generated completed prismatic crystal on Spf Ry for every A. Consider the quotient sheaf
Fn =F[(0, Ip)"F = Op,, ®0, F on X) for each n € N. Then (F3), forms an inverse sys-
tem of O)-modules and the natural morphism F — hm Fn is an isomorphism since it is so on
(Spf Ry), for each A. By Lemma 3.13, it is enough to show that F, is a finitely generated crystal
of (’)An—modules for every n € N.

Take any (A, 1) € X). Then there exist a finite affine open covering Spf A/I = Ué‘:l Spf R;
and an element A\; € A for each j =1,...,1 such that the map Spf R; — Spf A/I — X factors
through Spf Ry, C X. Since A/I — Rj is p-completely étale map, it lifts uniquely to a (p, I)-
completely étale map A — A; of d-rings (cf. [BS22, Construction 4.4]) and defines (A4;,14;) €
(Spf Ry,)p C X)p. Set B := Hé‘:1 Aj;. Then B admits a natural d-structure and (B,1B) € X).
Moreover, (A,I) — (B,IB) is (p, I)-completely faithfully flat. Let (B’, IB’) be the object of X
corresponding to the pushout of the diagram (B, IB) « (A,IA) — (B, IB) of maps of bounded
prisms over X. Note B'/(p,I)"B" = B/(p,I)"B ®/(,1y» B/(p,I)" B by Lemma 3.3. Let p; and
po denote the two structure maps B — B'.
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Since F, is a sheaf on X ), we have an exact sequence

0 — Fn(A,I) = Fu(B,1B) 222 7,(B, IB).

By the definition of B, we also have an identification F,(B,IB) = Hé’:1 Fn(Aj,IAj). B
assumption, Fn|(spf Ry), 15 @ finitely generated crystal of O)  -modules. Hence, we have a
B'/(p, I)™B'-linear isomorphism

n: B' ®p,. 5 Fn(B,IB) = F(B',IB') = B' ®,, 5 Fn(B,1B)

satisfying the cocycle condition over B/(p,I)"B ®4 B/(p,I)"B ®4 B/(p,I)"B. Since A/(p,I)"
— B/(p,I)"B is classically faithfully flat, it follows from faithfully flat descent that F,(A,I) is
a finitely generated A/(p, I)"-module and B ®4 Fn(A, I) = F (B, IB).

Let (A, 1) — (A, IA) be a map of bounded prisms over X. Set B = A®4B. Then B admits
a natural d-structure and (B, IB) € X A~ Moreover, (A, IA) — (B,IB) is (p, I)-completely faith-
fully flat. By the same argument as above, Fy(A,ITA) is an A/(p, )" A-module with B@A
Fn(A,IA) = F,(B,IB). Since F, l( (SPE ) is a finitely generated crystal of Oy -modules, we
also have B ®p Fy (B, IB) = F,,(B,IB). Hence, the natural map A ®a Fn(A, 1) — Fn(A, IA)
is an isomorphism since it is so after tensored with B /(p, I )B over A /(p, I )"fl Therefore, F,, is
a finitely generated crystal of O An—modules on X). g

Remark 3.40. An analogue of Lemma 3.39 holds for an étale covering of X in place of an affine
open covering. The verification is left to the reader.

Recall that for an integral domain R that is small over Ok, we defined the category
CR™¥(R)) of completed prismatic F-crystals on R in Definition 3.16.

LEMMA 3.41. Assume that X = Spf R is an affine formal scheme that is connected and small over
Ok and let F be a sheaf of O y-modules on X ) together with 1 ® ¢r: ¢*F — F. Then (F,¢F) €
CR™¥(R)) if and only if there exists an affine open covering X = |J,c, Spf R such that for each
A, Ry is connected and small over Ok, and (F|(spf ry )+ PF|(Spf Ry),) € CR™M?((Ry)p)-

Proof. The necessity is straightforward. For the sufficiency, choose a p-complete étale map Ry —
Ry that induces R — Ry after the base change along W — Ok. Set Rj =[] cp Rro and
extend the Frobenius on Ry to R(. Let &' := Rj[u] and equip it with Frobenius ¢ extending
the one on R by ¢(u) =wP. Via &'/(E) =[] ,cp Ry — R, we regard (&', (E)) as an object
of R). Since (&, (E)) — (&', (E)) is a classically faithfully flat map of bounded prisms over R,
the sufficiency follows from Lemmas 3.19 and 3.39. O

DEFINITION 3.42. Let X be a smooth p-adic formal scheme over Ok. A completed F-crystal
of Op-modules on X is a pair (F,pr), where F is a finitely generated completed crystal of
O)-modules on X and

pr: F —=F

is a ¢-semilinear morphism of O)-modules satisfying the following property: there exists an
affine open covering X = J, 5 Spf Ry such that each R) is connected and small over O in the
sense of Definition 2.1 and such that (F|(spf ry) ,» 7 |(spt ry),) € CR™?((Ry)p). When X = Spf R
is affine that is connected and small over O, this definition coincides with Definition 3.16 by
Lemma 3.41.

We also call such an object a completed prismatic F-crystal on X. The morphisms between
completed F-crystals of O)-modules are O)-module maps compatible with Frobenii ¢ .
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We write CR™¥ (%) for the category of completed F-crystals of Op-modules on X . Let
Vect?; (X)) denote the full subcategory of CR™?(X ) consisting of objects (F, px) where F is a
locally free Op-module. For a fixed non-negative integer r, we let CR[AO’vf] (%)) and Vecttar] (X))
denote the full subcategories consisting of objects which locally lie in CR[AO’% (Ra)p)-

Let X, denote the adic generic fiber of X. Recall that Vect(X),Op[1/Z,]7)#=" denotes
the category of crystals of vector bundles V on (X, Op[1/Z,];) together with isomorphisms
wy: *V =V (see [BS23, Definition 3.2]) and that there is a natural equivalence of categories

Vect(Xp, Op[1/Zp]0)7=" = Locg, (X,),
where Locgz, (X;)) denotes the category of étale Z,-local systems on X;, (see [BS23, Corollary 3.8]).

PROPOSITION 3.43. The assignment F — Fg :=lim O)[1/Z,]/p" ®o, F defines a faithful
functor

CRM? (X)) — Vect(X), Op[1/Zp]0)9="
Proof. Take an affine open covering X = |J, Spf Ry such that R, is connected and small over
Ok for each A. Then for each A, Fl(spir,), is naturally an object of CR™¥((R»)p)- Hence,

by Proposition 3.27(i), we obtain an object (F|sptry),Jét of Vect((Spf Ry)p, OplL/Tp)0)9=1
together with an identification

(Fl(spt ry) p)étl (Spf RyxxSpf Ry )y = (F(Spt Ry)p)étl (Spt RaxxSpf Ry)

satisfying the cocycle condition over (Spf Ry xx Spf Ry xx Spf Ry»)). Hence, they glue to an
object Fg of Vect(X), Op[1/Z,]7)#=". It is immediate to see that Fg is independent of the
choice of the affine open covering and this gives the desired faithful functor F — Fy. O

DEFINITION 3.44. Define a contravariant functor 7': CR™¥(X)) — Locz,(%X,) to be the
composite

CRM (X)) — Veet(X ), Op[1/Z)0)7" = Locz, (2,) L5 Locz, (%),

where the last functor sends L to its dual Zy-local system LY. We call the functor T' the étale
realization functor. Note that we use the contravariant convention as opposed to the covariant
convention in [BS23].

NOTATION 3.45. Let Locczr;f‘zo(f{n) denote the full subcategory of Locgz,(X;) consisting of
Z,-local systems L on X, such that L ®z, Q, is a crystalline local system on X, with non-
negative Hodge—Tate weights. See Appendix A for the definition of crystalline local systems
on X,.

THEOREM 3.46. Let X be a smooth p-adic formal scheme over O and let X, denote its adic
generic fiber. The étale realization functor T' induces the equivalence of categories

o

T: CRM? (X)) — Locg s (X).
Moreover, T is functorial in X.

Proof. By Theorem 3.29(i), we see that T factors through LOC%;S,zo(xn) C Locgz, (X;) and T
is fully faithful since both properties are of local nature. Once the full faithfulness is estab-
lished, it follows from Proposition 3.27(ii)(c), Theorem 3.29(ii), and gluing that T': CR™¥ (%)) —
LocZ - o(X;) is also essentially surjective. The functoriality follows from the construction
of T. n
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4. Quasi-Kisin modules associated with crystalline representations

The goal of this section is to prove the second part of Theorem 3.29 (the essential surjectivity
of the étale realization functor). Recall & = Ry[u] as in Notation 2.6. Given a Zy-lattice T' of
a crystalline representation of Gr, we construct a certain G-module equipped with a Frobenius
and a connection, which we call a quasi-Kisin module associated with T'.

In §4.1, we introduce quasi-Kisin modules (Definition 4.1) and attach a rational Kisin descent
datum to a quasi-Kisin module (Construction 4.3 and Propositions 4.6 and 4.9). The proof
crucially uses explicit computations of elements in Ag&x (Lemmas 4.4 and 4.8). Section 4.2
shows, under Assumption 2.9, that if (97, gn) is a finitely generated torsion free p-module of
finite E-height over &, then M[p~1] is projective over &[p~1] (Proposition 4.13). In §4.3, we
consider the special case where R = Or, and establish some preliminary results. In §§4.4 and 4.5,
we construct a quasi-Kisin module associated with T € Rep%r;f‘zo(g}g). Finally, §4.6 completes
the proof of Theorem 3.29 by spreading the rational Kisin descent datum to an integral Kisin
descent datum via the theory of étale ¢-modules.

Since some of the arguments work for a general base ring R, which may be of some interest,
we let R be a base ring over Ok as in Set-up 2.3 unless otherwise noted.

4.1 Quasi-Kisin modules and associated rational Kisin descent data

Recall that S denotes the p-adically completed divided power envelope of & with respect to
(E(u)), equipped with the Frobenius extending that on &. Let Fil'S be the PD-filtration of S.
Namely, Fil' S is the p-adically completed ideal of S generated by the divided powers ~;(E(u))
(j > i), where v;(z) == 27/j!. Let Ny,: S — S be the Ry-linear derivation given by N,(u) = —u,
and let 0, : S — S be the Ry-linear derivation given by 3u(ul = 1. Note that —ud, = N,. We also
have a natural integrable connection V =Vg: § — S ®p, g, given by the universal derivation
on Ry, which commutes with N,,.

DEFINITION 4.1. Let r be a non-negative integer. A quasi-Kisin module over & of E-height < r
is a triple (9, won, Von) where:

(i) 91 is a finitely generated &-module that is projective away from (p, E') and saturated;
(i) won: M — M is a ¢-semi-linear endomorphism such that (9N, pon) has E-height < 7r;
(iii) if we set M = Ry ®@,,r, PM/udM equipped with the induced tensor-product Frobenius, then

Von: M[p~ — M[p™] @p, Qr,

is a topologically quasi-nilpotent integrable connection commuting with Frobenius and
satisfies the S-Griffiths transversality (see the following).

Let us explain the definition of the S-Griffiths transversality. Set .# =S ®, s M and define
a decreasing filtration F'.Z[p~!] by

Flllp™l] = {zeAp ]| (1@ pm)(z) € (FII'S[p~"]) ©s M}
By Lemma 4.2, we have .#[p~'] = S[p~!] @ Rolp—1] M[p~'], which admits a connection
Voap-: Alp~ ') — Mp~'] @r, Qg

given by V_g1,-1] = Vgpp-1) ® 1 + 1 ® Vay so that ¢ is horizontal. Let 0y,: Mp~Y] — Mp~'] be
the derivation given by 9, g,-1] ® 1. We say that the connection Voy or V_,(,-1] satisfies the
S-Griffiths transversality if, for every 1,

Ou(F M) C Pt lp™'] and Vg (FH ™) C (F'll[p]) @y Qo-
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LEMMA 4.2. Let (9, pom) be a p-module finite torsion free over & of E-height < r such that
M[p~1] is projective over S[p~]. Let M := Ry ®, g, M/udM and A = S @, & M equipped with
the induced Frobenii. Consider the projection q: .# — M induced by the @-compatible pro-
jection S —» Rg, u+ 0. Then q admits a unique p-compatible section s: M[p~'] — .#[p~'].
Furthermore, 1 ® s: S[p™'] ®@p,-1) M[p~'] — .#[p~'] is an isomorphism.

Proof. Since M has E-height < r, the map
L@@ " Mp™'] = (Ro @p,ro M)[p~'] — M[p™"]

is an isomorphism, and the preimage of M is contained in p~"(¢*M). It then follows
from the standard argument as in the proof of [Kiml15, Lemma 3.14] that there exists a
unique p-compatible section s: M[p~!] — .#[p~!]. Furthermore, the map 1 ® s: S[p~!] @ Rolp—1]
M[p~1] — #[p~1] is a map of projective S[p~!]-modules of the same rank. Thus, by a similar
argument as in the proof of [Mo023, Lemma 4.17], 1 ® s is an isomorphism. ]

Let (M, pon, Von) be a quasi-Kisin module of E-height < r. We associate with (9, oo, Von)
a rational Kisin descent datum, namely, an isomorphism of 6(1)[p*1]-modules

F: 6V @, eM = 6Wp @, eM

satisfying the cocycle condition over &) [p~1] and compatible with Frobenius.
First, we construct an isomorphism of S™M[p~1]-modules

fs: S(l)[pfl] ®pr,5 M = S(l)[pil] @py,s M

satisfying the cocycle condition over S(2) [p~!] and compatible with Frobenius and filtration.
For each i = 1,...,d, let Or, ps: M[p~'] — M[p~!] be the derivation given by Ven: M[p~1] —
Mp~Y ®r, Qr, = @?:1 M[p~'] - dT; composed with the projection to the ith factor.

CONSTRUCTION 4.3. Let (9, oo, Von) be a quasi-Kisin module of E-height < r. Identify
Mp~1] with @ == S[p~!] ®p, M as in Lemma 4.2. Let 9,: Z — 2 be the derivation given by
Ous®1,and for i =1,...,d, let Or,: 2 — Z be the derivation given by 05, s ® 1 4+ 1 ® O, -
We define fg: S ®p,s D — S Qpo,5 D by

d
folw) = 3" 0008 - 088 (@) - 7y (pa(w) — pa () [ 7 (p2(T3) — pr(T3),
=1

where the sum goes over the multi-index (jo, . .., jq) of non-negative integers. Note that 9, and
Or, are topologically quasi-nilpotent, so the above sum converges. It follows from a standard
computation that this defines a ¢p-compatible isomorphism of S(l)[p_l]—modules fg: SM ®p1,S
2 =, 50 ®py,s 7 satisfying the cocycle condition over S@p1.

By the identification .#[p~'] = 2, we obtain a descent datum fg: SV [p~! @y, 5 .4 =N
SWp™) @py,.5 4. Since V. wp-1] satisfies the S-Griffiths transversality, we see that fg is
compatible with filtrations (see the following for the filtration on S(1)).

To further construct a rational Kisin descent datum, we need to discuss filtrations on
subrings of Afﬁix[p—l] such as &M and S, Recall that AE&&X is defined after Example 3.9.

Our argument in the following can be regarded as a counterpart of the argument about the

‘boundedness of descent data at the boundary’ in [BS23, §6.3] via the isomorphism AE&QX o

SW(E/p) (see also [DL23, Remark 2.2.14]). For any subring B C Ar(ﬁgx[p_l] that is stable
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under ¢A$;X[p_1]’ define
Fil"B := BN E™AW) [p~1].

In particular, we have Fil"& = E™& and Fil"6() = E&(M by [DL23, Corollary 2.2.9]. Note
that Fil™S™) is compatible with the PD-filtration on S, i.e

FﬂmS(l) = { Z Qig,... ia+1 Vio (E)’yh (y - U)7i2 (31 - Tl)  Yigga (Sd - Td)

to+-Fig412m

&N - ~
Qig,..rigyr € G [ ]7 Qig,.igyr 0 (as w0+ Fige1 — OO)}

LEMMA 4.4. Assume p > 3 and let r be a fixed non-negative integer. There exists an integer
ho > r such that if m > hy and € SW[E~Y] with E"z € FiI™ SO then ¢(z) = a 4 b for some
a € &M and b e FiImtl s (as elements in AE&QX).

Proof. By the explicit description of Fil™ S1)| since y — u = Ez, sj —T; = Ez; and z; € e,
we can write E"x = ZiZm ¢ivi(E) for some ¢; € 6 with ¢; — 0 p-adically as i — oo. Thus,

=D ¢le) < E;E)>‘

i>m

It suffices to show that there exists hg > r such that if m > hy then @(E™"/m!) = ay, + by, for
some a,, € G and by, € Fil™"! S. For this, note that ¢(FE) = EP 4 pt for some t € &. Thus,

p(E)"" = (EP +pt)" " = mZ( : )Epm " (pt)'.

Let vp(-) be the p-adic valuation with v,(p) = 1. Since v,(m!) < m/(p — 1), we have

m—-r

1 m-=r m—r—i i
am ::ﬁ Z ( ; >Ep( J(pt)t € &.

m/(p—1)

Consider tn = (1/m) Sciconyy (") p) Tpm —r = m/(p = 1) 2 m +1, ke
m>(p—1Dpr+1)/(p>—3p+1) (smce p > 2), then b, € Fil™™! S. Hence, we can set hg =
[(p = Dpr + 1)/(p* = 3p+ 1)1, 0

We now return to the discussion on the quasi-Kisin module (9, pon, Von). Set IM* =
6 @peM. For j=1,2, let MY =W e, sm mV=60g, sm*, and MY

max,j "
Aldelp™] @y, e M. If B is a subring of Ali[p™'] stable under ¢,

1] and if pj: & —

A&)}X [p~!] factors through B, then define
Fil'(B ®p,,6 M) = {z € BR), s M* | (1® pm)(z) € FiI'B ®,, s M}.
Note that
Fil'on* = {z € M* | (1 @ ¢)(z) € E'M}
and

Fil'o = {z e MY | (1@ 9)(2) € BV},
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Since 9t has E-height <7, 1 ® ¢: Fil"9* — E"9 is an isomorphism. Let ¢, : Fil"90* — 90t*
be the p-semi-linear map given by the composite

o®1

o FIF 22 FrR & 76 06 M 200 & @, 6 M = M.
Note that ¢, (Fil"9t*) generates 9* as an G-module. Similarly, we define the @-semi-linear map

Or: Filri)ﬁ;’(l) — Sﬁ;’(l).

LEMMA 4.5. We have (Fil'm,() ) o) = Firion (),

max,j

Proof. By assumption, (p,u) forms a regular sequence for 9 as an &-module. Thus, (p, F) is a
regular sequence for M, and M/EM is p-torsion free. Since p;: & — &M is classically flat by
Lemma 3.5, mg.”/Emy) is p-torsion free. In particular, E"Dﬁgl)[p*I] N imﬁl) = Eifmg-l).
It suffices to show
; _ 1 ioama(1
(B AR~ @y, ) NS = BV
as submodules of A\ [p7!] ®p,,6 M, which makes sense since M[p~] is projective over G[p~!]
by assumption. Since E"Al(ﬁé)lx[p*l] NGW[p~1 = FF&W[p~1], Lemma 3.1(i) implies that
; _ _ 1) — ; _ — o (1) 1 —
(B AR @50 M~ ) N 7] = 'SV @, 61 M) = B0 [p),
Since Eiﬁﬁ§1)[p_1] N fmg-l) = Eiimgl) by the above, the assertion follows. O
We can now show that fg defines a rational Kisin descent datum when p > 3. The same
result also holds for p = 2 (Proposition 4.9) with a similar but longer proof, and we postpone
the latter case.

PROPOSITION 4.6. Assume p > 3. Let (I, pon, Von) be a quasi-Kisin module of E-height < r.
There exists a unique rational Kisin descent datum

&0 @ e M= 6V @), 6 M
such that idga) ®, gm) f = fs, where fg is defined as in Construction 4.3.
Proof. For j = 1,2, we write ///j(l) for the image of S() ®p,,5 A in SMp=1] ®p, .5 4 under the
natural map. We show that there exists a unique & [p~1]-linear map
f:6WpT @y e M— 6V @), 6 M
such that idga) R, &) f = fs. Let hg > r be a constant given as in Lemma 4.4. Note that by the
explicit description of Fil™S™M | for any z € S, we have p'z = y + z for some y € &% and
z € Fil" S Thus, we can take a sufficiently large integer n > 0 such that f& = p"fs satisfies
fuaMy c ) and
faem) c o™ 4 Fitro s .z
as submodules of Aggx [p~1] ®py,& M*. We claim that
faey c oy ™ 4 Fims® g M

for any m > hg. We induct on m. Suppose that the claim holds for m (> hg). Let w € Fil"9*
(1)

viewed as an element in .#; "’ via p;. Then we can write

fé(w) =z+ Z a; w;
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for some z € sm*’(l), a; € FiImSM | w; € M* that are viewed as elements in AV via po with
2 2

a finite index set for i. Note that z € (FilTS)ﬁ;;gQQ) ﬂ?)ﬁ;’(l) = Fil’"i)ﬁ;’(l) by Lemma 4.5. Let
i = a;/E" € SO[EY. Then f4(w) =2+ Y, d} - E'w; with E"w; € Fil"O*.
We have

fsler(w)) = ¢p(2) + Z p(ai)eor(E"w;).

Since E"al € Fil™SW, we have p(a) =b; + ¢; for some b; € 6W and ¢ e FimHSM by
Lemma 4.4. Thus, f5(er(w)) € 9)?;’(1) + Film s ‘%2(1). Since ¢, (Fil"9*) generates M* as
G-modules, the claim follows.

Since M[p~'] is finite projective over G[p~!] by assumption and the filtration {Fil™ SM[p~1]}
is separated, we deduce that f¢(9*) C i)ﬁ;’(l) [p~1]. By increasing n if necessary, we may further
assume fg(9M*) C 9)?;’(1). Then fg(Dﬁ?(l)) C zm;(”, and

FaEroy ) o (Firal,) nmy™ = Firany ™

max,2

by Lemma 4.5. Consider the composite of the isomorphisms
10
FilI"on* = E(u)"9 = M.
Since p;j: & — 6W is classically faithfully flat by Lemma 3.5, we obtain the isomorphism
Fil’"i)ﬁ;’(l) zzmg.” of &W-modules for j =1,2. Via these isomorphisms, WE Filrﬂﬁi’(l) —
Fil”i)ﬁ;’(l) induces f': 8Wp~ @,,.6 M — SD[p~ ®,, 6 M. If we set f:=p "f, then we
have idgn) Ry s f = fs. The uniqueness is obvious.

By applying the same argument to fg ! we conclude that f is an isomorphism. Hence, f is
a rational Kisin descent datum. g

We now explain how to obtain a rational Kisin descent datum from fg when p = 2. We
consider two auxiliary subrings S, .S of AE&&X, defined by

~ E2_ E2 )
S=6 [2] {Za<2) a; €6 }
= >0
and
~ [ E4 E4 i
— W= = N i . (1)
e [2] - (£ (5) |eon])

Since ¢(FE) = E? +25(E) and 6 is 2-adically complete, both S and S are stable under the
ring endomorphism ¢ on AR, The following is shown in [DL23].

LEmMMA 4.7 (Cf. [DL23, Lem. 2.2.12]). Suppose p = 2. The following properties hold:

(i) w(ASQX) C S and (S) C S;
(ii) for every positive integer h, we have

i

~ E
. (1) qh g — =
a; €6 } and Fil"S { E alQLi/4J

i>h

i

~ E
Fil"S = { > Gi i

i>h

a; € 6(1)}

LEMMA 4.8. Assume p = 2, and let r be a fixed non-negative integer. There exists an integer
ho > r such that if m > hg and x € S[E~1] with E"x € FiI™ S, then ¢(z) = a + b for some a €

&M and b € FimT! § (as elements in Aggx).
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Proof. By Lemma 4.7(ii), we can write

for some ¢; € 6. Thus,

It suffices to show that there exists ho > r such that if m > hg, then go(Em_T)/QLm/4J = ay;, + by
for some a,, € (2,u)™ """™/4G and b, € Fil™*!1 §. For this, note that

- m=r < m-—=r m—r—i i
P(E™T) = (B2 +20(E)" " =) < . >E2< )(26(E))".
i=0
We have
— i m—r m —7T Q(mf'rfi) i mefLm/4J
4m = olm/a] ,>LZ/4J ( ; >E (26(E))" € (2,u) G.

Set by = (1/204) 30 i gy (7T ERTTTO(20(E))E TE 2(m — 7 — [m/4) +1) > m+ 1,
then by, € Fil™"! S. Since

m m 3
| = > - = Zm—
Q(m T {4J+1>_2<m T 4—|—1> 2m 2r 4+ 2,

we can set hg = 4r + 1. O
Using Lemmas 4.7 and 4.8, we now construct a rational Kisin datum when p = 2.

PROPOSITION 4.9. Assume p = 2. Let (I, pon, Von) be a quasi-Kisin module of E-height < r.
There exists a unique rational Kisin descent datum

e 6(1)[]9_1] ®@p,,6 M = 6(1)[17_1] Opy,6 M

such that idga) ®,, g0) f = fs, where fg is defined as in Construction 4.3.

Proof. For j = 1,2, write .///j(l) for the image of S() ®p;,5 A in SMp=1] ®p;,5 A under the
natural map. We first claim that fgq(9*) C S [p™!] ®p,.6 M. For this, take a sufficiently large
integer n > 0 such that f§ := p" fg satisfies fé(///l(l)) C ///2(1) and

Faemy c oy ® 4 Firs@ .Y
as submodules of AE&;X [p~1] ®py,e M*. Let w € Fil"M*. We can write

fo(w) =2+ Z a;w;

for some z € 93?;’(1), a; € FiI'SW | w; € M* (with finitely many indices i). Note that z €
Firams Wy o™ = Filrony™ by Lemma 4.5. Since a; € Fil”S®), it follows from the explicit

max,2

description of Fil"S() that a/ := p"(a;/E") lies in AR We have fs(p'w) =p"z+>,a; - E"w;
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with E"w; € Fil"9* as elements in AS&X[ 1] Qpy,e M*, and so

Falor(pw)) = ¢r(p"2 +Z<P Yeor (E™w;).

Note that ¢(a;) € S by Lemma 4.7(i). Thus, we deduce fs(pr(w)) € S[p] Qpy,e M. Since
o (Fil"9*) generates 9™ as G-modules, the claim follows.

Let a € Fil'S. Since [(i —7)/2] — (|i/2] —r) >0, it follows from Lemma 4.7(ii) that
p"(a/E") € S. Furthermore, ¢(S) C S by Lemma 4.7(1). Thus, starting with fg(9*) C
S [p~1] @po,e M, we can repeat a similar argument to further obtain

fs(°) € S[p™"] @y M.
As in the proof of Proposition 4.6 with Lemma 4.8 in place of Lemma 4.4, we deduce fs(9*) C
Dﬁ;(l) [p~1]. The rest of the proof proceeds exactly as in the proof of Proposition 4.6. O

We end this subsection with a simple lemma.

LEMMA 4.10. Let 9 be a finitely generated S-module which is projective away from (p, ) and
saturated. Then the natural map

W @, 6 M — (SN[ ®,,6 M) NSV [ET]) @,,6M)
is an isomorphism.
Proof. Note first that the maps
W @, esM—6Yp e, sM and 6W @, sM—WE ®, sM

are injective by the same argument as in the proof of Lemma 3.24(iii).
We need to show that the injective map

W ®,, 6 M= (V[ "] @), 6 M) N (SVET]) ©,, 6 M)
is also surjective. Suppose mnot. Set £:=(&6W[p~1] ®p,.e M) N (6(1)[E_1]1/;\ ®p,,6 M) for
simplicity. For any Z,-module @), write Q/p for Q/pQ. Then the induced map
(1)/]0 ®p,;,& M — L/p

is not injective since &M[p~1] ®p,,6 M= L[p~!]. On the other hand, by the saturation
assumption, we have M[p~1] NIM[E~!] = M. Thus, by Lemmas 3.1(i) and 3.5,

(6 @, 6 Mp~1) N (6 @), 6 ME]) =6V @), M.
This implies that the map
6V /p®,, eM—SWIE)/pe, eM=6W[E"/pe, M
is injective. This factors through the map &M /p ®@p,,6 M — £/p, which therefore is injective.

This gives a contradiction, and the surjectivity follows. ]

4.2 Projectivity of Mi[p~!] under Assumption 2.9

In this subsection, assume that either R is small over O or R = O (Assumption 2.9). We
show that if (90, pgn) is a finitely generated torsion free ¢-module of finite E-height over &, then
M[p~] is projective over G[p~!] (Proposition 4.13). For this, we need two preliminary results.

LEMMA 4.11. Let k1 be a perfect field of characteristic p, and let A be a power-series ring
W (k1)[s1,---,S4]. Suppose that A is equipped with a Frobenius endomorphism ¢ extending the
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Witt vector Frobenius on W (k1). Then there exist t1, ..., t, € A such that A = W (k1)[t1, ..., td]
and ¢(t;) has zero constant term for each i.

Proof. Write  ¢(s;) = s¥ + p(fi(s1,...,8q4)) + pbi,  where  fi(s1,...,8,) € A  satisfying
fi(0,...,0) =0 and b; € W (ky). Write v,(-) for the p-adic valuation on W (k;) with v,(p) = 1.
Suppose b; # 0 for some 7, and define I = {j | vp(b;) = mini<i<q{vp(bi)}}.

Let ig € I, and let ¢;, € W (k1) such that ¢(c;,) = b;,. We claim that if we replace s;, by
Si — DCigy, then @(s;) = ¥ + p(fl(s1,...,8q4)) + pb} satistying vy (b;) > min{vy(b;), vp(bs,) + 1} for
eachi=1,...,a,and v,(b ) > v,(bi,) + 1 and vy (b;) = vp(b;) if ig # i € I. Here, f; and b; denote
the corresponding power series and the constant replacing f; and b;, respectively. To check the
claim, note that

P(sig — pcig) = s+ D(fig (51, -+ 54)) + Pbig — @ (pCiy)
= (S’Lo — PCig +pci0)p +pfio(817 <.y Sig — PCig +pci()> ey Sa)'
Since vy (ciy) = vp(bi,), we have v, (b} ) > vy (i) + 1. For i # ig, we have
p(si) = 87 +p(fi(s1,-. ., 8ig — PCig +DCig) - - -, Sa)) + Pbi-

So vy (b)) > min{vy(ciy) + 1, vp(bi) }. Furthermore, if ¢ € I (with ¢ # 4p), then v, (b;) = vp(b;). This
proves the claim.

Thus, if #1 > 2, then after replacing s;, by s;, — pci,, #1 decreases by 1. If #I =1, then
after replacing s;, by s;, — pci,, we have

. / . )
jmin {up(bj)} 2 1+ min {vp(b:)}.

By repeating the above process, we deduce that there exist ¢i,...,cq, € W(ky) such that for
t; = s; — pci, p(t;) has zero constant term for each i. It is clear that A = W (k1)[t1,...,t]. O

LEMMA 4.12. Let k1 be a perfect field of characteristic p over k, and let A be a power-series ring
W (k1)[t1,...,ta]. Suppose that A is equipped with a Frobenius endomorphism ¢4 extending
the Witt vector Frobenius on W (ky) such that ¢ (t;) € A has zero constant term for each i.
Let G4 = Au] equipped with Frobenius extending that on A by p(u) = uP. Let M be a finite
G 4-module equipped with a p-semi-linear endomorphism @g;: M — N such that the induced
map 1 ® g (64 ®pe, N[E(u)™ — N[E(u)"!] is an isomorphism. Then N[p~?] is projective
over & 4[p~1].

Proof. When a =0 (i.e. A=W (ky)), the statement is proved in [BMS18, Proposition 4.3]. For
the general case, we prove by reducing to the case a = 0 as follows. Suppose a > 1. Let J be the
non-zero Fitting ideal of M over & 4 with the smallest index. It suffices to show that J&4[p~!] =
S a[p~!]. Assume the contrary. Since Fitting ideals are compatible under base change, we have

TS AlB(u) ] = ¢, ()G alE(u)”] (4.1)
as ideals of G4[E(u)~!], and so
(&a/NE) ™ = (6a/pe,())E(w) ™. (4.2)

Write Kj = W(ky)[p~!]. Let B be the rigid analytic open unit ball in coordinates
(t1,...,tq,u). Hence, the set of Kj-valued points of B is given by

{(t17---7ta7u)€K1a ‘OS ’tzlalu‘ <1}7

where we use the p-adic norm such that |p| = p~!. We have a natural map &S4[p~!] — Op(B)
whose image is dense. Note that by [DeJ95, Lemma 7.1.9], we have a functorial bijection between
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the set of maximal ideals of G 4[p~!] and the points of B. Moreover, the Frobenius ¢g ,on Gy
induces an endomorphism on B.
For any real number ¢ with 0 < ¢ < 1, set

M, = {(z1,...,2Za41) E R [0 < 27 < ¢}
and
Vei={(21,...,%ar1) ERT [0 < 2 <1for 1 <i < a,241 =}

Consider the Kj-valued points of Spec(&Sa[p~t]/J), and let Z = {(|t1], ..., |tal, |u|)} be the
set of corresponding (a + 1)-tuple norms. Define

Z'={(ts],. - [tal, Jul) € RO < [ti], lul <1, (Jpa(ta)], [ul?) € Z}.

By (4.2), we have Z — Vi =Z" = V. For i =1,...,a, let y;, t; € K1 with 0 <|y;| <1 and
0 < |ti] < 1 such that ¢ 4(t;) = y;. Note that by the assumption on @4(t;),

lyil < max{|t:|?,p~"[tal, ..., p" " [tal}
for each 4. Thus, we have
N < 1P g .
max {[yil} < max {|&:[", L[} (4.3)

First we show that Z contains a point with |u| < |7|. Suppose otherwise. Recall that
we assume J&4[p'] # SalpT!] so that Z #0. Since Z —Viy = Z'— V|, we deduce that
if ZNV.#0, then ¢ = |r[P"" for some integer n > 0. Moreover, the rigid analytic Ki-space
(Spf(&.4/J))"8 has finitely many connected components since they correspond to the idempo-
tents of the noetherian ring (&4/J)[p~!] (see [Marl7, paragraph before Lemma 4.13]). Thus,

there exists a finite set of non-negative integers {ni,...,n;,} such that Z NV, # 0 if and only if
c = |m|P”"" for some i. Without loss of generality, let n; be maximal among {n1,...,n,,}. Since
Z = Vg = Z — Vix|, we have Z N V\W\p*("l“) # (), which is a contradiction. Thus, Z contains a

point with |u| < |7|.

Next we show (0,...,0) € Z,i.e. J&4[p~!] C (t1,-..,ta,u)Sa[p~]. Suppose otherwise. Then
there exists f(t1,...,tq,u) € J whose constant term is non-zero, and let b be the norm of the
constant term. Since Z contains a point with |u| < |7, we deduce from Z — V|| = Z’ — V| and
the inequality (4.3) that Z N M, # () for any sufficiently small € > 0. However, |f(t1,...,tq, u)| =
b>0if ([t1],..., |tal,|u]) € M for any sufficiently small € > 0, which is a contradiction. Thus,
0,...,0) € Z.

On the other hand, we claim J&a[p~!] ¢ I&[p~!] where I = (t1,...,t,) C &4. Suppose
otherwise. Take n > 0 such that J' :=p"J satisfies J' C I&4. We show by induction that
J'C(p,)™NI (as ideals of &4) for each m > 0. The base case m =0 is clear. Suppose
J' C (p,I)™NI.By (4.1) and the assumption on p4(t;), we have

E@) T C o((p, )™ NI) C (p, )" NI

for some integer s > 0. Thus, it suffices to show that if f € & satisfies E(u)f € (p, 1)1 N1,
then f € (p, I)™*! N I. For this, choose a set of generators g1,...,g, € A = W (k1)[t1,...,t.] of
(p, )™t N I. We have E(u)f = 25:1 gih; for some h; € G 4. Note that we can write

e—1
h; = Z ciju’ + E(u)h]
=0
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for some ¢;; € W(k1)[t1,...,ts] and h, € & 4. Thus,

W) f = Z(ZW)U + Bu Zgzhf

Setting u =7 in the above equation, we get 25;0(2?:1 cijgi)™ =0 as an element in
Ok[t1, ..., ta], where K':= W (k1) @) K. This implies Zi’:l ¢ij9i =0 for each j=0,...,
e —1 and, thus, f = Zle gihl € (p, )™ N I. Hence, J' C (p,I)™ NI for each m > 0. Since
S 4 is (p, I)-adically separated, we have J' = 0 and, thus, J = 0, which is a contradiction. This
proves the claim.

Finally, consider the p-equivariant projection G4 — G4, == 64/16 4 = W (k1)[u]. Let Jy C
&4, be the image of J. Since J&4[p~!] ¢ IS[p~!], we have Jy # (0). Moreover, Jo& 4,[p~!] #
S 4,[p7!] since (0,...,0) € Z. On the other hand, (4.2) gives via G4 — G4,

(S40/J0)[E(uw) ] = (S.4,/ 084, (o)) [E(u) 1],
which gives a contradiction by the case a = 0. Hence, J&4[p~!] = &4[p~1]. O
Let us return to the discussion on the projectivity of 9[p~!].

PROPOSITION 4.13. Suppose that R satisfies Assumption 2.9: R is small over O or R = Oy,
If (M, pop) is a finitely generated p-module over & of finite E-height, then 9M[p~!] is projective
over Slp~1].

Proof. The case where R = Op follows from [BMSI18, Proposition 4.3] for O, (cf.
Notation 2.8) and the classically faithful flatness of Splp~'] — &y[p~!] = Ok, [u][p'].
Consider the case where Ry is the p-adic completion of an étale extension of W (k)(T:!, .. Tjﬁl).
Note that the Krull dimension of Ry is the same as that of W (k)(T!, .. Ti1> Let m C Ry
be any maximal ideal, and let (Rp)% denote the m-adic completion of the localization (Rg)m.
Since m N W (k)(TE ... ,Tﬂ) is a maximal ideal of W (k)(T{,... ,Tdﬂ), the residue field
km = (Ro)h/m(Ro)a is a finite extension of k. Note that since p € m and ¢(m) C m, (Ro)4
is equipped with the Frobenius induced from Ry. Let f: W (k) — (Rp)} be the compos1te
W (k) — W (KT, ... T — (Ro)f, which is compatible with ¢. Since W (k) — W (ky) is
étale, f factors uniquely through W (k) — W (k) — (Ro)n- By unicity, W (kn) — (Ro)4, is com-
patible with ¢. Since p ¢ m?, {p} can be extended to a minimal set generating m, and the map
W (km) — (Rp)4, extends to an isomorphism

W (kw)[t1, .- ta] — (Ro)A.

Furthermore, by Lemma 4.11, ¢1,...,t4 can be chosen such that ¢(t;) has zero constant term for
each i (where ¢ on W (kw)[t1,. .. ,td]] is given by the above isomorphism).

Now, let B C S[p~!] be any maximal ideal. Then the prime ideal q = & NP is maxi-
mal among the prime ideals of & not containing p. Thus, n = v/q + pS is a maximal ideal
of &. Let &) be the n-adic completion of the localization &,. By the above discussion,
S = W (kn)[t1,- .., tq][u] for some finite extension ky of k and t1,. .., tq such that W(k,) — &,
is compatible Wlth ¢ and ¢(t;) has zero constant term for each i.

Let M, := &) @g M equipped with the induced tensor-product Frobenius. By Lemma 4.12,
IMa[p~!] is projective over &, [p~1]. Let Py C &4 [p~!] be a maximal ideal lying over p C S[p~1].
Note that the natural map on localizations

(S[p~' Dy — (SRl D,
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is classically faithfully flat. Since (Splp™'])p, ®epp-1 Malp™'] is finite projective over
(SA[p~ ), we deduce that (S[p~!])g Defp-1) MIp~'] is projective over (S[p~!])p. This holds
for any maximal ideal p C S[p~!], so M[p~!] is projective over &[p~1]. O

4.3 Crystalline representations and Breuil-Kisin modules in the CDVR case
We follow Notation 2.8. In particular, recall that O denotes the p-adic completion of R().
Then L is a complete discrete valuation field whose residue field has a finite p-basis given by
{T1,...,T;}. We first consider crystalline representations of Go, = Gal(L/L), and study certain
properties of the associated Breuil-Kisin modules. By abuse of notation, we also write Gy, and
Gy _ for the Galois groups Go, and g@m, respectively (see (2.2) for the definition of O7 ).
Fix a non-negative integer r. Let V' be a crystalline Q,-representation of G, with Hodge-Tate
weights in [0,7]. By [BT08, Proposition 4.17], there exists an Sy-module M, satisfying the
following properties:

— 9N, is finite free over &y ;
— My, is equipped with a ¢-semi-linear endomorphism gy, : M — M, with E-height < r;
— set

My = OLO ®‘P70L0 EDIL/uSJTL

and equip it with the induced tensor-product Frobenius; we have a natural isomorphism of
Lo-modules M[p~!] = DY. (V) compatible with Frobenii; via this isomorphism, My [p~!]

admits a topologically quasi-nilpotent connection Voy, .

We call the triple (Mg, on,, Von,) the Breuil-Kisin module associated with V. Note that
[BTO08] considers My, /udMy, instead of the Frobenius pullback My. However, we have a natural
isomorphism of Lo-modules My [p~!] = (ML /uMy)[p~!] compatible with Frobenii. Following
[Kim15], we use M, since it is more suitable when we consider the filtration.

Let S, be the p-adically completed divided power envelope of &, with respect to (E(u)). The
Frobenius on &, extends uniquely to Sy. For each integer i > 0, let Fil'S;, be the PD-filtration
of Sy, as before. Let N,: S, — Sr be the Op,-linear derivation given by N, (u) = —u. We also
have a natural integrable connection V: S; — Sp, ®op, QOLO given by the universal derivation
on Or,, which commutes with N,,.

Set

My =S @y, M
equipped with the induced Frobenius. If we let ¢: S, - Op, denote the p-compatible projection
given by v — 0, it induces the projection ¢q: .#7 — M.
We define two filtrations on .#7 [p~!] and study their compatibility. Let
91 = SL[p_l] ®Lo Dcris(V)'
By the above isomorphism M [p~!] 2 DY. (V) and Lemma 4.2, we have a ¢-equivariant iden-
tification #ZL[p'] = Z1. Let Ny: 91, — 21, be the Lg-linear derivation given by N, s, ® 1,
and let V: 91, — 9, oy, @@LO be the connection given by Vg, ® 1 +1® VD&S(V)' Define a
decreasing filtration on 2, by Sp[p~!]-submodules Fil'?;, inductively as follows: Fil’2;, = 2,
and
Fil''' 9, = {z € 9 | Nu(x) € Fil'Zy, ¢:(x) € Fil'' (L @1, Déis(V))},
where ¢r: 91, — L ®p, DY.. (V) is the map induced by Si[p~!] — L, u+ m. The following is
proved in [Mo0023]. Note that [Mo023, §4.1] assumes p > 2 and r < p — 2, but the results we cite
in this subsection hold without these assumptions.
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LEMMA 4.14 [Moo23, Lemma 4.2]. The connection V on 9y satisfies the Griffiths
transversality:

V(FI7,) C Fil'Zy, @0, Qo,, -
For the second filtration, let
oy p~] ={x € ALp~"] | (1@ pom,)(x) € (FI'SLlp™']) ©e, ML}

We show that these two filtrations coincide under the identification .7 [p~!] = 21, and, thus,
Von, satisfies the Sp-Griffiths transversality. For this, consider the base change along Or, —
W(ky) as in Notation 2.8. Note that W(k,) is a CDVR with perfect residue field. Let S, be
the p-adically completed divided power envelope of &, := W (kgy)[u] with respect to (E(u)). It
is equipped with ¢, PD-filtration, and NV, similarly as above. Let

My = Sy Vs, Mp, My =5 p6, Mg, and Dy = Sy[p~") Oy (r,) Deris(Va,)-

We can identify .#,[p~'] = 2, compatibly with ¢, and define two filtrations Fili@g and
Fi#,[p~'] similarly as above. By the proof of [Liu08, Corollary 3.2.3], we have

Fil'9, = F'ly[p ).

~

Note also Kog @1, Deyis(V) — Deis(Vlay,) by [Ohkl13, 4B].

eris(
LEMMA 4.15. Under the p-equivariant identification .#1[p~1] = 91, we have

F'9; = Fil'9;.
In particular, the triple (My, pon, , Von, ) is a quasi-Kisin module of E-height < r over &..

Proof. We consider 9; as a Sp[p~!]-submodule of D, via Sq®s, D1, = Y4. Recall that
7w is a uniformizer of Or, and let e=[L: Ly|. Note that any x € S; can be written
as © =Y ~o(E(u)/i! )25 1awuf) for some a;; € Op, (with a;; — 0 p-adically as i — o0).
Furthermore, the a;; can be seen to be uniquely determined by inductively setting v = 7. The

analogous statement holds fqr the elements in Sy and, thus, we have S; N Filng = Fil‘'Sy.
Let z € Fil'Z;. Since Fil'9;, C Fil'Y, = F'9,, we have

(1®¢)(x) € (Fil'Syp™']) ®e, My
Since Sp[p~'|NFil'Sy[p~!] = Fil’SL[p~!] and My [p~!] is projective over &1 [p~!], we deduce

(1® ¢)(z) € (FiI'SL[p7!]) ®e, My, by Lemma 3.1(i). Thus, Fil'?;, C F'9y,.
Conversely, let = € F'9y,. Note that

(L ®Lo De/rls(v)) N FIIZ(KQ ®W(kg) CI‘lS(V|GK )) = Fﬂl(L XLy De/rls(v))

Hence, we deduce by induction on i that 2, NFil'g, = Fil'Zy,. Since F'9;, C F'9, = Fil'9,,
we have x € 91, N Fili.@g = Fil'?;,. Hence, F'2;, C Fil'Z;,. The second assertion follows from the
first and Lemma 4.14: Nu(Fil”l@L) C Fil'9;, by definition, and it is straightforward to check
du(Fil't1 2, C Fil'Z;, by induction. O

Next we explain how to recover V from % as a representation of Gj. Note that
the embedding & — W(Obz) given in §2.3 extends to Sp — Aqis(O7), which is compat-
ible with ¢, filtrations, and Gj_-actions. Consider an A 1is(Op)-semi-linear Gy -action

on Ais(O7)[p™ N®s, 21 given by the G~ -action on Aqis(Of)[p~ 17 and the trivial GN -action
on Z1,. We extend this action to a G- actlon as follows (see [Mo0023, §4]). For each i = 1,....d,
write Np,: 91, — 2y, for the derivation given by V: 91, — 9y, oy, Q@LO = @i:l 95, - dlogTZ-
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composed with the projection to the ith factor. Note N1, = T;07, for the derivation Or,: 1, —
91, in §4.1. For o € G, denote

o b
and pi(o) ::([g;’]]) (i=1,...,d).

2

Note that log(e(c)) and log(pi(o)) lie in Fil'Aeis(Of). For any element a®x €
Ais(O7) [p~Y ®s, 21, define

o(a®@x) =Y o(a)vig(—log(e(0)))i, (log(pa(0))) - - - vig (log(pa(0))) - NN - - Nit (),
(4.4)

where the sum ranges over the multi-index (ig,1,...,7) of non-negative integers. This sum
converges since Vg, is topologically quasi-nilpotent and since v;(—log(e(o))), v;(log(pi(o))) —
0 p-adically as j — oo. It follows from standard computations that this gives a well-defined
A 1is (O )-semi-linear G'r-action compatible with ¢. This G'r-action preserves the filtration since
log((0)), log(pi(0)) € Fil' Acyis(OF) and since N, and V satisfy the Griffiths transversality by
definition and Lemma 4.14.

Let

V(21) = Homg, pil (2L, Acris(O7)[p ).
Using the identification

Homs, Fil (21, Acis(OF)[p~ 1)) = Homg,, pit o (Aais(O0) [P Y] ®s, 21, Acis(O7) [P 1),

we define the Gp-action on V(2p) by setting o(f)(z) =o(f(c" (z))) for any =€
Acris(of) [p_l] ®SL .@L.

PROPOSITION 4.16 (Cf. [Mo023, §4]). There is a natural G-equivariant isomorphism
V(2L) = V.

Proof. This is proved in [Mo023, §4], and we sketch the proof here. We first study how the above
constructions are related to étale p-modules. If we let M = O¢ 1 ®g, My, with the induced ¢,
then My, is an étale p-module over Og . Consider the Gioo—equivariant map

Home, (M, &) — TV (M) = Home, , (M, OF,)

induced by the embedding @‘f — @grL By [Mo0023, Lemma 4.6], this map is an isomorphism.

The embedding ¢: @f — Aris(O7) induces a natural Gioo—equivariant injective map

Home, (Mg, 8¥)p~] — V(Zr)
by Lemma 4.2. On the other hand, any f € V(ZL) induces a g-equivariant map f': DY. (V) —

cris

Bais(Op) via the map DY (V) — 2. We see that f’ is also compatible with filtration, since

cris
Bis(O1) = Bcris((’)Kfq) and the induced map DY, (Vg Kq) — BcriS(OKfq) is compatible with fil-

tration by the proof of [Bre97, Lemme 8.1.2] and [Liu08, § 3.4]. Thus, we obtain a natural injective
map

V(L) — HomFil,tp(D«\:/ris(V)7 Bais(0F))-
Since Homg, (M, éf)[p‘l] and V are Q,-vector spaces of the same dimension, it suffices to

show that Hompij,,(DYs(V), Beris(O1)) admits a Gr-action compatibly with V() and there

exists a natural isomorphism Hompjj (D% (V), Beris(OF)) = V' as G-representations.
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Write D = D}, (V') for simplicity. Lemma 2.11 yields a Beis(O)-linear isomorphism
Beis(Op){ X1, ..., Xa} = OBis(O7)
sending X; to T; ® 1 —1® [Tf] The projection
pr: OBeris(O7) — Beris(O7)
given by X; =T; — [Tf] — 0 induces the projection
pr: OBeuis(O1) ®4y,00 D — Bais(O1) ®uy,n0 D

compatible with Frobenii and filtrations (after tensoring with L over Lg). Here, t1: Lo —
OB.,is(O7) is given by T; — T; ® 1, and t2: Lo — Beris(O7) is given by T; — [Tf]
We define a Bcris(Of)—linear section s to pr as follows. For z € D, let

s(2) = S (— 1)ty <log ({%)) -, <log <[TT‘;>>NT N (),

)
where the sum ranges over the multi-index (iy,...,44) of non-negative integers. The map s is a
well-defined section, and it induces an isomorphism

S Bcris(Of) ®L2,L0 D i (OBcriS(Of) ®L1,L0 D)VZO

of Beis(O1)-modules, compatibly with filtrations and ¢ (see [Moo23, §4.1]). Moreover, if we
define G'r-action on Beis(O1) ®u,,1, D by

ola@z) =Y ola)y, (log(p(0))) - vi,(log(pa(e))) - Njt - - Nyt ()
for 0 € G and a ® = € Beris(O7) ®u,,1, D, then by [Moo23, §4.1], the map
V(Z1) — Hompj, (D, Beis(Of)) = Hompjl, o (Beris (O) ®1y,00 D, Beris(O1))
is G -equivariant, and s induces a (G -equivariant isomorphism
Homgsi1 (D, Beris(O7)) & Hompy v (D, OBeyis(O7)) = V.
This shows that V(2[) = V as representations of G. O

Since HomgL,w(DﬁL,éf)[p_l] =V as (G -representations, we have a natural map

M, — éf ®z,, VV. Via the embedding Gu %, Biris(O1) — OBis(O1), this induces a map
Mpp~ - VY ®q, OBuis(Of). Composing this with the section M, [p~Y — AL[p~'] in
Lemma 4.2, we obtain a (-compatible map

Mp[p~'] = OBais(O1) ®q, V.
Write D = DY. (V) as before. If we compose the above map with

cris
-1

OBuis(O1) ®q, V¥ = OBeis(Of) @1,,10 D 25 Beis(Of) @110 D,
then we obtain a (-compatible map
My [p™"] = Beris(O7) @1y, D-
We use the following proposition in §4.5.
PROPOSITION 4.17. The image of the above map Mp[p™'] — Beyis(O) @,,,1, D lies in
D =Lo®r, D C Beris(OF) ®uy,10 D.

Furthermore, the induced map My[p~'] — D is an isomorphism of Lo-modules.
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Proof. The construction of G-equivariant isomorphisms
V(21) — Hompji (D, Bais(01)) — V

and diagram chasing implies that the above map injects into D C Bcris(Of) ®1y,10 D- Since
My [p~'] and D are Ly-vector spaces of the same dimension, the induced map Mp[p~'] — D is
an isomorphism. O

4.4 Construction of the quasi-Kisin module I: definition of 9t
We now work over a general base ring: consider R and & = Rp[u] as in Set-up 2.3 and
Notation 2.6.

Let V' be a crystalline Q,-representation of Gr with Hodge-Tate weights in [0, r], and let T’
be a Z,-lattice of V stable under Gr-action. Let

M = MY(T) = Homg,, (T,0F)

be the associated étale (¢, Og)-module. In the following, we construct a quasi-Kisin module over
G of E-height < r associated with 7.

Consider the base change along the map R — Op, as in Notation 2.8. If we consider T as a rep-
resentation of G, '= Gp, via G, — Gg, then T is a Z,-lattice in a crystalline G';-representation
with Hodge-Tate weights in [0, 7]. Note that M, == O¢ 1 ®0, M = Homgiw (T, @EYL) as étale
(¢, Og.1,)-modules.

LEMMA 4.18. There exists a unique &y -submodule 9, of M stable under Frobenius such
that the following properties hold:

— M, with the induced Frobenius is a quasi-Kisin module over &, of E-height < r; furthermore,
I, is free over &y ;

— O¢,L @, M = My;

— ifwelet My = Or, ®p,0,, My /uMy, then My [p~1] = DY, (V|q,) compatibly with Frobenius
and connection.

Proof. By [BTO08, Corollaire 4.18] and Lemma 4.15, there exists a quasi-Kisin module 9 over
&, of E-height < r such that 91 is free over G, and Op,[p~!] ®p,0p, N/uN = D4 (Vig,) com-

cris
patibly with Frobenii and connections. By [Gao20, Lemma 4.2.9], My, = N[p~!] N M, satisfies
the required properties. The uniqueness also follows from the cited lemma. ]

CONSTRUCTION 4.19. Let T' be a crystalline Z,-representation of Gr with Hodge-Tate weights
in [0, 7] and keep the notation as above. We set

M :=M(T) =M, "M C M.

This is an &-module. Moreover, since My, and M are p-adically complete and torsion free, so
is 9.

We show that 91 is a quasi-Kisin module over & of E-height < r satisfying Og ®g I = M
and 67 ®s M = M.

PROPOSITION 4.20. The G-module M is finitely generated. Furthermore, we have M[u~1] N
Mmp~'] = Mm.

Proof. Note that the cokernels of the maps &;, — Og 1 and Og — Og 1, are p-torsion free. Thus,
the maps My /pM;, — My /pMp and M /pM — My /pM are injective. By the proof of [LM20,
Lemma 4.1], the intersection My, /pMt;, N M /pM inside My, /pM, is finite over &. To show that
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9M is finite over &, it suffices to prove that the natural map 9/pI — My /pMr N M /pM is
injective since & is noetherian and 9 is p-adically complete.
We have

PN, NN =pINy, "M C pMp N M.
Since pOg¢ 1, N Og = pOg and M is classically flat over Og, we have pMp N M C pM. Thus,
P NI C pMy N pM = pIN,

where the last equality follows from the p-torsion freeness of My. Thus, the map 9t/pINt —
My /pMy is injective. Since this map factors as M /pIt — My /pMy N M /pM — My /pIN g, we
deduce the desired injectivity.

For the second part, since 9 is torsion free, we have 9t C M[u~] N M[p~!]. On the other
hand,

Mu ) NMp~] c Mefu nMp[p~] = My,
and, thus,
M NMp~] c Mu~]NM, € MM, =M. O

Since the Frobenius endomorphisms on M and 97, are compatible with that on Mp, , we
have an induced Frobenius @gy: 9T — M.

ProproSITION 4.21. The &-module MM with Frobenius has E-height < r.

Proof. Since the composite of maps & ®,eM — O ®, 0, M 189, M is injective, 1®
om: 6 @y e M — M is injective. Consider the natural map & ®, e O — Og @y, 0, O¢. Since
6 ®y,6 O¢ and O¢ @y, 0, Og are p-adically complete and p-torsion free by Lemma 2.7 and since
the induced map &/(p) ®y.c O — Og/(p) @yp,0, O¢ is an isomorphism, the map & ®, s O —
O¢ @y,0¢ O¢ is an isomorphism. Thus, the map

6 R, M — O ®y 0, M

is an isomorphism. On the other hand, since Ry/pRy has a finite p-basis which is also a p-basis
of Or,/pOL,, the natural map &/(p) ®, e 61 — 61/(p) ®p,e, Sr is an isomorphism. Since
6 ®y,6 61 and &1, ®, e, &1 are p-adically complete, the map & ®, e &1 — 6 ®, 6, 6 is
an isomorphism. Hence,

G} ®(p,6 S);)’tL - 6L ®¢,6L 9:'nL

is an isomorphism.

Now, let x € M. There exists a unique y; € Og @y 0, M =6 @y, e M such that (1®
©)(y1) = E(u) 2. On the other hand, there exists a unique y2 € 61 R, 6, ML = 6 Vy, s M,
such that (1 ® ¢)(y2) = E(u)"z. Hence, we have

y1 =y2 € (6 ®p,6 M)N (6 ®,6 M) =6 ®p,c M
by Lemma 3.1(i) since ¢: & — & is classically flat. O

Next we show that 901 satisfies Og @g IM = M and &1, ®s M = M. For this, we consider
another description of 9t as an inverse limit of p-power torsion G-modules as follows. Let

f)ﬁL,n = mL/pnf)ﬁL, Mn = /\/I/pn/\/l7 and ML,n = /\/lL/p"/\/lL.
Then My, , and M,, are submodules of My, ,,, and we set
m(n) =Mrn N M, CMp,.
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For any positive integers ¢ > j, let ¢; ; denote the natural projection M; — M, given by modulo
p’, as well as its restriction g; j: M;) — M. Note that M;_; is naturally isomorphic to p/ M.
We have the following commutative diagram.

qi,5

ker(g; ;) = M) —— M;)

L

qi,j

Mi—j € M, M;

LEMMA 4.22. We have a natural isomorphism

—

Proof. Recall that 91 is p-adically complete. By a similar argument as in the proof of
Proposition 4.20, the natural map 9/p"M — M,y is injective for each n >1. Thus, the
induced map

£ 00 = lim MY/p I — lim My,

is injective. On the other hand, let z = (x,),>1 € @n sm(n). Note that z,, lies in both Mz, ,, and
M, as an element in My, ,,. Thus,

ze (1mMe,) N (limM,) C lim M,
n n n
ie.x € ML N M C Myg. This implies that z lies in the image of f and, thus, f is surjective. [

Remark 4.23. Suppose r =1 and e < p — 1. By the above lemma and [LM20, Propositions 4.3
and 4.5], 9 is projective over &. For general r > 0, as noted in [LM20, Rem 4.6], the G-module
I is projective when er < p — 1. In particular, when r = 0, 91 is projective for any e.

PROPOSITION 4.24. The following properties hold for M,

(i) 9My) is a finitely generated &-module;
(ii) Sﬁ(n) [u’l] = M, and &, ¥ m(n) = flan;
(iii) 9,y has E-height < 7.

Proof. Since the composite of maps & @, e M) — O @y 0, My, 1%, M,, is injective, 1 ®
01 6 ®p, M) — My is injective. Thus, all statements follow from the same argument as in
the proofs of [LM20, Lemmas 4.1 and 4.2] (where the case r = 1 is studied). O

Consider the set 7, consisting of G-submodules 9 of 9,y that are stable under ¢, have
E-height < r, and satisfy M[u~!] = M,,. Note that <7, is non-empty by the above proposition.
Let

LEMMA 4.25. The following properties hold for Sﬁ?n):

(i) M) € s
(i) D) C Gnrn(M2,,1).

Proof. (i) Let e := [K : Ko] be the ramification index. We first show that for each fixed n, there
exists an integer s = s(n) such that u*M,) C N C M, for all N € o,. Choose an integer

1152

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007097

COMPLETED PRISMATIC F-CRYSTALS AND CRYSTALLINE Zp—LOCAL SYSTEMS

a =a(n) > r such that F(u)* =u® mod p". Let M € &, and L := M,)/MN. Without loss of
generality, assume £ # 0. Note that 90, and M have E-height <r and, thus, E-height < a.
Hence, we have unique &-linear maps wgn(n): M) — @M,y and Yo N — ™I such that
oo (1 ® pg) = u*Id o and Yo, © (1® gpm<n)) = u*Idy-om,,,,-

The exact sequence 0 — 9 — M,) — £ — 0 induces the following commutative diagram
with exact rows.

0 N O M) ©* L 0
l 1Qpn l 1®¢om ) l 1Q¢e

0 N M) g 0
l Y l Yom i Ve

0 o*N "My o 8 0

Here, 1 ® ¢¢ and ¥g¢ are the maps induced by 1® PM ) and wgm(n), respectively. We have
oo (1®pg) = uldyrg.

We show that u*C =0 for s = [(ea+p)/(p—1)]. Since Nu~'] = My, = M,)[u™'], £ is
killed by some u-power. Take an integer [ > 1 such that '€ = 0 and u!~' € # 0. Pick € £ so that
u =tz #£0. Set y =1 ®z € ¢*L. Then wPly = 1@ ulz = 0 but w?~ Dy =1 ® (u!~'z) # 0, since
¢: & — & is classically faithfully flat by Lemma 2.7. Let z = (1 ® @g¢)(y) € £. Since u'€ = 0,
we have u!z = 0 and, thus,

0=1te(u'z) =u' (Yoo (1@ pe))(y) = u“ty.

Thus, ea +1 > p(l —1),ie.l < (ea+p)/(p—1). Hence, u*L = 0 for s = [(ea + p)/(p — 1)]. This
implies that w*M,) C My, C M), and My, [u™1] = M,,.

It remains to show that Em‘(’n) has FE-height <r. Let =z € snt‘(’n). We need to show there
exists y € go*Sﬁ‘(’n) such that (1 ® ¢)(y) = E(u)"z. For each M € o7,, we have z € M, and there
exists y € *N, which is unique as an element of ¢*M,,, such that (1 ® ¢)(y) = E(u)"z. Since
@: & — G is finite free by Lemma 2.7, we deduce

ve [ (6@, =60,6 ( M ‘Jt) = @ M.
Neoy Ne.op,

(ii) Since Sﬁ‘(’n+1)[u_1] = M1 and ¢ni1n(Mpy1) = M, we have qn+17n(9ﬁ‘(°n+l))[u_1] =

M,,. Thus, it suffices to show that an,n(SmE’nH)) has E-height < r. Let R = Ker(gp41,n). We

have the following commutative diagram with exact rows.

o}

0 —— Sp*ﬁ - - @*m(n+l) [ ¢*qn+17n(m?n+l)) — 0

l | 100 |15

o dn+1,n °
0 R (nt1) —— Qnr1n(M 1) —— 0

Since ¢p41,, (9 ) C My, the rightmost vertical map is injective. From the first part, 1 ® ¢

(n+1)
in the middle column has cokernel killed by F(u)". Hence, the cokernel of 1 ® ¢ in the rightmost

column is killed by E(u)". O
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PROPOSITION 4.26. The natural maps
OcRcs M —>M and G RsIM — My,

are isomorphisms. Moreover, I is projective away from (p, E), the Frobenius @9y has E-height
< r, and rankgp,-yM[p~!] = rank g, ,-1 Dy (V).

cris

Proof. We first prove Og ®c M = M. Since M ®g Og and M are p-adically complete and M
is p-torsion free, it suffices to show that the induced map

f1 Os @ M/pM = (M/pI)[u™"] — M,y

is an isomorphism. It is shown in the proof of Proposition 4.20 that 91/p9 — 90,y is injective.
Hence, f is injective. By Lemmas 4.22 and 4.25(ii), we have 9t/pIt D Sﬁ‘(’l) and, thus, f is
surjective by Lemma 4.25(i).

For the second isomorphism, note that & ®e M/pM — &1 ®e M) = My 1 is injective
since & — &, is classically flat. Since &7 ®g M is p-adically complete and My, is p-torsion
free, 6 ®s M — My, is injective. In particular, &; ®s M is a finite torsion-free &y-module.

Furthermore, since & — &y, is classically flat, we have
(6L ®c M) [ufl] N(6L ®s mt){pil] =MRs S

by Lemma 3.1(i) and Proposition 4.20. Thus, &, ®g M is a finite free &r-module.
Since M has E-height < r by Proposition 4.21, 6 ® g MM with the induced Frobenius has
E-height < r. We have

Og 1 ®s, (6L @eM) = O 1, R0, (O @ M) = O¢ 1, @0, M = Og 1 Qg, Mr.

Hence, we deduce 61, ®@e MM = My, by [Gao20, Propositions 4.2.5 and 4.2.7].
Finally, we deduce from the first isomorphism and Propositions 4.13 and 4.21 that 901 is
projective away from (p, E), the Frobenius @gy has E-height < r, and

ranke[p_qim[p*l] = rankp, M = rankq,V = rankpp,—11Dgi(V). O

4.5 Construction of the quasi-Kisin module II: definition of V
We further suppose that either R is small over O or R = Op, (Assumption 2.9).
Let M = Ry ®@y,r, MM /ud. The Ry-module M is equipped with the induced tensor-product

Frobenius. We construct a natural yp-equivariant isomorphism M[p~!] = DY. (V), via which we

define V on M[p~!]. Consider the ¢-equivariant map Ry — W (k,) as in Notation 2.8, which
naturally factors as Ry — Or, — W (k).

LEMMA 4.27. The natural géw—equivariant map
Homg (M, &™) — TV (M) = Homo, (M, OF) = T
is an isomorphism.

Proof. For each p € P, consider the base change along R — (Rp)" — ((’)ng)A as in
Notation 2.8. The induced map

Home (M, 67) — Home, ,(M, OF)

is an isomorphism by [Fon07, § B Proposition 1.8.3]. Since Sw = @gr N W(Rb) by definition, we
deduce the statement from Lemma 3.32. g
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PROPOSITION 4.28. Suppose that R satisfies Assumption 2.9. There exists a natural
(V).

Proof. Let M =S ®, e IM equipped with the induced Frobenius. Consider the (p-compatible
projection S — Ry given by u +— 0. This induces the projection ¢q: .# — M. By Lemma 4.2,
Propositions 4.13 and 4.21, the projection ¢ admits a unique g-compatible section s: M[p~!] —
Mp~'], and 1@ s: S[p~ @pypp-1) M[p~'] — A [p~"] is an isomorphism.

We first construct a -equivariant map M[p~'] — DY, (V) similarly as in §4.3. By
Lemma 4.27, we have a natural map 91 — S ®q, VV. This extends to a map .# —
OB..is(R) ®q, V" via the embedding " % Buis(R) — OBegis(R). So by composing with the
section s: M[p~'] — .#[p~'] given in Lemma 4.2, we get a @-compatible map

M[p™'] = OByis(R) ®q, V. (4.5)

By Lemma 2.11, we have the projection pr: OBgs(R) — Beris(R) given by Ti®1—1®
[T?] + 0. This induces the projection

pr: OBcriS(R) ®L1,R0 Dé/ris(v) - Bcris(ﬁ) ®L2,Ro D;/ris(v)v

where ¢1: Ry — OBygis(R) is the natural map given by T; — T; ® 1 and t9: Ry — Bepis(R) is the
embedding given by T — [T?].
If we compose the map (4.5) with

@-compatible isomorphism M[p~!] = pY

cris

OBeis(R) 2, V" " OBois(B) @0, 5, Dl (V) 2 Bes(B) @15, D (V).
then we obtain a p-equivariant map
VK M[p_l] - BcriS(R) ®15,Ro Deris(V)-
By Proposition 4.17, for each p € P as in Notation 2.8, we have
F(Mp~1]) € Diis(Vla,) = Lo ®@ro Degis(V) € Baris(O1) ®u5, R0 Deris (V-
We claim that
Bais(R) N Lo = Ro[p ']

as subrings of HpeP B.is(Op). Since Or, C Agis(Og) for each p € P, it suffices to show

Acris(R) N OLO = Ro.
We clearly have Ry C Ais(R) N Op,. Let x € Agis(R) N Ofr,. Then
f(z) e " NOL, = Ro  [] O,
peP

which implies x € Ry. This shows the claim.
Hence, we have by Lemma 3.1(i) that

FMp™]) € Beais(R) @pypp-1) Diris(V)) N (Lo @ pypp-1) Deris(V)) = Desss(V),

since DY.. (V) is projective over Rg[p~!]. This gives a natural g-equivariant map f: M[p~!] —

cris
D(\:/rls(v)

It remains to show that f is an isomorphism. Note that by Proposition 4.17, it suffices to

consider the case where Ry is the p-adic completion of an étale extension of W (k)(T:=1 ... ,T(jd).

By Proposition 4.26, M[p~!] is projective over Ro[p~!] of rank equal to rank DY. (V).

cris
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Moreover, by Proposition 4.17, the map

Lo ®re M[p~'] = D¥ss(Va,) = Lo @Ry Deis(V)

cris
V.(V) is injective. Let I C Ro[p~!]
be the invertible ideal given by the determinant of f. Since 1® p: @*M[p~!] — M[p~!] and
1®¢: ¢*DY. (V) — DY. (V) are isomorphisms, we have
p(I)Ro[p™] = IRo[p™"].

Thus, I = Ro[p~!] by Proposition 4.30 (which is based on Lemma 4.29), and f is an
isomorphism. O

induced by f is an isomorphism. In particular, f: M[p~'] — DY,

LEMMA 4.29. Let k1 be a perfect field of characteristic p, and let A = W (ki1)[t1,...,tq] be a
power-series ring. Suppose that A is equipped with a Frobenius endomorphism ¢ extending the
Witt vector Frobenius on W (k;). Let I C A[p~!] be an invertible ideal such that IA[p~!] =
o(I)A[p~]. Then I = A[p~1].

Proof. Suppose I # A[p~!]. Since A4 is a UFD, so is A[p~!]. Hence, I is principal, say, generated
by . Since p is a prime element of A, we may choose x so that x € A\ pA and z is not a unit
in A. Write o(x) = 2P + py for some y € A. Since p{z, we deduce from p(I)A[p~!] = TA[p~!]
that y = xz for some z € A. Thus,

o(x) = z(zP~ + pz).

Here xP~! + pz is not a unit in A since it lies in the ideal (z,p) which is contained in the maximal
ideal of A. Note that pt (zP~! + pz) as elements in A. Thus, 2P~! + pz is not a unit in A[p~!],
which contradicts p(I)A[p~!] = IA[p~1]. Hence, I = Alp~1]. O

ProrosiTiON 4.30. Suppose Ry is the p-adic completion of an étale extension of
W (k)(T{, ..., T7Y). Let I C Ro[p~'] be an invertible ideal such that ¢(I)Rolp~t] = IRo[p~].
Then I = Ry[p~'].

Proof. Let B C Ro[p~!] be any maximal ideal. Then the prime ideal q = Ry N‘P is maximal
among the prime ideals of Ry not containing p, and n := v/q + pRy is a maximal ideal of Ry. Let
(Rp)h be the n-adic completion of the localization (Rg)n. As in the proof of Proposition 4.13,
(Ro)h = W (ky)[t1,-..,tq] for some finite extension k, of k and t1,...,t; such that W(k,) —
(Rp)% is compatible with .

Since the natural map Ro[p~'] — (Ro)A[p~!] is classically flat, we have I(Ro)A[p~]
(Ro)A[p~!] by Lemma 4.29. Let B, C (Ro)A[p~!] be a maximal ideal lying over 8 C Ro[p~
Note that the natural map on localizations

(Rolp™ D — ((Ro)a P~ Dp,

is classically faithfully flat. Since I((Ro)3[p '])p. = (Ro)a[lp '])gp.. we deduce that
I(Rolp~ ") = (Ro[p™'])sp. This holds for any maximal ideal 8 C Ro[p~'], so I = Ro[p~']. O

J

By Proposition 4.28, the connection on DY (V') defines a connection
Vor: Mlp~'] = M[p™"] @R, Q-

Finally, we show that Vgy satisfies the S-Griffiths transversality. For this, we study the compat-
ibility between two filtrations as in §4.3. By Lemma 4.2 and Proposition 4.28, we have a natural
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(p-equivariant isomorphism

M~ = S[p7] ®pe M= S~ @R, Degis(V).
Let 2 := S[p~ Y ®r, DYi(V), and identify 2 = .#[p~'] via the above isomorphism. Let
Ny: 9 — 2 be the Rop-linear derivation given by N, = N, s ® 1, and let V: ¥ — 2 Qp, g,
be the connection given by Vg ® 1 +1® Vpv_(y). We consider two filtrations on 2 = .#[p~1].
For the first filtration, set Fil’2 = 2, and inductively define for i > 1

Fil'9 .= {x € 2| Nu(z) € Fil' !9, ¢.(2) € Fil'(R®p, Deis(V))},

cris
where ¢r: 2 — R®@p, DY

Foalp']={z e Sp ] @peM| (13 pm)(z) € (FII'Sp~"]) ®c M}.
LEMMA 4.31. We have

(V') is the map given by u — . For the second filtration, let

Fi.#p~ ' = Fil'g.
Furthermore,
V(Fil'?) C Fil'"'2 @g, Qr,.

In particular, V satisfies the S-Griffiths transversality.

Proof. By Proposition 4.26, the first part follows from a similar argument as in the proof
of Lemma 4.15 using the base change along Ry — W(ky). The second part on the Griffiths
transversality follows from a similar argument as in the proof of [Mo023, Lemma 4.2]. Note that
N, (Fil'2) C Fil'"'2 by definition, and it is straightforward to check 9, (Fil'?) C Fil'"'2 by
induction. O

Combining this with Proposition 4.26, we conclude the following.

PROPOSITION 4.32. Suppose that R satisfies Assumption 2.9. With the above structures, 9 is
a quasi-Kisin module over & of E-height < r.

4.6 Proof of the second part of Theorem 3.29
Throughout this subsection, we suppose that R satisfies Assumption 2.9.

Let V be a finite free Q,-representation of Gg, which is crystalline with Hodge-Tate weights
in [0,r]. Let T'C V be a Z,-lattice stable under the Gr-action, and let 9t be the quasi-Kisin
module over & of E-height < r associated with 7" as in Construction 4.19 and Proposition 4.32.

By Propositions 4.6 and 4.9, we have a rational Kisin descent datum

F:6Wp @, eM =6V p ! ®,,s M.

On the other hand, since T is a finite free Z,-representation of Gg, [BS23, Corollary 3.8] (see
also [MW21, Theorem 3.2]) gives an isomorphism of 6(1)[E*1]I/,\—modules

f1: 6(1)[E_1]1/7\ ®p1,(’)5 M i 6(1) [E_l]z/; ®p270€ M

satisfying the cocycle condition over G2 [E_l];\. Here, by Proposition 4.26, M = Og @g M
is the étale p-module finite projective over Og associated with T (contravariantly). Note
SWIE) ®), ¢ M=6W[E)®, 0. M since O @ M = M.
PROPOSITION 4.33. Under the identification

SWIET N @y e M =SWET ] @00 M,
the maps ide(l)[Efl]z/)\[p—l] Bsm) p-1] f and idG(U[E*lH,\[p*l] ®6(1)[E,1]$ f1 coincide.
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To show Proposition 4.33, let us consider the base change along Ry — Op,, as before. Recall
that (&z,(E)) = (Or,[u], (E)) is a prism in Ry with the structure map R — O, = &1,/(F).

Let (G(Ll), (E)) be the self-product of (&, (£)) in (Or)). Considering (G(Ll), (E)) as a prism in
R), the maps f and f induce the descent data

f: 8 @pe, M 5 6V Y @y, M
and
fl,L3 G(Ll)[E_lm ®Op,&, ML — 6(Ll)[E_1]1{7\ Bps, &1 ML,

respectively. Here, M; = &1 ®s M by Proposition 4.26. Since the map &) — G(Ll) is injective,

Proposition 4.33 follows if we show that fr, and fi r, coincide over G(Ll)[E_l]g[p_l]. For this, we

need the following proposition.

PROPOSITION 4.34. There exists an &p-submodule My, C My with Ny [p~!] = My[p~!] such

that fr induces an isomorphism of G(Ll)-modules

fr: 65 @p e, N = 6L @6, N
Furthermore, M, can be chosen to be finite free over &, of E-height < r and stable under pay, .

Proof. Since p;: G — G(Ll) is classically faithfully flat by Lemma 3.5, the first part follows
directly from the proof of [Dri22, Proposition 2.8]. We recall some points here. Note that for any
S -submodule 91, C My, the induced map p;N;, — p;IMy, for i = 1,2 is injective, where p;Iy,
denotes 6%1) ®p;.6;, Ni. Take an integer n > 0 such that p” fr, maps p79M 7, into p3IM ;. It suffices
to find an &p-submodule 7, C My, such that p"My, C Nz and fr, maps piIy to p3Ny; then it
follows from the cocycle condition on fr, for My, [pil] that the induced map fr,: piN; — P3N
is an isomorphism (see also the proof of [Ogu84, Theorem 1.9]). The map f7, induces a map

frepi(My /p" ML) — pa(p~ "M /My).
This induces a morphism

B: My /p "My, — (p™"M/My),
where ® := (p1).p5. Let 911, be the kernel of the composite

My — My /p" My, L ®(p~"9my, /).

Then fr(piNr) C p3Mr, and by the proof of [Dri22, Proposition 2.8] (cf. also the proof of
[Ogu84, Theorem 1.9]), we further have fr(pi9r) C p3Ny.

Since fr, is compatible with Frobenius, 8 as above is compatible with ¢. Thus, 91, constructed
as above is stable under . Consider the exact sequence

0—Ny — M — ONL) — 0,

where B(My) C O(p~ "M /M) denotes the image of My, under the above composite. Under
the classically faithfully flat base change along &5 — &, this induces an exact sequence

0— 6y ®s, N — 6y ®s, M, — 6, ®s, B(M) — 0.

Note that 6, ®g, M is a Kisin module of E-height < r that is finite free over &,. Furthermore,
B(My,) is u-torsion free since p~ "My, /My, is finite free over &1, /p"Sy, and so &, ®g, B(M)
is u-torsion free. Thus, &, ®s, S(My) is a torsion Kisin module over &, of E-height < r by
[Liu07, Proposition 2.3.2]. Then &, ®g, Ny, is a Kisin module of E-height < r finite free over
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Sy by [Liu07, Corollary 2.3.8]. Since &7, — &, is classically faithfully flat, 91y, is finite free over
&1 and has E-height < r. O

Proof of Proposition 4.33. By the above proposition, N7, := O¢ 1, ®s, N, is an étale p-module
(1)[E_1]/\

finite free over O¢ 1, and f, induces an isomorphism of & »-modules

fr: G(Ll)[E_l]z/a\ ®p1,(95,L NL — G(Ll)[E_l]z/)\ ®p2705,L NL
(2)[E_

satisfying the cocycle condition over &, 1];,\. As in the proof of Proposition 3.27, this cor-
responds to a finite free Z,-representation 7" of Gp. Furthermore, by [BS23, Corollary 3.7,
Example 3.5], 7" is determined by the Gp-action on W(O%[(Trb)_l]) ®0¢ , No- On the other
hand, note that (Acis(Of), (p)) € R) similarly as in Example 3.8, and the composite S —
St — Acis(Op) gives a map of prisms (S, (p)) — (Aais(O1), (p)) over R. Thus, by the con-
struction of the descent datum f and definition of fg in Construction 4.3, the G-action on

Acris(Of) [p_l] ®<p,6L mL = Acris(of) [p_l] ®SL @L (Wlth @L = SL[p_l] ®<P S, mL) is given by

ola®z) =Y o(a)d0o - O (x) - (o H%z - [17),

for 0 € G, and a®z € Auis(O7) [p~1) ®s, 21, (where the sum goes over the multi-index
(Jo, - -, Ja) of non-negative integers). By [LL23, §8.1], this is the same as the Gr-action given by
(4.4), and it is proved in § 4.3 that this gives a Q,-representation of Gy, isomorphic to T[p~1] = V.
Thus, T[p~!] = T'[p~!] as representations of G . This proves the claim that f, and fi 1, coincide

over G(Ll)[E_l]Q [p~!] and, thus, Proposition 4.33. O

By Proposition 4.33, we see that the descent data f and f; induce a map
f:6W @, M — (W[ @p,e M) N(SDET]) @p, e M).
End of the proof of Theorem 3. 29(@@) By Lemma 4.10, we see that f and f; induce a map
funt: 6V @) e M — 6W @), & M.

By applying a similar argument to f~! and ff , we deduce that fi,; is an isomorphism. Namely,
fint 1s a descent datum. Since f is compatible with ¢, so is fint. By Proposition 3.26, the triple
(M, @, fint) gives rise to a completed prismatic F-crystal F on R with 9 = Fg. It is straight-
forward to see T(F) = T. Hence, the functor T' in Theorem 3.29 is essentially surjective (when
R satisfies Assumption 2.9). O

Remark 4.35. We continue the discussion in Remark 3.31. For F € CRM?(R)), let V =
T(F)p~i e Repms>0(gR) Consider the p-equivalent Ry[p~!]-linear isomorphism

h: (Ro ®p,r, Fe/uFe)lp™] = Dess(V)
in Remark 3.31. Note that Fg[p~!] = S[p~!] ®, ¢ Fe by Lemma 3.24(iv) for the map of prisms

(&,E) — (S, (p)). Thus, h induces a p-compatible isomorphism Fs[p~!] 2 S[p~! ®@r, DY (V)
by Lemma 4.2.
Since F € CR¥(R)), we have an isomorphism of SM-modules
6V ®,.6 Fs — 6W @, s Fe.
Under the map ¢: &) — S this induces an isomorphism of S [p~!]-modules
SO @p1s Fs = SV @ps Fs (4.6)
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Note that fg reduces to the identity after the base change along S — § and it satisfies the

cocycle condition over S, Let v: Ry @w Ry — Rp be the multiplication, and let R(()l) be the
p-adically completed divided power envelope of Ry @y Ry with respect to Ker(v). We also write

v: R((]l) — Ry for the induced map. Consider the map S — R(()l) given by u,y — 0. From the

isomorphism (4.6), we obtain an isomorphism of R(()l)[p_l]—modules

1 _ = 1 _
Fro: B 1071 @pyio Diis(V) = R [p7 Y @py 1y Do (V)

such that fgr, reduces to the identity after the base change along v and it satisfies a similar
cocycle condition. Since Q) Ro = Ker(v)/(Ker () where (Ker(r))? denotes the divided square
of Ker(v), the isomorphism fg, gives an integrable connection V: DY, (V) — DY, (V) ®g, O Ro-
On the other hand, we have the natural integrable connection on DY (V) induced by that on
OB..is(R) (cf. §2.2). In the proof of Theorem 3.29(ii) on essential surjectivity, the isomorphism
(4.6) is obtained by Construction 4.3 using the natural connection on DY (V) as in §4.5. Thus,
V given above agrees with the natural connection on DY, (V).

Define the filtration on Fg[p~!] by
FFslp] = {z e Sp ™' @peFs | (1®p)(x) € FI'S[p™ '] ®¢ Fe}-
Let Fil'(R ®p, DY...(V)) be the quotient filtration given by F'Fg[p~!] under the map ¢,: S — R,

Cris
u+ 7. By the proof of Theorem 3.29(ii), Lemma 4.31 and a similar argument as in the
proof of [Bre97, Proposition 6.2.2.3], this quotient filtration agrees with the natural filtration
on R®p, DY (V) as in §2.2. In this way, we can directly obtain the filtered (p, V)-module
(DY (T(F)[p™ 1), ¥, Fil'(R @5, DYy (T(F)[p~)))) from F.

cris

COROLLARY 4.36. The étale realization functor gives an equivalence of categories from
Veth[f),T}((OL)A) to Repz "o, (GL)-

Proof. By Remark 3.18, the category CRE(\)’f]((OL)A) is equal to Vect‘[% r]((OL)A)- Thus, the

statement follows from Theorem 3.29. O

Remark 4.37. As a corollary, we can deduce that the construction of Brinon and Trihan in [BT08]
is independent of the choice of a uniformizer and the Kummer tower.

Appendix A. Crystalline local systems

Let X be a smooth p-adic formal scheme over Ok and let X denote its adic generic fiber. In
this appendix, we define the notion of crystalline local systems on X, which is used in § 3.6. The
definition of crystalline local systems goes back to the work [Fal88, V f)] of Faltings. Tan and
Tong [TT19] also defined crystalline local systems in the unramified case O = W and prove
that their definition agrees with the one given by Faltings. Since we also work on the ramified
case, we give a minimal foundation that generalizes part of the work of Tan and Tong.

For our purpose, we work in two steps: when there exists a smooth p-adic formal scheme Xg
over W such that X = Xy ®w Ok, we define the pro-étale sheaf OB..is on X and use it to define
crystalline local systems. Note that this assumption is satisfied Zariski locally, e.g. by considering
a Zariski open covering consisting of small affines. In the general case, we define crystalline local
systems via gluing.

Let Xprosr denote the pro-étale site defined in [Sch13, § 3] and [Sch16]. It admits the morphism
of site v: Xproer — Xet-
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DEFINITION A.1. We introduce sheaves on Xproet-

(i) [Schl13, Definitions 4.1 and 5.10] Set

of = V_l(’);_(ét, OF = lln(’)}/p", Ox =0%p™'], and (’);'(b = lim 0% /p.
O x—aP

(ii) [Sch13, Definition 6.1] Set Aj,¢ := W(@;b) and Bin = Ajy¢[p~!]. We have ring morphisms
0: Aing — (/9\} and 0: B, — @X'
(iii) [TT19, Definition 2.1] Let Agris be the PD-envelope of A;,; with respect to the ideal sheaf

Ker 6, and set Agis == @Agﬁs /p". Note that the series t := log[e]| converges and is a nonzero-

divisor in ACHS|X?. See [TT19, (2A.6), Corollary 2.24].
Now assume that X admits a W-model, namely, there exists a smooth p-adic formal scheme
Xo over W such that X = Xg @ Ok. Let Xy denote the adic generic fiber of Xy. Hence, we
have a canonical identification X = Xo Xgpawp-11,w) Spa(K, Ok). In [TT19, §2B], Tan and
Tong defined the structural crystalline period sheaves OAyis x, and OBeris x, on (Xo)proct. We
define structural crystalline sheaves on Xpo¢t in a similar way.

DEFINITION A.2 (Cf. [TT19, §2B]). Consider the morphisms of sites
w: Xprost — Xt — X — (Xo)et-
Define sheaves C’);l(rJr and OF on X060 by

Ol)l(r+ = O;l(r/xo+ = w710(3€0) and Oy = O;l(r/xo = wilo(xo)ét [pil]'

ét
Set QA = (’)‘;Fr ®z Ains. By extending the scalars, we have an O§§+—algebra morphism

Ox: OAjr — @} Define OA,is to be the p-adic completion of the PD-envelope (’)Agris of OA;ys
with respect to the ideal sheaf Ker #x. Note that OA s is an A.g-algebra. Set

OB'. = OAuis[p™!] and OBy == OB, [t71].

cris cris
Here the sheaf OB | X [t on Xproet/ X, naturally descends to a sheaf on Xpoq and OBI . [t7Y]
denotes the corresponding sheaf. These sheaves are equipped with a decreasing filtration and a
connection that satisfy the Griffiths transversality, which we omit to explain. See the following

remark.

Remark A.3. The definitions of our sheaves OA;,r and OAgriS are slightly different from the
ones given by Tan and Tong: we use ®z instead of ®w to define OA;,r. However, our OA s
still coincides with theirs in the unramified case O = W since k is perfect. Hence, it follows
that OAcris = OAcris, X, | Xproge aNd OBy = OBeris, X, | Xproee- 11 particular, one can define the

additional structures on OA.is and OB.s directly from [TT19].

PropPoOSITION A.4 (Cf. [TT19, Corollary 2.19]). Let iy = Spf Ry € (Xo)st be affine such that
Ry is connected and small over W. With the notation as in §2.1, set R = Ry Qw Ok and U =
Spa(R[p~'], R), and let U € X0t denote the affinoid perfectoid corresponding to the pro-étale
cover (R[p~!], R) of (R[p~!], R). Then there is a natural isomorphism of Ry @y Beis(R)-modules

OBeris(R) = OBeris(U)
that is strictly compatible with filtrations. Moreover, for every i > 0 and j € Z, we have
H (U, OBeyis) = HY(U,Fill OBys) = 0.

Proof. Note that we have natural identifications R = Ry and OBis(R) = OBeis(Rp). Now
the proposition is nothing but [TT19, Corollary 2.19] for Uy and U € (X0)pro¢t- Note that
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[TT19, Corollary72.19] only claims that the map OBeis(R) — OBeis(U) is an isomorphism
of Ry ®w Beris(Ok )-modules, but its proof together with [TT19, Corollary 2.8] shows that the

map is indeed an isomorphism of Ry @ Beris(R)-modules. O

Remark A.5. The modules OBis(R) and OB,is(U) admit an action of Gg (or even Gg,). The
above isomorphism is compatible with the Galois actions. It is also compatible with the restriction
along any étale morphism Spf R, — Spf Ry.

Remark A.6. By the same argument, we also have a description of OAis(U) similar to [TT19,
Lemma 2.18].

We now explain the crystalline formalism. Let Locz, (X) (respectively, [Locz, (X)) denote the
category of étale Z,-local systems (respectively, étale isogeny Z,-local systems) on X. See [KL15,
§§1.4 and 8.4] for the precise formulation. By [Sch13, Proposition 8.2], Locz, (X) is equivalent

to the category of Zp—local systems on Xp,0¢t. We also note that if X = Spf R is connected and
affine with X = Spa(R[p~!], R), then there are equivalences of categories
Locz, (X) = Repy (Gr) and ILocz,(X) = Repq, (Gr).

DEFINITION A.7 (Cf. [TT19, Definition 3.12]). Keep the assumption on the existence of Xo. For
an étale isogeny Z,-local system L. on X with corresponding Q,-local system IL on X,.¢t, we set

Deris (L) = wi(OBaris ®g, L) and Fil' Dais(L) = w,(Fil’ OBy 4, L).

Note that these are sheaves of O(x,),, [p~']-modules.
We say that L is crystalline (with respect to Xg) if:

(i) the O(xy)., [P~ ']-modules Deyis(L) and Fil’ Deis(IL) (i € Z) are all coherent; and
(ii) the adjunction morphism
OB.ris ®O§(r[lfl] U)ichris (L) — OBcris ®Qp L (Al)
is an isomorphism of OBis-modules.

Remark A.8. In the unramified case, Tan and Tong [TT19, Definition 3.10] defined crys-
talline local systems using the notion of association with a convergent filtered F-isocrystal,
and they proved that their definition is equivalent to conditions (i) and (ii) above in [TT19,
Proposition 3.13].

LEMMA A.9 (Cf. [TT19, Lemma 3.14]). Assume that X admits a W-model Xy and let L €
ILocz, (X). For each small and connected affine formal scheme iy = Spf Ry that is étale over
Xo, set R := Ry ®@w Ok and U := Spa(R[p~!], R), and let Vi; denote the Qy-representation of
Gr corresponding to LL|;y. Then there exist natural isomorphisms of Ry[p~!]-modules

Deris(L)(8o) = Deis(Viy)  and  (Fill Dy (L)) (L) — Fil' Deyis (Vi) (4 € Z).

Moreover, if we write U € Xyt for the affinoid perfectoid attached to (R[p~'],R), then the
evaluation of the adjunction morphism (A.1) at U coincides with

acris(VU): OBcris(E) ®R0[p*1] DCI‘iS(VU) - OBcris(E) ®Qp Vu
under the identification Deyis(IL) (o) = Deyis(Vir).

Proof. The proof in [TT19, Lemma 3.14] also works in the current setting if one uses
Proposition A.4 in place of [TT19, Corollary 2.19]. The second assertion follows from the
construction. g
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PROPOSITION A.10. Assume that X admits a W-model Xo and let I € ILocz,(X). Then L is
crystalline with respect to Xy in the sense of Definition A.7 if and only if there exists an étale cov-
ering {4y o — Xo} of small and connected affine i o = Spf Ry o such that the Q,-representation
Vi of Gg, corresponding to Llgya(r,[p-1],r,) 15 crystalline in the sense of Definition 2.12, where
Ry = Ry ®w Ok. In particular, the notion of crystalline local systems on X does not depend
on the choice of a W-model of X.

Proof. The necessity follows from Lemma A.9. For the sufficiency, observe that both conditions
(i) and (ii) in Definition A.7 can be verified locally on (Xg)¢;. Thus, we may assume Xy = Spf R) o
for some A. To simplify the notation, write Ry for Ry and V for V).

First we verify condition (i). Since the proof is similar, we only show that Dg:s(L) is a
coherent O(x,),, [p~*]-module. Take any connected and affine tly = Spf Rfy € (X0)s. We need to
show that the natural morphism

R[] @ gy fp-1] Deris (1) (X0) — Deis (IL) (o) (A.2)
is an isomorphism. Set R':= R{ @w Ok. Then R’ is connected and small over Og. By
Lemma A.9, we have identifications Dyis(IL)(X0) =N D¢yis(V) and Deis(L) (o) =N Deris(Vg,, )-
Since V' is crystalline, the map (A.2) is an isomorphism by Lemma 2.13. Now that we have
verified condition (i), condition (ii) follows from the proof of [TT19, Corollaries 3.15 and 3.16]
with Remark A.6, Proposition A.4, and Lemma A.9 in place of Lemma 2.18, Corollary 2.19, and

Lemma 3.14 of [TT19]. This completes the proof of the sufficiency. The last assertion follows
from [Bri0O8, Proposition 8.3.5]. O

With these preparations, we define the notion of crystalline local systems via gluing.

DEFINITION A.11. Let X be a smooth p-adic formal scheme over Ok and let X denote its adic
generic fiber. An étale isogeny Z,-local system IL on X is said to be crystalline if there exists an
open covering X = (J, 4, such that each i, admits a W-model and such that for each A, Ly,
is crystalline in the sense of Definition A.7 where Uy denotes the adic generic fiber of . By
Proposition A.10, this definition coincides with Definition A.7 when X itself admits a W-model.

An étale Z,-local system L on X is said to be crystalline if the associated isogeny Z,-local
system is crystalline.

Remark A.12. One could define crystalline local systems by introducing a period sheaf OB ax, i
on Xproet that generalizes the period ring Amax(R)[p~!,¢7!] appearing in the proof of [Bri08,
Proposition 8.3.5]. This period sheaf is defined without fixing a W-model of X and, thus, one
could bypass the gluing approach.
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