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Abstract

We introduce the notion of completed F -crystals on the absolute prismatic site of a
smooth p-adic formal scheme. We define a functor from the category of completed
prismatic F -crystals to that of crystalline étale Zp-local systems on the generic fiber of
the formal scheme and show that it gives an equivalence of categories. This generalizes
the work of Bhatt and Scholze, which treats the case of a mixed characteristic complete
discrete valuation ring with perfect residue field.
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1. Introduction

Let p be a prime. In [BS22], Bhatt and Scholze introduced the notion of prisms and the relative
prismatic ringed site ((X/(A, I))Δ,OΔ) for a bounded prism (A, I) and a smooth p-adic formal
scheme X over A/I. Surprisingly, the cohomology RΓ((X/(A, I))Δ,OΔ) gives a good integral
p-adic cohomology of X: it recovers the crystalline cohomology of the special fiber as well as the
étale cohomology of the generic fiber. The prismatic formalism also gives a site-theoretic construc-
tion of the Ainf -cohomology and the Breuil–Kisin cohomology when (A, I) = (Ainf(OCp), ker θ)
and (S, (E)), respectively (see [BS22, Example 1.9] for the details).

Another advantage of this site-theoretic approach is that it provides a natural framework
of the coefficient theory. In the case of the relative prismatic site, Tian [Tia23] studied the
cohomology of prismatic crystals when X is proper over A/I.

One can study crystals on the absolute prismatic site as well. Let OK be a com-
plete discrete valuation ring (CDVR) of mixed characteristic (0, p) with perfect residue
field k, and let X be a smooth p-adic formal scheme over OK . In the subsequent paper
[BS23], Bhatt and Scholze studied sheaves on the absolute prismatic site XΔ. Recall that
the site XΔ has a sheaf OΔ of rings equipped with a Frobenius ϕ and an ideal sheaf IΔ
(see Definition 3.2 for the details). They introduced the category Vectϕ(XΔ) of prismatic
F -crystals of vector bundles on (XΔ,OΔ) as well as the category Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1 of
so-called Laurent F -crystals on X.

The main theorem [BS23, Theorem 1.2] of Bhatt and Scholze states that Vectϕ((OK)Δ) is
equivalent to the category of lattices in crystalline representations of K. They also showed that,
for general X, Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1 is equivalent to the category of Zp-local systems on the
generic fiber of X. Part of their work is reproved or generalized by Du and Liu [DL23], Wu
[Wu21], and Min and Wang [MW21]. For other works on the prismatic site, we refer the reader
to the recent survey [Bha21].

The present article studies the relationship between lattices in crystalline representations and
suitable F -crystals on the absolute prismatic site in the relative situation. For this, we need to
enlarge the category Vectϕ(XΔ) of prismatic F -crystals on X. To explain the enlarged category, we
first focus on the small affine case. More precisely, let R0 be the p-adic completion of an integral
domain that is étale over W (k)[T±1

1 , . . . , T±1
d ] for some d ≥ 0 and set R := R0 ⊗W (k) OK . We

also fix a uniformizer π of OK with monic minimal polynomial E(u) over W (k). We consider
the following type of sheaves on the absolute prismatic site RΔ.

Definition 1.1 (Definition 3.16, Remark 3.17). A completed prismatic F -crystal on R is a sheaf
F of OΔ-modules on RΔ together with a ϕ-semilinear endomorphism ϕF : F → F that satisfies
the following properties:

(i) for each (A, I) ∈ RΔ, the A-module FA := F(A, I) is finitely generated and classically
(p, I)-complete;

(ii) for any morphism (A, IA)→ (B, IB) of bounded prisms over R, the map B⊗̂AFA → FB is
an isomorphism;

(iii) for the Breuil–Kisin prism (S = R0[[u]], (E(u))) ∈ RΔ (see Example 3.4), FS is torsion free,
FS[E−1]∧p is finite projective over S[E−1]∧p , and FS = FS[p−1] ∩ FS[E−1]∧p ;

(iv) the cokernel of 1⊗ ϕFS
: ϕ∗FS→ FS is killed by Er for a non-negative integer r.

We write CR∧,ϕ(RΔ) for the category of completed prismatic F -crystals on R.
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Condition (iii) in the definition is technical but plays a crucial role in our theory. The cate-
gory CR∧,ϕ(RΔ) contains, as a full subcategory, the category Vectϕeff(RΔ) of effective prismatic
F -crystals of vector bundles on RΔ in the sense of [BS23, Definition 4.1]. We note that there
exists a completed prismatic F -crystal which is not a prismatic F -crystal of vector bundles (see
the following and Example 3.36) and, thus, CR∧,ϕ(RΔ) is strictly larger than Vectϕeff(RΔ) in
general.

The main goal of this paper is to describe lattices in crystalline representations of the Galois
group GR of R[p−1] in terms of completed prismatic F -crystals. The following is our main result.

Theorem 1.2 (Theorem 3.29). There is a contravariant equivalence of categories

T : CR∧,ϕ(RΔ)
∼=−→ Repcris

Zp,≥0(GR)

from the category of completed prismatic F -crystals on R to the category of crystalline
Zp-representations of R[p−1] with non-negative Hodge–Tate weights, which is functorial in R.

Following [BS23], we call T the étale realization functor. Since T is compatible with
Breuil–Kisin and Tate twists, one can further enlarge CR∧,ϕ(RΔ) and obtain an equivalence
of categories with the category of all crystalline Zp-representations of R[p−1] (see Example 3.28
and Remark 3.30).

Once Theorem 1.2 is obtained, we can globalize our equivalence to that for a smooth p-adic
formal scheme over OK .

Theorem 1.3 (Theorem 3.46). Let X be a smooth p-adic formal scheme over OK . Then there
is a natural equivalence of categories

T : CR∧,ϕ(XΔ)
∼=−→ Loccris

Zp,≥0(Xη)

between the category of completed prismatic F -crystals on X and the category of crystalline
Zp-local systems with non-negative Hodge–Tate weights on the adic generic fiber Xη of X (see
§ 3.6 for the precise definitions).

The main theorems give a prismatic description of crystalline Zp-representations in the rel-
ative case. Note that when R = OK , Kisin [Kis06] gave a description of lattices in crystalline
representations of K in terms of Breuil–Kisin modules. His work was generalized by Brinon and
Trihan [BT08] to the case of CDVRs with imperfect residue field with a finite p-basis. Further-
more, Kim [Kim15] introduced the notion of Kisin S-modules over R as a generalization of
Breuil–Kisin modules of E-height ≤ 1 in the relative case. Kim attached to a p-divisible group
over a general R a Kisin S-module and showed that the category of p-divisible groups over R
is equivalent to the category of Kisin S-modules when p ≥ 3 (see [Kim15, Corollary 3]). How-
ever, it has not yet been known how to describe crystalline Zp-representations of R[p−1] with
non-negative Hodge–Tate weights in terms of suitable Breuil–Kisin-type modules in the relative
case. In fact, even a suitable description of rational crystalline representations of R[p−1] has
not been given yet in general: whereas crystalline Qp-representations of K can be classified by
weakly admissible filtered ϕ-modules [CF00], the correct weakly admissibility has not been found
in the relative case. We hope that the notion of completed prismatic F -crystals clarifies these
complications.

Examples of crystalline Zp-representations of R[p−1] with Hodge–Tate weights in [0, 1]
arise from p-divisible groups over R. Anschütz and Le Bras [ALeB23] developed the prismatic
Dieudonné theory. It follows from their work that the category of p-divisible groups over R
is equivalent to the category of effective prismatic F -crystals of vector bundles of IΔ-height
≤ 1 (see § 3.5 for the details). It is easy to see that their formulation is compatible with ours.
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Following [VZ10], we also provide an example of a completed prismatic F -crystal over R
that does not arise from a p-divisible group over R (Example 3.36). This implies that our
category CR∧,ϕ(RΔ) is strictly larger than the subcategory of effective prismatic F -crystals
of vector bundles on R and that the former category is necessary to describe crystalline
Zp-representations in the relative case. It is an interesting question whether a completed prismatic
F -crystal on R becomes a prismatic F -crystal of vector bundles on X by the pullback along an
admissible blow-up X→ Spf R. A related question is whether a crystalline Zp-representation
of R[p−1] with Hodge–Tate weights in [0, 1] comes from a p-divisible group on X for some
admissible blow-up X→ Spf R. We note that admissible blow-ups X→ Spf R usually yield
non-smooth p-adic formal schemes X and, thus, these questions diverge from our current
work.

Now let us explain the construction of the étale realization functor T in Theorem 1.2 (see
Proposition 3.27). This can be explained best in the following commutative diagram.

Vectϕeff(RΔ) ��
� �

��

Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1
∼= �� Reppr

Zp
(GR)

CR∧,ϕ(RΔ).

F�→Fét
��

T∨

��

Here Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 denotes the category of Laurent F -crystals, namely, prismatic
F -crystals of vector bundles of OΔ[1/IΔ]∧p -modules on R, and Reppr

Zp
(GR) denotes the category

of finite free Zp-representations of the Galois group GR of R[p−1]. The functor Vectϕeff(RΔ)→
Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 is the scalar extension functor. Bhatt and Scholze [BS23] and Min
and Wang [MW21] showed the (covariant) equivalence of categories Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 ∼=
Reppr

Zp
(GR). Hence, to define the contravariant functor T : CR∧,ϕ(RΔ)→ Reppr

Zp
(GR) or its dual

T∨, it suffices to show that the functor Vectϕeff(RΔ)→ Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 extends to a
functor

CR∧,ϕ(RΔ)→ Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1, F 
→ Fét.

The construction of the latter functor uses the following fact on the Breuil–Kisin prism
(S, (E(u))): it covers the final object of Shv(RΔ) and, thus, a sheaf on RΔ is described by a
descent datum involving the self-product (S(1), (E(u))) and the self-triple-product (S(2), (E(u)))
of the Breuil–Kisin prism. In particular, completed prismatic F -crystals are described by the
following data.

Proposition 1.4 (Proposition 3.26). The association F 
→ FS gives rise to an equivalence of

categories CR∧,ϕ(RΔ)
∼=−→ DDS. Here DDS consists of triples (M, ϕM, f) where:

(i) M is a finite S-module satisfying condition (iii) of Definition 1.1 in place of FS;
(ii) ϕM: M→M is a ϕ-semi-linear endomorphism such that the cokernel of 1⊗ ϕM: ϕ∗M→M

is killed by Er for a non-negative integer r;

(iii) f : S(1) ⊗p1,S M
∼=−→ S(1) ⊗p2,S M is an isomorphism of S(1)-modules that is compatible

with Frobenii and satisfies the cocycle condition over S(2).

Since Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 has a similar description in terms of descent data involving
S(1)[E−1]∧p and S(2)[E−1]∧p , the base change along the map S(1) → S(1)[E−1]∧p yields the desired
functor CR∧,ϕ(RΔ)→ Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1. To put things together, the contravariant

1104

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

functor T is explicitly given by

T (F) :=
(
(Fét(Ainf(R), (ξ)))ϕFét

=1
)∨
.

See Example 3.7 for the definition of the Ainf -prism (Ainf(R), (ξ)). Once T is defined, it is not
difficult to see that T is fully faithful and that T (F)[p−1] is a crystalline Qp-representation of
GR with non-negative Hodge–Tate weights.

The hardest part of the proof of Theorem 1.2 concerns the essential surjectivity of T , and
§ 4 is devoted to proving it. For this, take T0 ∈ Repcris

Zp,≥0(GR). We will attach to T0 an object
(M, ϕM, f) ∈ DDS.

To explain the outline of the construction, let us introduce several rings. Let OE denote the
p-adic completion S[E−1]∧p of S[E−1]. We write OL0 (respectively, OL) for the p-adic completion
of the localization of R0 at the prime (p) (respectively, the localization of R at the prime (π)):
OL0 is an absolutely unramified CDVR with imperfect residue field having a finite p-basis, and
OL = OL0 ⊗W (k) OK . We set SL := OL0 [[u]] and OEL

:= SL[E−1]∧p .
On the one hand, the theory of étale ϕ-modules attaches to T0 a finite free OE -module

M together with a Frobenius and a descent datum. On the other hand, Brinon and Trihan’s
theory [BT08] of Breuil–Kisin modules associates with T0|Gal(L/L) a finite free SL-module ML

with a Frobenius. We set M :=M∩ML inside OEL
⊗OE M = OEL

⊗SL
ML. Naturally, M is

equipped with a Frobenius ϕM. With careful study of the structures, we are able to show that
the pair (M, ϕM) satisfies conditions (i) and (ii) of Proposition 1.4. Finally, the connection
on Dcris(T0[p−1]) equips M[p−1] with a descent datum. Combined with the descent datum on
M, it yields a descent datum f on M and, thus, an object (M, ϕM, f) ∈ DDS. The associated
completed prismatic F -crystal F satisfies T (F) ∼= T0.

Remark 1.5. After we posted our paper on arXiv, we learned that Guo and Reinecke indepen-
dently proved Theorem 1.3 [GR22, Theorem A, Remark 1.8]. Their proof generalizes the method
in [BS23] and is different from ours. Our category CR∧,ϕ(XΔ) corresponds to the category of
effective analytic prismatic F -crystals on X in their terminology [GR22, Definition 3.2]. Note
that one can deduce from Theorem 1.3 together with the compatibility of T with Breuil–Kisin
and Tate twists (see Example 3.28 and Remark 3.30) that the category of analytic prismatic
F -crystals on X is equivalent to the category of all crystalline Zp-local systems on Xη as in
[GR22, Theorem A].

Organization of the paper
Section 2 reviews basic concepts in relative p-adic Hodge theory. In § 2.1, we explain the assump-
tions on our base ring R and objects attached to R, which we use throughout this article. We
review crystalline representations developed by Brinon [Bri08] in § 2.2, and étale ϕ-modules
in § 2.3. The topics in the latter two subsections are standard, and the reader may skip them.

Section 3 introduces the notion of completed prismatic F -crystals and states the main
theorems. In § 3.1, we recall the definition of the absolute prismatic site of a p-adic formal
scheme and explain key examples of prisms in the small affine case. In § 3.2, we define finitely
generated completed prismatic crystals and completed prismatic F -crystals in the small affine
case. Then we describe the category of completed prismatic F -crystals in terms of descent data
in § 3.3. Section 3.4 introduces the étale realization functor T : CR∧,ϕ(RΔ)→ Repcris

Zp,≥0(GR) and
states the main theorem in the small affine case (Theorem 3.29). We also prove part of the main
theorem that T is fully faithfully and T (F) is crystalline for F ∈ CR∧,ϕ(RΔ) in this subsection.
In § 3.5, we consider the height-one case and compare the étale realization functor with pris-
matic Dieudonné theory by Anschütz and Le Bras [ALeB23]. We also present an example of
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a completed prismatic F -crystal that is not an effective prismatic F -crystal of vector bundles
(Example 3.36). In § 3.6, we define the notion of completed prismatic F -crystals on a general
smooth p-adic formal scheme and the étale realization functor. We end the subsection with the
main theorem in this general case (Theorem 3.46), which is a direct consequence of Theorem 3.29.

Section 4 is devoted to the proof of the remaining part of the main theorem (the essential
surjectivity of Theorem 3.29). In § 4.1, we define the notion of quasi-Kisin modules and show
that such an object yields a rational Kisin descent datum. Section 4.2 proves the general fact
that for a finite torsion-free ϕ-module (M, ϕM) of finite E-height over S, M[p−1] is projective
over S[p−1] (Proposition 4.13). In § 4.3, we consider the CDVR case. With these preparations,
we attach a quasi-Kisin module to a lattice in a crystalline representation in §§ 4.4 and 4.5, and
complete the proof of Theorem 3.29 in § 4.6.

Appendix A follows the work of Tan and Tong [TT19] and defines the notion of crystalline
local systems on the generic fiber of a smooth p-adic formal scheme.

Notation and conventions
Let p be a prime and let k be a perfect field of characteristic p. Write W = W (k) and let K be a
finite totally ramified extension of K0 := W [p−1]. Fix a uniformizer π of K and let E(u) ∈W [u]
denote the monic minimal polynomial of π.

For derived completions and relevant concepts, we refer the reader to [BS22, § 1.2]. In this
article, most rings are classically p-complete, and we also call them p-adically complete. Similarly,
a p-adically completed étale map from a p-adically complete ring A refers to the (classical) p-adic
completion of an étale map from A.

We also follow [BS22] for the definitions of δ-rings and prisms. However, to avoid confusion,
we say that a map of prisms (A, I)→ (B, J) is (p, I)-completely (faithfully) flat if the map A→ B
is (p, I)-completely faithfully flat (compare [BS22, Definition 3.2]).

We write W 〈T±1
1 , . . . , T±1

d 〉 for the p-adic completion of the Laurent polynomial ring
W [T±1

1 , . . . , T±
d ]. In this article, the braces {· · · } denote the p-adically completed divided power

polynomials, and for a fixed prism (A, I), the notation {· · · }∧δ stands for adjoining elements in
the category of derived (p, I)-complete simplicial δ-A-algebras.

For an element a of a Q-algebra A and n ≥ 0, write γn(a) for the element an/n! ∈ A.
Our convention is that the cyclotomic character Zp(1) := Tp(μp∞) has Hodge–Tate weight

one.

2. Review of crystalline representations and étale ϕ-modules

2.1 Base ring
In this subsection, we introduce our base ring R.

Definition 2.1. A p-adically complete OK-algebra is called small and smooth (or small for
short) if it is p-adically completed étale over OK〈T±1

1 , . . . , T±1
d 〉 for some d ≥ 0.

Remark 2.2. Let R be small over OK . Since R/πR is étale over k[T±1
1 , . . . , T±1

d ], there exists
a subalgebra R0 ⊂ R such that R0 is p-adically completed étale over W 〈T±1

1 , . . . , T±1
d 〉 and

R = R0 ⊗W OK .
Let R′ be p-adically completed étale over R. If one fixes a subring R0 ⊂ R as above, then

the étale map R0/pR0 = R/πR→ R′/πR′ lifts uniquely to a p-adically completed étale map
R0 → R′

0. Moreover, R′
0 ⊗W OK is isomorphic to R′ as R-algebras.

1106

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

In this paper, we use the crystalline period rings developed in [Bri08]. For this, we consider
the following class of p-adic rings that contains connected small OK-algebras.

Set-up 2.3. A connected p-adically complete OK-algebra R is said to be a base ring if it is of
the form R := R0 ⊗W OK , where R0 is an integral domain obtained from W 〈T±1

1 , . . . , T±1
d 〉 by

a finite number of iterations of the following operations:

– p-adic completion of an étale extension;
– p-adic completion of a localization;
– completion with respect to an ideal containing p.

Remark 2.4. To apply Faltings’ almost purity theorem, Brinon [Bri08, p. 7] further assumes that
W [T±1

1 , . . . , T±1
d ]→ R0 has geometrically regular fibers and that k → R⊗OK

k is geometrically
integral. By [And06, Proposition 5.12] and the fact that any ideal-adic completion of an excellent
ring is excellent [KS21, Main Theorem 2], we see that W [T±1

1 , . . . , T±1
d ]→ R0 has geometrically

regular fibers for a ring R0 as in Set-up 2.3. We also note that the latter assumption can be
dropped. Indeed, if we let k′ be the integral closure of k inside Frac(R⊗OK

k), then R⊗OK
k is

geometrically connected (and, thus, geometrically integral) over k′, and R is an OK ⊗W W (k′)-
algebra. The claim now follows since Brinon’s period rings for R are defined without any reference
to OK . Finally, we note that if R is a base ring, then it satisfies Brinon’s good reduction condition
(BR) in [Bri08, p. 9].

Let R be a base ring as defined in Set-up 2.3. In the rest of this subsection, we introduce
basic objects attached to R that we use throughout this article.

Let ϕ : R0 → R0 denote the lift of the Frobenius on R0/pR0 with ϕ(Ti) = T pi ; this
uniquely determines ϕ. Let Ω̂R0 denote the module of continuous Kähler differentials
lim←−n Ω(R0/pnR0)/(W/pnW ). By [Bri08, Proposition 2.0.2], we have Ω̂R0 =

⊕d
i=1R0 · d log Ti.

Let R denote the union of finite R-subalgebras R′ of a fixed algebraic closure of FracR such
that R′[p−1] is étale over R[p−1]. Set

GR := Gal(R[p−1]/R[p−1]).

Let RepQp
(GR) denote the category of finite-dimensional Qp-vector spaces with continuous

GR-action. We call its objects Qp-representations of GR for short. Similarly, let RepZp
(GR) denote

the category of finite Zp-modules equipped with continuous GR-action and let Reppr
Zp

(GR) denote
the full subcategory consisting of finite free objects.

Remark 2.5. Assume that R is of topologically finite type over OK (for example, R is small
over OK). If we equip R with the p-adic topology, then Reppr

Zp
(GR) (respectively, RepQp

(GR)) is
equivalent to the category of Zp-local systems (respectively, isogeny Zp-local systems) on the étale
site of the adic space Spa(R[p−1], R) by [Hub96, Example 1.6.6 ii)] and [KL15, Remark 1.4.4].
Note also that Spa(R[p−1], R) is the adic generic fiber of Spf R.

Let R∧ be the p-adic completion of R and let R� be its tilt lim←−ϕR/pR. Set Ainf(R) :=

W (R�). The first projection R� → R/pR lifts uniquely to a surjective W -algebra homomorphism
θ : Ainf(R)→ R

∧.

Notation 2.6. Let S = SR := R0[[u]] equipped with the Frobenius given by ϕ(u) = up. Let OE
be the p-adic completion of S[u−1], equipped with the Frobenius ϕ extending that on S. Note
that E is invertible in OE and the map S[E−1]→ OE induces an isomorphism S[E−1]∧p

∼=−→ OE .

We recall a result about the Frobenius on S.
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Lemma 2.7. The map ϕ : S→ S is classically faithfully flat. Moreover, S as a module over
itself via ϕ is finite free.

Proof. By [Bri08, Lemme 7.1.5], ϕ : S→ S is classically flat. Let q ⊂ S be any maximal ideal.
Since S is p-adically complete, we have p ∈ q. Thus, ϕ(q) ⊂ q, which implies ϕ : S→ S is
classically faithfully flat.

For the second part, consider S as a module over itself via ϕ. Note that S/(p) has a finite
p-basis. By Nakayama’s lemma, a lift of a p-basis to S generates S. There cannot be any
non-trivial relation among such a lift, since S is p-torsion free. �

Notation 2.8. Note that (p) (respectively, (π)) is a prime ideal of R0 (respectively, R). We
let OL0 (respectively, OL) denote the p-adic completion of the localization (R0)(p) (respectively,
R(π)). Then OL0 and OL are CDVRs with the same residue field Frac(R0/(p)) = Frac(R/(π)).
Set L0 := OL0 [p

−1] and L := OL[p−1]. The Frobenius ϕ on R0 extends to ϕ : OL0 → OL0 . Note
that OL is also a base ring. When we work on OL for a fixed base ring R, we simply write
R = OL by abuse of notation.

Define OK0,g to be the p-adic completion of lim−→ϕ
OL0 and let OKg

:= OK0,g ⊗W OK . Set

K0,g := OK0,g [p
−1] and Kg := OKg [p

−1]. Note that there is a unique ϕ-compatible isomorphism
OK0,g

∼= W (kg) that reduces to the identity modulo p, where kg denotes lim−→ϕ
Frac(R0/(p)). Hence

OK0,g and OKg are CDVRs with the same perfect residue field kg. Note that the structure map
R0 → OK0,g factors through OL0 → OK0,g = W (kg).

We often deduce our statements over S from those over OE and OL (or OKg) by taking
certain intersections of modules (e.g. Construction 4.19 and the proof of Theorem 3.29(i)). For
proofs, we need the following localization method (cf. [Bri08, § 3.3]): fix an algebraic closure Kg

and let OKg
denote its ring of integers. Let P be the set of minimal prime ideals of R containing p.

For each p ∈ P, fix a continuous ring homomorphism (Rp)∧ → (OKg
)∧ extending R(π) → OKg

,
where (· · · )∧ denotes the p-adic completion. Taking the product over the p’s induces injective
maps

R
∧ →

∏
p∈P

(Rp)∧ →
∏
p∈P

(OKg
)∧ and R

� →
∏
p∈P
O�
Kg
.

In § 3, we consider the absolute prismatic site on a p-adic formal scheme. In the affine case,
we usually make the following additional assumption.

Assumption 2.9. The base ring R is small over OK or R = OL. We equip R with p-adic
topology. In particular, Spf R is a smooth p-adic formal scheme over OK (or OL in the second
case). Note that Reppr

Zp
(GR) is equivalent to the category of étale Zp-local systems on the adic

generic fiber Spa(R[p−1], R) of Spf R (cf. Remark 2.5).

2.2 Crystalline representations
Let R be a base ring. In this subsection, we review the crystalline period ring OBcris(R) and
the notion of crystalline representations of the Galois group GR of R[p−1] developed in [Bri08,
Chapitre 6].

Recall the surjective W -algebra homomorphism θ : Ainf(R) := W (R�)→ R
∧. Define Acris(R)

to be the p-adic completion of the divided power envelope of Ainf(R) with respect to Ker θ.
Choose a non-trivial compatible system of p-power roots of unity: εn ∈ R with ε0 = 1, ε1 �= 1, and
εn = εpn+1. Set ε = (εn)n ∈ R� and t := log[ε] ∈ Acris(R). Define Bcris(R) := Acris(R)[p−1, t−1].
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Extend the map θ to θR0 : R0 ⊗W Ainf(R)→ R
∧. Define OAcris(R) to be the p-adic com-

pletion of the divided power envelope of R0 ⊗W Ainf(R) with respect to Ker θR0 . Define
OBcris(R) := OAcris(R)[p−1, t−1].

Remark 2.10.

(i) Our period rings Bcris(R) and OBcris(R) are written as B∇
cris(R) and Bcris(R), respectively,

in [Bri08].
(ii) When K is absolutely unramified and R is of topologically finite type over OK = W , Tan

and Tong define the crystalline period sheaves Bcris and OBcris on the pro-étale site of
Spa(R[p−1], R) (see [TT19, Definitions 2.4 and 2.9]). In this case, U := Spa(R∧[p−1], R∧)
is an affinoid perfectoid object of the pro-étale site. We then have Bcris(R) = Bcris(U) and
OBcris(R) = OBcris(U). See Proposition A.4.

(iii) The ring OL = (R(π))∧ is also a base ring. In this case, Bcris(OL) and OBcris(OL) are
studied in [Bri06] and written as B∇

cris and Bcris, respectively. The notation Bcris is also used
in [BT08].

The crystalline period ring OBcris(R) has a natural GR-action and a Frobenius endomorphism
ϕ extending those on R0 ⊗W Ainf(R), and there is a natural Bcris(R)-linear integrable connection
∇ : OBcris(R)→ OBcris(R)⊗R0 Ω̂R0 . Moreover, R⊗R0 OBcris(R) is equipped with a filtration
by R[p−1]-modules, which is compatible with the natural PD-filtration on Acris(R). See [Bri08,
Chapitre 6] for the detail of these structures.

The following result on the crystalline period ring is used later.

Lemma 2.11 [Bri08, Proposition 6.1.5]. Choose a compatible system (Ti,n) of p-power roots

of Ti in R with Ti,0 = Ti, and let T �i ∈ R
�

denote the corresponding element. The map Xi 
→
Ti ⊗ 1− 1⊗ [T �i ] induces an Acris(R)-linear isomorphism

Acris(R){X1, . . . , Xd} ∼= OAcris(R),

where the former ring denotes the p-adically completed divided power polynomial with variables
Xi and coefficients in Acris(R).

Let us recall the definition of crystalline representations.

Definition 2.12. For V ∈ RepQp
(GR), set

Dcris(V ) := (OBcris(R)⊗Qp V )GR and D∨
cris(V ) := HomGR

(V,OBcris(R)).

Then Dcris(V ) is a finite projective R0[p−1]-module of rank at most dimQp V equipped with a
natural ϕ and ∇ structure induced from OBcris(R), and R⊗R0 Dcris(V ) has a filtration induced
from R⊗R0 OBcris(R). The natural map

αcris(V ) : OBcris(R)⊗R0[p−1] Dcris(V )→ OBcris(R)⊗Qp V

is injective by [Bri08, Proposition 8.2.6]. We say that V is R0-crystalline if αcris(V ) is an
isomorphism. By [Bri08, Proposition 8.3.5], this notion depends only on R, not on R0. Hence,
we simply say that V is crystalline from now on.

By [Bri08, Théorème 8.4.2], V is crystalline if and only if V ∨ is crystalline. Note also that
D∨

cris(V ) = Dcris(V ∨) = HomR0[p−1](Dcris(V ), R0[p−1]). We mainly use D∨
cris(V ) in this paper.

A finite free Zp-representation T ∈ Reppr
Zp

(GR) is called crystalline if the associated
Qp-representation T ⊗Zp Qp is crystalline.
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Finally, let us explain the functoriality. Let R′ = R′
0 ⊗W OK be another base ring and assume

that there exists a ϕ-equivariant ring homomorphism g : R0 → R′
0 that extends to g : R→ R′. By

the change of paths for étale fundamental groups, g induces a continuous group homomorphism
GR′ → GR and, thus, a natural ⊗-functor RepQp

(GR)→ RepQp
(GR′). The map g also induces

a ring homomorphism OBcris(R)→ OBcris(R′), and the latter is compatible with Frobenii and
Galois actions.

Lemma 2.13. With the notation as previously, for V ∈ RepQp
(GR), the map R′

0[p
−1]⊗R0[p−1]

OBcris(R)⊗Qp V → OBcris(R′)⊗Qp V induces a ϕ-equivariant morphism of R′
0[p

−1]-modules

R′
0[p

−1]⊗R0[p−1] Dcris(V )→ Dcris(V |GR′ ). (2.1)

Moreover, if V is crystalline, then V |GR′ is crystalline and the above map is an isomorphism.

Proof. The first assertion is obvious. Now assume that V is crystalline. Consider the composite
of OBcris(R′)-linear maps

α : OBcris(R′)⊗R′
0[p−1] (R′

0[p
−1]⊗R0[p−1] Dcris(V ))→ OBcris(R′)⊗R′

0[p−1] Dcris(V |GR′)

αcris(V |GR′)
↪−−−−−−−→ OBcris(R′)⊗Qp V.

Observe that α is the base change of αcris(V ) along the map OBcris(R)→ OBcris(R′). Since
V is crystalline, α is an isomorphism. Moreover, the second map αcris(V |GR′) in α is injective.
Hence, αcris(V |GR′ ) is an isomorphism and, thus, V |GR′ is crystalline. We also see that the first
map in α is an isomorphism. Since the map R′

0[p
−1]→ OBcris(R′) is faithfully flat by [Bri08,

Théorème 6.3.8], the morphism (2.1) is an isomorphism. �

2.3 Étale ϕ-modules
The classical theory of étale ϕ-modules and Galois representations is generalized to our relative
setting in [Kim15]. We briefly review some necessary facts discussed in [Kim15] and [LM20].
Recall Notation 2.6: S = SR := R0[[u]] equipped with the Frobenius given by ϕ(u) = up; OE is
the p-adic completion of S[u−1], equipped with the Frobenius ϕ extending that on S.

Definition 2.14. An étale (ϕ,OE)-module is a pair (M, ϕM) where M is a finitely generated
OE -module and ϕM : M→M is a ϕ-semi-linear endomorphism such that 1⊗ ϕM : ϕ∗M→M
is an isomorphism. We say that an étale (ϕ,OE)-module is projective (respectively, torsion) if
the underlying OE -module M is projective (respectively, p-power torsion).

Let ModOE denote the category of étale (ϕ,OE)-modules whose morphisms are OE -linear
maps compatible with Frobenii. Let Modpr

OE and Modtor
OE , respectively, denote the full subcate-

gories of projective and torsion objects. Note that we have a natural notion of tensor products
for étale (ϕ,OE)-modules, and duals are defined for projective and torsion objects.

We use étale (ϕ,OE)-modules to study certain Galois representations as follows. We refer the
reader to [Sch12] for definitions and facts on perfectoid algebras. Recall that π denotes a uni-
formizer in OK . For integers n ≥ 0, compatibly choose πn ∈ K such that π0 = π and πpn+1 = πn,
and let K∞ be the p-adic completion of

⋃
n≥0K(πn). Then K∞ is a perfectoid field, and

(R∧[p−1], R∧) is a perfectoid affinoid K∞-algebra. Let K�∞ denote the tilt of K∞, and set
π� := (πn) ∈ K�∞.

Let E+
R∞ = S/pS, and let Ẽ+

R∞ be the u-adic completion of lim−→ϕ
E+
R∞ . Let ER∞ =

E+
R∞ [u−1] and ẼR∞ = Ẽ+

R∞ [u−1]. By [Sch12, Proposition 5.9], (ẼR∞ , Ẽ
+
R∞) is a perfectoid affinoid
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K�∞-algebra, and we have a natural injective map (ẼR∞ , Ẽ
+
R∞) ↪→ (R�[(π�)−1], R�) given by

u 
→ π�.
Consider

R̃∞ := W (Ẽ+
R∞)⊗W (K�◦∞),θ OK∞ . (2.2)

By [Sch12, Remark 5.19], (R̃∞[p−1], R̃∞) is a perfectoid affinoid K∞-algebra whose tilt is
(ẼR∞ , Ẽ

+
R∞). Furthermore, we have a natural injective map (R̃∞[p−1], R̃∞) ↪→ (R∧[p−1], R∧)

whose tilt is (ẼR∞ , Ẽ
+
R∞) ↪→ (R�[(π�)−1], R�). If we write GR̃∞ for πét

1 (Spec R̃∞[p−1]), we then
have a continuous map of Galois groups GR̃∞→ GR, which is a closed embedding by [GR03,

Proposition 5.4.54]. By [Sch12, Theorem 7.12], we can canonically identify R
�[(π�)−1] with the

π�-adic completion of the affine ring of a universal pro-étale covering of Spec ẼR∞ . Let GẼR∞
be

the Galois group corresponding to the universal pro-étale covering. Then we have a canonical
isomorphism GẼR∞

∼= GR̃∞ .

There exists a unique W (k)-linear map R0 →W (R�) which maps Ti to [T �i ] and is compatible
with Frobenii (see Lemma 2.11 for the definition of [T �i ]). This induces a ϕ-equivariant embedding
S→W (R�) given by u 
→ [π�], which further extends to an embedding OE →W (R�[(π�)−1]).
Let Our

E be the union of finite étale OE -subalgebras of W (R�[(π�)−1]), and let Ôur
E be its p-adic

completion. We also define Ŝur := Ôur
E ∩W (R�) ⊂W (R�[π�]−1). We note that the definitions

of these rings in [Kim15, p. 8201] are incorrect but that the results concerning these rings in
[Kim15] hold with the correct definitions: since (OE , (p)) is a henselian pair, Our

E /(p) = Ôur
E /(p)

is the union of finite étale ER∞-subalgebras of R�[(π�)−1]. In particular, we have AutOE (Our
E ) ∼=

GER∞ := πét
1 (SpecER∞). By [GR03, Proposition 5.4.54] and [Sch12, Lemma 7.5], we have GER∞

∼=
GẼR∞

∼= GR̃∞ . This induces GR̃∞-action on Ôur
E . The following is proved in [Kim15].

Lemma 2.15 (Cf. [Kim15, Lemmas 7.5 and 7.6]). We have (Ôur
E )GR̃∞ = OE and the same

holds modulo pn. Furthermore, there exists a unique GR̃∞-equivariant ring endomorphism ϕ

on Ôur
E lifting the pth power Frobenius on Ôur

E /(p) and extending ϕ on OE . The inclusion

Ôur
E ↪→W (R�[(π�)−1]) is ϕ-equivariant where the latter ring is given the Witt vector Frobenius.

Let RepZp
(GR̃∞) denote the category of finite Zp-modules equipped with continuous

GR̃∞-action, and let Reppr
Zp

(GR̃∞) and Reptor
Zp

(GR̃∞), respectively, denote the full subcategories
of free and torsion objects. ForM∈ ModOE and T ∈ RepZp

(GR̃∞), define

T (M) := (Ôur
E ⊗OE M)ϕ=1 and M(T ) := (Ôur

E ⊗Zp T )GR̃∞ .

For a torsion étale ϕ-module M∈ Modtor
OE , we define its length to be the length of (OE)(p) ⊗OE

M as an (OE)(p)-module. The following equivalence is proved in [Kim15] (see also [LM20,
Proposition 2.5]).

Proposition 2.16 (Cf. [Kim15, Proposition 7.7] and [LM20, Proposition 2.5]). The assignments
T (·) and M(·) are exact equivalences (quasi-inverse of each other) of ⊗-categories between
ModOE and RepZp

(GR̃∞). Moreover, T (·) and M(·) restrict to rank-preserving equivalence of
categories between Modpr

OE and Reppr
Zp

(GR̃∞) and length-preserving equivalence of categories

between Modtor
OE and Reptor

Zp
(GR̃∞). In both cases, T (·) and M(·) commute with taking duals.

For T ∈ RepZp
(GR̃∞), the natural map Ôur

E ⊗OE M(T )→ Ôur
E ⊗Zp T is an Ôur

E -linear iso-
morphism compatible with ϕ and GR̃∞-actions, and a similar statement holds for ModOE .
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Proof. All statements except the last are in [Kim15, Proposition 7.7], whose proof is based
on [Kat73, Proposition 4.1.1]. The last statement also follows from the proof of [Kat73,
Proposition 4.1.1] by the standard dévissage. �

ForM∈ Modpr
OE and T ∈ Reppr

Zp
(GR̃∞), we can consider the contravariant functors

T∨(M) := HomOE ,ϕ(M, Ôur
E ) and M∨(T ) := HomGR̃∞

(T, Ôur
E ).

We have natural isomorphisms

T∨(M) ∼= T (M∨) and M∨(T ) ∼=M(T∨),

and these contravariant functors give equivalences of categories between Modpr
OE and Reppr

Zp
(GR̃∞)

by Proposition 2.16.
We now explain certain functoriality of above constructions. Let R′

0 be another base ring
over W (k)〈T±1

1 , . . . , T±1
d 〉 as in § 2.1 equipped with Frobenius, and suppose a ϕ-equivariant map

R0 → R′
0 of W (k)〈T±1

1 , . . . , T±1
d 〉-algebras is given. Consider the induced OK-linear extension

R = R0 ⊗W (k) OK → R′ := R′
0 ⊗W (k) OK . By fixing an algebraic closure of Frac(R′), we have

a map R→ R′, and this induces R̃∞ → R̃′∞ by the constructions given in (2.2). Hence, the
corresponding map of Galois groups GR′ → GR restricts to GR̃′∞ → GR̃∞ . Let SR′ = R′

0[[u]] and
let OE,R′ be the p-adic completion of SR′ [u−1]. Let MR′(·) be the functor for the base ring
R′ constructed similarly as previously. If T ∈ Reppr

Zp
(GR̃∞), then T can be also considered as a

GR̃′∞-representation via the map GR̃′∞ → GR̃∞ . We claim that there is a natural isomorphism

OE,R′ ⊗OE M(T )
∼=−→MR′(T ) of étale (ϕ,OE,R′)-modules. Indeed, the W (k)〈T±1

1 , . . . , T±1
d 〉-

algebra homomorphism OE → OE,R′ extends to a map Ôur
E → Ôur

E,R′ , which defines the desired
map OE,R′ ⊗OE M(T )→MR′(T ). To see that this is an isomorphism, observe

Ôur
E,R′ ⊗OE,R′ (OE,R′ ⊗OE M(T )) = Ôur

E,R′ ⊗Ôur
E

(Ôur
E ⊗OE M(T ))

∼=−→ Ôur
E,R′ ⊗Ôur

E
(Ôur

E ⊗Zp T ) = Ôur
E,R′ ⊗Zp T.

Hence, we conclude that OE,R′ ⊗OE M(T )→MR′(T ) is an isomorphism since it is so after the
base change along the faithfully flat map OE,R′ → Ôur

E,R′ .
We use this functoriality for the maps of base rings R→ OL and R→ OKg as in

Notation 2.8 in later sections. For OL and OKg , the relevant rings will be denoted by Ôur
E,L, Ŝur

L ,
Ôur

E,g, and Ŝur
g .

3. Completed prismatic F -crystals and crystalline representations

This section introduces the notion of completed prismatic F -crystals on the absolute prismatic
site of R and formulates the main theorem. In § 3.1, we recall the definition of absolute prismatic
site and consider some important examples of prisms. In §§ 3.2 and 3.3, we define completed
prismatic F -crystals and study their basic properties in the small affine case. In § 3.4, we study
the étale realization and formulate our main theorem. In § 3.5, we consider the special case where
crystalline representations have Hodge–Tate weights in [0, 1] and study the relation to p-divisible
groups. Finally, we globalize the étale realization functor and the main theorem in § 3.6.

We frequently use the following lemma.
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Lemma 3.1. Let A be a ring.

(i) Let M be a flat A-module, and N1, N2 submodules of an A-module N . Then as submodules
of M ⊗A N , we have

M ⊗A (N1 ∩N2) = (M ⊗A N1) ∩ (M ⊗A N2).

(ii) Let M be a finite projective A-module, and N an A-module. Let I be a (possibly infinite)
index set. Suppose for each i ∈ I, we are given an A-submoduleNi ofN . Then as submodules
M ⊗A N , we have

M ⊗A
( ⋂
i∈I

Ni

)
=

⋂
i∈I

(M ⊗A Ni).

Proof. Part (i) is well known. For part (ii), it suffices to show that the natural injective map

f : M ⊗A
( ⋂
i∈I

Ni

)
→

⋂
i∈I

(M ⊗A Ni)

is also surjective. Let M ′ be an A-module such that M ⊕M ′ is finite free over A. Then the map(
M ⊗A

( ⋂
i∈I

Ni

))
⊕

(
M ′ ⊗A

( ⋂
i∈I

Ni

))
= (M ⊕M ′)⊗A

( ⋂
i∈I

Ni

)

→
⋂
i∈I

(M ⊕M ′)⊗A Ni =
⋂
i∈I

((M ⊗A Ni)⊕ (M ′ ⊗A Ni))

is an isomorphism. This implies that the above map f is also surjective. �

3.1 The absolute prismatic site
We first recall the definition of the absolute prismatic site from [BS22] and [BS23]. Let X be a
smooth p-adic formal scheme over OK (or a CDVR of mixed characteristic (0, p) such as OL in
Notation 2.8).

Definition 3.2 [BS23, Definition 2.3]. The absolute prismatic site XΔ of X consists of the pairs
((A, I),Spf A/I → X), where (A, I) is a bounded prism and Spf A/I → X is a morphism of p-adic
formal schemes. For simplicity, we often omit the structure map Spf A/I → X and simply write
(A, I) for an object of XΔ. The morphisms are the opposite of morphisms of bounded prisms over
X, i.e. those compatible with the structure morphisms to X. We equip XΔ with the topology
given by (p, I)-completely faithfully flat maps of prisms (A, I)→ (B, J) over X. If X = Spf R
is affine, then we also write RΔ for XΔ. Note that the associated topos is replete by [BS23,
Remark 2.4].

The prismatic site XΔ has a sheaf OΔ of rings defined by OΔ(A, I) = A and an ideal sheaf
IΔ ⊂ OΔ given by IΔ(A, I) = I (cf. [BS22, Corollary 3.12]). A similar argument shows that for
each n ≥ 1, the association (A, I) 
→ A/(p, I)n defines a sheaf OΔ,n on XΔ. Moreover, we have

OΔ
∼=−→ lim←−nOΔ,n

∼= RlimOΔ,n (see Lemma 3.13). Finally, the δ-structure on each (A, I) ∈ XΔ
induces a ring endomorphism ϕ : OΔ → OΔ.

Let us explain the functoriality of the prismatic topoi. Let f : Y→ X be a morphism of
smooth p-adic formal schemes over OK . Then f induces a cocontinuous functor

YΔ → XΔ, ((A, I), ι : Spf A/I → Y) 
→ ((A, I), f ◦ ι : Spf A/I → X).

Hence, we have a morphism of topoi

fΔ = (f−1

Δ , fΔ,∗) : Shv(YΔ)→ Shv(XΔ).
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Observe that if f is an open immersion, then Shv(YΔ) is an open subtopos of Shv(XΔ) by fΔ.

Lemma 3.3. Let (B, IB) b←− (A, I) c−→ (C, IC) be a diagram of maps of bounded prisms over X

with b being (p, I)-completely faithfully flat, and let (B ⊗A C)∧(p,I) denote the classical (p, I)-
completion of B ⊗A C. Then the pushout of b along c is represented by the map (C, IC)→
((B ⊗A C)∧(p,I), I(B ⊗A C)∧(p,I)) and is (p, IC)-completely faithfully flat.

Proof. By the proof of [BS22, Corollary 3.12], the pushout of the diagram is represented by

the derived (p, I)-completion B̂ ⊗L

A C of B ⊗L

A C. Moreover, it is discrete and classically (p, I)-
complete, and the map from C is (p, IC)-completely faithfully flat. By the proof of [Wu21,

Proposition 3.2], we also have H0(B̂ ⊗L

A C) = (B ⊗A C)∧(p,I), i.e. B̂ ⊗L

A C is nothing but the
classical (p, I)-completion of B ⊗A C. �

Let R be small over OK or R = OL (Assumption 2.9). We now explain several objects of RΔ
that we use later.

Example 3.4 The Breuil–Kisin prism and its self-products. Consider the pair (S, (E)) where
S = R0[[u]] and E = E(u) is the Eisenstein polynomial for π ∈ OK over W as before. Equip
S with the δ-structure defined by extending the fixed Frobenius ϕ on R0 to S via ϕ(u) = up.
Then (S, (E)) ∈ RΔ, where the structure map R→ S/(E) is given by the natural isomorphism
R ∼= S/(E). We call (S, (E)) the Breuil–Kisin prism attached to π and R0.

The self-product of (S, (E)) exists in RΔ as follows. Consider the p-adically complete
tensor-product S⊗̂ZpS equipped with the induced ⊗-product Frobenius. We have a projec-
tion d : S⊗̂ZpS→ R given by the composite of the multiplication S⊗̂ZpS→ S and the natural
projection S→ S/(E) ∼= R. Let J be the kernel of d, and let

S(1) := (S⊗̂ZpS)
{
J

E

}∧

δ

.

Here S⊗̂ZpS is regarded as an S-algebra via a 
→ a⊗ 1, and {·}∧δ means adjoining elements in the
category of derived (p,E)-complete simplicial δ-S-algebras. Note that the E in {J/E}∧δ denotes
E ⊗ 1 but using 1⊗ E instead also gives the same S(1) (see [BS23, Construction 7.13]). By
[BS21, Corollary 3.14], (S(1), (E)) is a (p,E)-completely flat prism over (S, (E)). Furthermore,
(S(1), (E)) is bounded by [BS22, Lemma 3.7 (2)], so (S(1), (E)) ∈ RΔ. Let (B, I) ∈ RΔ. If we are
given maps f1, f2 : (S, (E))→ (B, I) such that two maps R ∼= S/E → B/I induced by f1 and
f2 agree, then we have a natural induced map f1 ⊗ f2 : S⊗̂ZpS→ B of δ-rings, and (f1 ⊗ f2)(J)
⊂ I. Thus, by the universal property of prismatic envelope ([BS21, Corollary 3.14]), we obtain
a map (S(1), (E))→ (B, I) in RΔ uniquely determined by f1, f2. Thus, (S(1), (E)) is the self-
product of (S, (E)) in RΔ. Similarly, the self-triple-product (S(2), (E)) of (S, (E)) exists in RΔ.
Write p1, p2 (respectively, q1, q2, q3) for the maps from (S, (E)) to (S(1), (E)) (respectively, to
(S(2), (E))).

A little more explicit description is given in [DL23, § 4.1] as follows. Recall that R0 is a
W 〈T±1

1 , . . . , T±1
d 〉-algebra. Let B⊗̂[1] denote the completion of S⊗Zp S with respect to the

ideal Ker(S⊗Zp S→ S). We have two natural maps p1, p2 : S→ B⊗̂[1] and regard B⊗̂[1] as an
S-algebra via p1. If we set sj := p2(Tj) and y := p2(u), then

S⊗̂[1] := S[[y − u, s1 − T1, . . . , sd − Td]]
can be naturally considered as an S-subalgebra of B⊗̂[1]. Similarly, let B⊗̂[2] denote the com-
pletion of S⊗Zp S⊗Zp S with respect to the ideal Ker(S⊗Zp S⊗Zp S→ S). We have maps
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q1, q2, q3 : S→ B⊗̂[2]. Via q1, we can naturally consider

S⊗̂[2] := S[[y − u,w − u, {sj − Tj , rj − Tj}j=1,...,d]]

as an S-subalgebra of B⊗̂[2], where sj := q2(Ti), rj := q3(Tj), y := q2(u) and w := q3(u). Let

J (1) = (E, y − u, {sj − Tj}j=1,...,d) ⊂ S⊗̂[1]

and

J (2) = (E, y − u,w − u, {sj − Tj , rj − Tj}j=1,...,d) ⊂ S⊗̂[2].

For i = 1, 2, S⊗̂[i] is naturally a (p,E)-completed δ-S-algebra and S(i) ∼= S⊗̂[i]{J (i)/E}∧δ .

Lemma 3.5. The maps pi : S→ S(1) (respectively, qi : S→ S(2)) for i = 1, 2 (respectively,
i = 1, 2, 3) are classically faithfully flat.

Proof. We only consider pi : S→ S(1). The proof for qi : S→ S(2) is similar. Note that S(1)

is classically (p,E)-complete by [BS22, Lemma 3.7 (1)], and pi : S→ S(1) is (p,E)-completely
flat. In particular, the induced map S/(p,E)n → S(1)/(p,E)n is flat for each n ≥ 1. Since S is
noetherian, pi : S→ S(1) is classically flat by [Sta22, Tag 0912]. Note that pi is a section of the
diagonal map S(1) � S. Thus, if N is any non-zero S-module, then S(1) ⊗pi,SN �= 0. Thus, pi
is classically faithfully flat. �
Corollary 3.6. We have that S(1) is p-torsion free and E-torsion free. Furthermore,

S(1)[p−1] ∩S(1)[E−1] = S(1),

and S(1)[E−1] is p-adically separated.

Proof. Since S is torsion free and p1 : S→ S(1) is classically flat, S(1) is p-torsion free and
E-torsion free. We deduce by Lemma 3.1(i) and S[p−1] ∩S[E−1] = S that

S(1)[p−1] ∩S(1)[E−1] = (S(1) ⊗p1,S S[p−1]) ∩ (S(1) ⊗p1,S S[E−1]) = S(1).

Since S(1) is p-adically complete, this also implies that S(1)[E−1] is p-adically separated. �

Example 3.7 The Ainf -prism. Let (ξ) be the kernel of θ : Ainf(R)→ R
∧. Then (Ainf(R),

(ξ)) ∈ RΔ, with the structure map R→ Ainf(R)/(ξ) given by the natural inclusion R→ R
∧.

Note that the map fπ�,T �
i
: S→ Ainf(R) given by u 
→ [π�] and Ti 
→ [T �i ] induces a map of

prisms (S, (E))→ (Ainf(R), (ξ)) over R. Moreover, each σ ∈ GR induces a map of prisms
(Ainf(R), (ξ))→ (Ainf(R), (ξ)) satisfying σ ◦ fπ�,T �

i
= fσ(π�),σ(T �

i ).

Example 3.8 The OAcris-prism and its Frobenius twists. Consider the surjective map
θR0 : OAcris(R)→ R

∧. The map

ϕ : OAcris(R)/(p)→ OAcris(R)/(p)

factors through

OAcris(R)/(p)→ OAcris(R)/((p) + ker(θR0)) ∼= R/(p) h−→ OAcris(R)/(p).

The pair (OAcris(R), (p)) defines a prism in RΔ, where the structure map R→ OAcris(R)/(p)
is given by the composite of R→ R/(p) and h (defined in the above factorization). Consider
the composite Ainf(R)

ϕ−→ Ainf(R)→ OAcris(R), where the second map is the natural inclusion.
This induces a map of prisms (Ainf(R), (ξ))

ϕ−→ (OAcris(R), (p)) over R, which is compatible with
Frobenii and GR-actions.
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On the other hand, consider the prism (R0, (p)) in RΔ, where the structure map R→
R0/(p) is given by the natural projection R→ R/(π) ∼= R0/(p). For any integer j ≥ 1, write
(φjOAcris(R), (p)) for the prism in RΔ whose underlying δ-pair is (OAcris(R), (p)) and the
structure map R→ OAcris(R)/(p) is given the structure map of (OAcris(R), (p)) composed
with ϕj : OAcris(R)→ OAcris(R). For a sufficiently large j, there exists a map of prisms
(R0, (p))→ (φjOAcris(R), (p)) given by Dwork’s trick. Indeed, let e = [K : K0] be the ramifi-
cation index, and choose an integer l such that pl ≥ e. Consider ϕl+1 : OAcris(R)→ OAcris(R).
Taking modulo the ideal (p) ⊂ OAcris(R), this induces a map R/(p)→ OAcris(R)/(p) as previ-

ously, which further factors through R/(π). Thus, the ring map R0
ϕl+1

−−−→ OAcris(R) induces a
map (R0, (p))→ (φlOAcris(R), (p)) of prisms over R.

Example 3.9 The Breuil prism. Let S denote the p-adically completed PD-envelope of S with
respect to (E), equipped with the Frobenius extending ϕ on S. Note that c := ϕ(E)/p is a unit
in S. So (S, (p)) ∈ RΔ with the structure map given by R ∼= S/(E)

ϕ−→ S/(p), and we have a map
of prisms ϕ : (S, (E))→ (S, (p)).

For i = 1, 2, let S(i) := D
S⊗̂[i](J (i))∧ be the p-adically completed PD-envelope of S⊗̂[i] with

respect to the ideal J (i). We set

z0 :=
y − u
E

and zj :=
sj − Tj
E

(j = 1, . . . , d).

Let A(1)
max be the p-adic completion of the S-subalgebra of (S[p−1])[z0, z1, . . . , zd] generated by

E/p and {γn(zj)}n≥1,0≤j≤d. By [DL23, § 2.2],1 we have a ring endomorphism ϕ : A(1)
max → A

(1)
max

extending ϕ : S→ S and satisfying

ϕ(z0) =
yp − up
ϕ(E)

and ϕ(zj) =
spj − T pj
ϕ(E)

(j = 1, . . . , d).

Since ϕ : S→ S is injective, ϕ : A(1)
max → A

(1)
max is injective. By [DL23, § 2.2], we have a natural

ring map S(1) → A
(1)
max which is injective and compatible with ϕ. In fact, A(1)

max is isomorphic to
S(1)〈E/p〉, the p-adic completion of S(1)[E/p] by [DL23, Remark 2.2.11].

Let S1 := S⊗̂[1][γn(E), γn(y − u), {γn(sj − Tj)}n≥1,j=0,...,d] ⊂ S⊗̂[1][p−1]. Note that S1 ⊂
A

(1)
max since γn(y − u) = γn(z0)En ∈ A(1)

max and similarly for γn(si − Ti). Since E, y − u, and
{sj − Tj}j=1,...,d form a regular sequence in S⊗̂[1], S1 is the PD-envelope of S⊗̂[1] for J (1) by
[BS22, Corollary 2.39]. Then S(1) is the p-adic completion of S1. As a subring of (R0[p−1])[[u, y −
u, s1 − T1, . . . , sd − Td]], we have

S(1) =
{ ∑

ai0,...,id+1
γi0(E)γi1(y − u)γi2(s1 − T1) · · · γid+1

(sd − Td)
∣∣∣∣

ai0,...,id+1
∈ S⊗̂[1], ai0,...,id+1

→ 0 (as i0 + · · ·+ id+1 →∞)
}
,

where the sum goes over the multi-index (i0, . . . , id+1) of non-negative integers and ai0,...,id+1
→ 0

means in the p-adic topology. Note that S(1) is a δ-ring by [BS22, Corollary 2.39]. We similarly
construct a δ-ring S(2).

Lemma 3.10. For i = 1, 2, we have an embedding S(i) ϕ
↪−→ S(i).

1 We warn the reader that our ring A
(1)
max is denoted by A

(2)
max in [DL23, § 2.2].
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Proof. We prove the statement for ϕ : S(1) → S(1), and the proof for ϕ : S(2) → S(2) is analogous.
It suffices to show ϕ(δn(zj)) ∈ S(1) for j = 0, . . . , d. Since S(1) is a δ-ring, we have

ϕ(z0) = c−1ϕ(y − u)
p

= c−1

(
(y − u)p

p
+ δ(y − u)

)
∈ S(1),

and similarly ϕ(zj) ∈ S(1) for j = 1, . . . , d. Again since S(1) is a δ-ring, we have ϕ(δn(zj)) =
δn(ϕ(zj)) ∈ S(1) for any n ≥ 0. �

3.2 Completed prismatic F -crystals in the small affine case
In this subsection, we introduce completed prismatic crystals and completed prismatic F -crystals
on the absolute prismatic site.

We first introduce the notion of finitely generated completed prismatic crystals. Let X be a
smooth p-adic formal scheme over OK (or a CDVR of mixed characteristic (0, p)).

Definition 3.11. A finitely generated completed crystal of OΔ-modules on XΔ is a sheaf F of
OΔ-modules on XΔ such that:

(i) for each (A, I) ∈ XΔ, the evaluation FA := F(A, I) of F on (A, I) is a finitely generated and
classically (p, I)-complete A-module;

(ii) for any morphism (A, I)→ (B, IB) of bounded prisms over X, the canonical linearized
transition map

B⊗̂AFA → FB
is an isomorphism, where B⊗̂AFA denotes the completed tensor product lim←−n(B ⊗AFA)/(p, I)n(B ⊗A FA).

We also call such a sheaf a finitely generated completed prismatic crystal on X, or a completed
prismatic crystal on X for short.

Similarly, a finitely generated crystal of OΔ,n-modules on XΔ is a sheaf Fn of OΔ,n-modules
on XΔ such that:

(i) for each (A, I) ∈ XΔ, the evaluation Fn,A := Fn(A, I) of Fn on (A, I) is a finitely generated
A/(p, I)n-module;

(ii) for any morphism (A, I)→ (B, IB) of bounded prisms over X, the canonical linearized
transition map B ⊗A Fn,A → Fn,B is an isomorphism.

Remark 3.12. Let F be a finitely generated completed prismatic crystal on X and let (A, I)→
(B, IB) be a map of bounded prisms over X. Since FA is a finitely generated A-module and B
is classically (p, IB)-complete, the natural map

B ⊗A FA → B⊗̂AFA
∼=−→ FB (3.1)

is surjective. Since (p, IB) is a finitely generated ideal of B, the map (3.1) induces an isomorphism
B/(p, IB)n ⊗A FA

∼=−→ FB/(p, IB)nFB by [Yek18, Theorem 1.2(2)]. Moreover, the map (3.1) is
an isomorphism if A and B are both noetherian or if A is noetherian and the map A→ B
is classically flat. The latter case follows from [Sta22, Tag 0912]. It is also an isomorphism if FA
is a finite projective A-module.

Lemma 3.13. Let F be a finitely generated completed crystal of OΔ-modules on XΔ. Then for
each n ≥ 1, the association (A, I) 
→ FA/(p, I)nFA represents the quotient sheaf F/(p, IΔ)nF
and defines a finitely generated crystal Fn of OΔ,n-modules on XΔ. Moreover, we have

isomorphisms of OΔ-modules OΔ,n ⊗OΔ,n+1
Fn+1

∼=−→ Fn and F ∼= lim←−nFn ∼= RlimFn.
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Conversely, let (Fn)n be an inverse system of sheaves of OΔ-modules such that Fn is a
finitely generated crystal of OΔ,n-modules and such that the projection Fn+1 → Fn induces an

isomorphism OΔ,n ⊗OΔ,n+1
Fn+1

∼=−→ Fn for each n. Then F := lim←−nFn is a finitely generated
completed crystal of OΔ-modules on XΔ, and we have isomorphisms of OΔ-modules OΔ,n ⊗OΔF ∼= Fn and F ∼= RlimFn.
Proof. Let F be a finitely generated completed crystal of OΔ-modules on XΔ. Let (A, I)→
(B, IB) be a (p, I)-completely faithfully flat map of bounded prisms over X. Set B′ = (B ⊗A
B)∧(p,I). By Lemma 3.3, B′ is (p, I)-completely faithfully flat over A and (B′, IB′) ∈ XΔ is the
self-fiber product of (B, IB) over (A, I). Let p1, p2 : (B, IB)→ (B′, IB′) be the two maps of
bounded prisms over X. Since B/(p, I)nB is classically faithfully flat over A/(p, I)n and since
B/(p, I)nB ⊗A/(p,I)n B/(p, I)nB ∼= B′/(p, I)nB′, we have an exact sequence

0→ Fn,A → B/(p, I)nB ⊗A/(p,I)n Fn,A p1⊗1−p2⊗1−−−−−−−→ B′/(p, I)nB′ ⊗A/(p,I)n Fn,A.
On the other hand, since F is a completed prismatic crystal, we have the isomorphisms B⊗̂AFA ∼=
FB and B′⊗̂AFA ∼= FB′ . It follows that the above exact sequence is identified with

0→ Fn,A → Fn,B p∗1−p∗2−−−−→ Fn,B′ .

This implies that Fn is a sheaf on XΔ, representing the quotient sheaf F/(p, IΔ)nF . Since FA
is a finitely generated classically (p, I)-complete A-module, Fn is a finitely generated crystal of
OΔ,n-modules. Moreover, we have isomorphisms of OΔ-modules OΔ,n ⊗OΔ,n+1

Fn+1
∼=−→ Fn and

F ∼=−→ lim←−nFn. Finally, since the absolute prismatic topos is replete and Fn+1 → Fn is surjective
for every n, we obtain lim←−nFn ∼= RlimFn by [BS15, Proposition 3.1.10].

Conversely, let (Fn)n be an inverse system of sheaves of OΔ-modules satisfying the prop-
erties as in the lemma. An argument similar to the previous paragraph shows that the
association (A, I) 
→ A/(p, I)n ⊗A/(p,I)n+1 Fn+1,A represents the sheaf OΔ,n ⊗OΔ,n+1

Fn+1. Set
F := lim←−nFn and take any (A, I) ∈ XΔ. Then we have F(A, I) = (lim←−nFn)(A, I) = lim←−nFn,A
and A/(p, I)n ⊗A/(p,I)n+1 Fn+1,A

∼= Fn,A. It follows from [Yek18, Theorem 2.8] that F(A, I) is a
finitely generated and classically (p, I)-complete A-module with F(A, I)/(p, I)nF(A, I) ∼= FA,n.
Moreover, for a morphism (A, I)→ (B, IB) of bounded prisms over X, we have B ⊗A Fn,A ∼=
Fn,B. It follows that the canonical map B⊗̂AF(A, I)→ F(B, IB) is an isomorphism. Hence, F
is a finitely generated completed crystal of OΔ-modules. Now the remaining assertions follow
easily. �

To define completed prismatic F -crystals in the affine case, let us first introduce the following
terminologies.

Definition 3.14. Let R be a base ring and keep the notation as in § 2.1.

(i) We say that a finite S-module N is projective away from (p,E) if N is torsion free, N [p−1]
is projective over S[p−1], and N [E−1]∧p is projective over S[E−1]∧p = OE .

(ii) We say that a finite S-module N is saturated if N is torsion free and

N = N [p−1] ∩N [E−1].

(iii) Let r be a non-negative integer and let N be an S-module equipped with a ϕ-semi-linear
endomorphism ϕN : N → N . We say that the pair (N,ϕN ) has E-height ≤ r if

1⊗ ϕN : S⊗ϕ,SN → N

is injective and its cokernel is killed by E(u)r. We say that (N,ϕN ) has finite E-height if it
has E-height ≤ r for some r.
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We also use these terminologies for a finite module over an S-algebra.

Remark 3.15.

(i) By the Beauville–Laszlo theorem, any finitely generated S-module which is saturated and
projective away from (p,E) is the pushforward of a vector bundle on SpecS \ V (p,E) to
SpecS. In fact, let N be a torsion-free finite S-module. Then N is saturated if and only if
the natural map

N/pN → N [E−1]/pN [E−1]

is injective. Since N [E−1]/pN [E−1] ∼= N [E−1]∧p /pN [E−1]∧p ∼= N [u−1]/pN [u−1], we deduce
that N is saturated if and only if N = N [p−1] ∩N [E−1]∧p , or equivalently, N = N [p−1] ∩
N [u−1]. Moreover, if N is projective away from (p,E), then N [E−1] is finite projective over
S[E−1].

(ii) Assume that either R is small over OK or R = OL. We show that if (N,ϕN ) is a torsion-
free finite S-module with Frobenius of finite E-height, then N [p−1] is projective over S[p−1]
(Proposition 4.13).

We now introduce the notion of completed prismatic F -crystals on R, which will be our main
object of study. We make Assumption 2.9: R is small over OK or R = OL.

Definition 3.16. A completed F -crystal of OΔ-modules on RΔ is a pair (F , ϕF ), where F is
a finitely generated completed crystal of OΔ-modules on RΔ and

ϕF : F → F
is a ϕ-semilinear morphism of OΔ-modules such that:

(i) FS := F(S, E) is projective away from (p,E) and saturated;
(ii) the pair (FS, ϕFS

) has finite E-height.

We also call such an object a completed prismatic F -crystal on R. The morphisms between
completed F -crystals of OΔ-modules are OΔ-module maps compatible with Frobenii.

We write CR∧,ϕ(RΔ) for the category of completed F -crystals of OΔ-modules on RΔ. Let
Vectϕeff(RΔ) denote the full subcategory of CR∧,ϕ(RΔ) consisting of objects (F , ϕF ) where F is a
locally free OΔ-module. For a fixed non-negative integer r, we let CR∧,ϕ

[0,r](RΔ) and Vectϕ[0,r](RΔ)
denote the full subcategories consisting of objects for which (FS, ϕFS

) has E-height ≤ r.
Remark 3.17. When R is small over OK , the above definition agrees with Definition 1.1 by
Remark 3.15(i) and (ii). In § 3.6, we define completed prismatic F -crystals on a smooth p-adic
formal scheme by gluing.

Remark 3.18. When R = OL := R∧
(π) (i.e. a CDVR with residue field having a finite p-basis and

a uniformizer finite over W (k)), any finite SL-module which is projective away from (p,E)
and saturated is free over SL, since SL is a regular local ring of dimension 2 (e.g. [Hor64,
Corollary 4.1.1]). Thus, by Proposition 3.26, the category CR∧,ϕ((OL)Δ) is equal to the cate-
gory Vectϕeff((OL)Δ). Furthermore, when R = OK (i.e. a CDVR with perfect residue field), our
category Vectϕeff((OK)Δ) coincides with the full subcategory of Vectϕ(Spf(OK)Δ,OΔ) defined in
[BS23, Definition 4.1] consisting of effective prismatic F -crystals of vector bundles.

Let us explain that the definition of completed prismatic F -crystals is independent of the
choice of a Breuil–Kisin prism, namely, a uniformizer π ∈ OK and a W -subalgebra R0 ⊂ R
(Corollary 3.22). For this, we need the following two lemmas.
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Lemma 3.19. Let F be a finitely generated completed prismatic crystal on R equipped with a
morphism 1⊗ ϕF : ϕ∗F → F ofOΔ-modules. Fix a uniformizer π ∈ OK with minimal polynomial
E(u) and associated Breuil–Kisin prism (S, (E)), and let (S, (E))→ (B,EB) be a classically
flat map of bounded prisms over R. Then the following properties hold:

(i) if FS is projective away from (p,E) and saturated as an S-module, then FB is projective
away from (p,E) and saturated as a B-module;

(ii) for a non-negative integer r, if the pair (FS, ϕFS
) has E-height ≤ r, then (FB, ϕFB

) has
E-height ≤ r.

Moreover, the converse also holds if S→ B is classically faithfully flat.

Proof. Note B ⊗SFS
∼= FB by Remark 3.12.

(i) Suppose FS is projective away from (p,E) and saturated as an S-module. Then FB is
p-torsion free, and FB[p−1] is projective over B[p−1]. It follows that FB ⊂ FB[p−1] is torsion
free. Since S is noetherian and FS is finitely generated, the induced map S[E−1]∧p → B[E−1]∧p
is classically flat and B[E−1]∧p ⊗S[E−1]∧p FS[E−1]∧p ∼= FB[E−1]∧p by [Sta22, Tag 0912]. We deduce
that FB[E−1]∧p is projective over B[E−1]∧p . Thus, FB is projective away from (p,E). Since FS

is saturated, Lemma 3.1(i) implies that

FB = B ⊗SFS = B ⊗S (FS[p−1] ∩ FS[E−1]) = FB[p−1] ∩ FB[E−1].

This means that FB is saturated.
(ii) The assertion follows from Coker(1⊗ ϕFS

)⊗SB = Coker(1⊗ ϕFB
).

Finally, if the map S→ B is classically faithfully flat, then so is S[E−1]∧p → B[E−1]∧p . Hence,
the converse direction follows similarly. �

Suppose R is small over OK . Let π′ ∈ OK be another uniformizer of OK , E′(y) ∈W [y] the
Eisenstein polynomial for π′, and R′

0 a W 〈(T ′
1)

±1, . . . , (T ′
d)

±1〉-algebra with R′
0 ⊗W OK = R as

in Remark 2.2. Set S′ := R′
0[[y]] equipped with Frobenius given by ϕ(T ′

i ) = (T ′
i )
p and ϕ(y) = yp.

Then we have a Breuil–Kisin prism (S′, (E′)) ∈ RΔ with the structure map R
∼=−→ S′/(E′).

Lemma 3.20.

(i) The absolute product of (S, (E)) and (S′, (E′)) exists in RΔ. Write (S(1)
π,π′ , I) for the

absolute product. We also have I = ES
(1)
π,π′ = E′S(1)

π,π′ .

(ii) The maps S→ S
(1)
π,π′ and S′ → S

(1)
π,π′ are classically faithfully flat.

Proof. (i) Consider the p-adically complete tensor-product S⊗̂ZpS
′, and let

d : S⊗̂ZpS
′ → R

be the composite of the natural projection S⊗̂ZpS
′ → S/(E)⊗̂ZpS

′/(E′) ∼= R⊗̂ZpR and the
multiplication R⊗̂ZpR→ R. Let J be the kernel of d. We claim that the absolute product of
(S, (E)) and (S′, (E′)) in RΔ is given by

S
(1)
π,π′ = S⊗̂ZpS

′
{
J

E

}∧

δ

,

where {·}∧δ means adjoining elements in the category of derived (p,E)-complete simplicial
δ-S-algebras. Indeed, by [BS21, Corollary 3.14], (S(1)

π,π′ , (E)) is a (p,E)-completely flat prism

over (S, (E)). We have a natural map of prisms (S′, (E′))→ (S(1)
π,π′ , (E)) and, thus,
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(E′)S(1)
π,π′ = (E)S(1)

π,π′ by [BS22, Lemma 3.5]. Thus, the construction is symmetric, and

(S(1)
π,π′ , (E)) is also a (p,E′)-completely flat prism over (S′, (E′)). By [BS22, Lemma 3.7(2)],

(S(1)
π,π′ , (E)) is bounded. The universal property can be checked similarly as in Example 3.4.
(ii) The classical flatness follows by a similar argument as in the proof of Lemma 3.5:

note that S
(1)
π,π′ is classically (p,E)-complete by [BS22, Lemma 3.7(1)]. Since S→ S

(1)
π,π′ is

(p,E)-completely flat and S is noetherian, S→ S
(1)
π,π′ is classically flat by [Sta22, Tag 0912].

Consider the composite R0 → S→ S
(1)
π,π′ , where the first map is given by the natural

inclusion R0 ↪→ R0[[u]] = S (which is classically faithfully flat). Since S
(1)
π,π′ is classically (p,E(u))-

complete, it is u-complete and u lies in the radical of S
(1)
π,π′ . Thus, to prove S→ S

(1)
π,π′ is

classically faithfully flat, it suffices to show that R0 → S
(1)
π,π′ is classically faithfully flat by [Sta22,

Tag 00HQ]. Let P ⊂ R be a maximal ideal, and let m = R0 ∩P and m′ = R′
0 ∩P be the cor-

responding maximal ideals of R0 and R′
0, respectively. Let (R0)∧m denote the m-adic completion

of the localization (R0)m. It is shown in the proof of Proposition 4.13 below that (R0)∧m is
equipped with the Frobenius induced from R0, and that (R0)∧m ∼= W (k1)[[t1, . . . , td]], where
k1 := R/P is a finite extension of k. Similarly, we have (R′

0)
∧
m′ ∼= W (k1)[[t′1, . . . , t′d]].

Let A(1)
P be the absolute product of ((R0)∧m[[u]], (E)) and ((R′

0)
∧
m′ [[y]], (E′)) constructed as in

(i) with R0 (respectively, R′
0) replaced by (R0)∧m (respectively, (R′

0)
∧
m′). Note that the map

fm : W (k1)[[t1, . . . , td]] ∼= (R0)∧m→ A
(1)
P (3.2)

is classically flat similarly as above. Consider the induced map

W (k1)[[t1, . . . , td]]/(t1, . . . , td) ∼= W (k1)→ A
(1)
P /(t1, . . . , td)A

(1)
P .

From the explicit construction of the absolute product A
(1)
P in part (i), we deduce that

1 /∈ (t1, . . . , td)A
(1)
P , and so A

(1)
P /(t1, . . . , td)A

(1)
P is not the zero ring. Furthermore, since A

(1)
P

is classically p-complete, p lies in the radical of A(1)
P /(t1, . . . , td)A

(1)
P . Thus, A(1)

P has a maxi-
mal ideal which lies over the maximal ideal (p, t1, . . . , td) of (R0)∧m, and the map fm in (3.2) is
classically faithfully flat.

Now, consider the map (R0)∧m→ S
(1)
π,π′ ⊗R0 (R0)∧m induced from R0 → S

(1)
π,π′ . We claim that

(R0)∧m→ S
(1)
π,π′ ⊗R0 (R0)∧m is classically faithfully flat. The classical flatness is clear. Note that

by [BS21, Corollary 3.14], the construction of the absolute product in part (i) commutes with
(p,E)-completely flat base change. Thus, the map fm : (R0)∧m→ A

(1)
P in (3.2) naturally fac-

tors through (R0)∧m→ S
(1)
π,π′ ⊗R0 (R0)∧m. Since fm is classically faithfully flat, so is the flat map

(R0)∧m→ S
(1)
π,π′ ⊗R0 (R0)∧m. Now since the claim holds for any maximal ideal m ⊂ R0, R0 → S

(1)
π,π′

is classically faithfully flat.
By symmetry, S′ → S

(1)
π,π′ is also classically faithfully flat. �

Remark 3.21. When R = Zp, the above lemma follows from [BL22, Proposition 2.4.5 and 2.4.9]
and [Sta22, Tag 0912]: for any (A, I) and (B, J) in RΔ with (A, I) non-zero and transversal in
the sense of [BL22, Definition 2.1.3], the product of (A, I) and (B, J) exists in RΔ, and it covers
(B, J).

Corollary 3.22. Definition 3.16 of completed prismatic F -crystals is independent of the choice
of a uniformizer π ∈ OK and a W -subalgebra R0 of R.
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Proof. This follows from Lemmas 3.19 and 3.20. �

Remark 3.23 Restriction of completed prismatic F -crystals. Suppose R is small over OK , and
let R→ R′ be a p-adically completed étale map. Let R′

0 ⊂ R′ such that R′
0 ⊗W OK ∼= R′

with a p-adically completed étale map R0 → R′
0 as in Remark 2.2. Note that the Frobenius

on R0 extends uniquely to a Frobenius on R′
0. For F ∈ CR∧,ϕ(RΔ), consider its restriction

F|(R′)Δ to (R′)Δ. Since S = R0[[u]]→ R′
0[[u]] is classically flat, we deduce from Remark 3.12 and

Lemma 3.19 that F|(R′)Δ(R′
0[[u]], (E)) = R′

0[[u]]⊗SFS and F|(R′)Δ ∈ CR∧,ϕ((R′)Δ). We similarly
have the restriction of completed prismatic F -crystals for the maps R→ OL and R→ OKg as
in Notation 2.8.

We now study some properties of completed prismatic F -crystals on R. Let SL := OL0 [[u]]
equipped with Frobenius given by ϕ(u) = up. Note that (SL, (E)) ∈ RΔ with R→ SL/(E) =
OL = R∧

(π) and that the natural map S→ SL induces a map of prisms (S, (E))→ (SL, (E))
over R. Let OE,L denote the p-adic completion of SL[u−1].

Lemma 3.24. Let F ∈ CR∧,ϕ(RΔ). Then the following properties hold.

(i) We have FSL
∼= SL ⊗SFS. Furthermore, FSL

is finite free over SL.
(ii) We have FS = FSL

∩ FS[E−1]∧p as submodules of OE,L ⊗SFS.
(iii) The natural map

S(1) ⊗pi,SFS→ S(1)[E−1]∧p ⊗pi,SFS

is injective for i = 1, 2.
(iv) For any map of bounded prisms (S, (E))→ (A,EA) over R, the natural map

A[p−1]⊗SFS→ FA[p−1]

is a ϕ-compatible isomorphism of A[p−1]-modules. Similarly, the natural map

A[E−1]⊗SFS→ FA[E−1]

is an isomorphism of A[E−1]-modules. Furthermore, the classical p-adic completions
(A[E−1]⊗SFS)∧p and (FA[E−1])∧p have naturally induced Frobenii, and the induced

isomorphism (A[E−1]⊗SFS)∧p
∼=→ (FA[E−1])∧p is ϕ-compatible.

Proof. (i) Since SL is noetherian and S→ SL is classically flat, we deduce by a similar argument
as in Remark 3.23 that FSL

∼= SL ⊗SFS, FSL
is torsion free, and

FSL
[p−1] ∩ FSL

[E−1] = FSL
.

Thus, by Remark 3.18, FSL
is finite free over SL.

(ii) It suffices to show FSL
∩ FS[E−1]∧p ⊂ FS. Since FS[p−1] is projective over S[p−1] and

SL ∩ OE = S, we have by Lemma 3.1(i) that

FSL
[p−1] ∩ FS[E−1]∧p [p−1] = (SL[p−1]⊗S[p−1] FS[p−1]) ∩ (OE [p−1]⊗S[p−1] FS[p−1]) =FS[p−1].

Thus,

FSL
∩ FS[E−1]∧p ⊂ FS[p−1] ∩ FS[E−1]∧p = FS.

(iii) The natural map

S(1) ⊗pi,SFS→ S(1)[p−1]⊗pi,SFS
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is injective since FS→ FS[p−1] is injective and pi : S→ S(1) is classically flat by Lemma 3.5.
Furthermore, since FS[p−1] is projective over S[p−1] and S(1)[p−1]→ S(1)[E−1]∧p [p−1] is injective
by Corollary 3.6, the natural map

S(1)[p−1]⊗pi,S[p−1] FS[p−1]→ S(1)[E−1]∧p [p−1]⊗pi,S[p−1] FS[p−1]

is injective. Thus, the composite map

S(1) ⊗pi,SFS→ S(1)[p−1]⊗pi,SFS→ S(1)[E−1]∧p [p−1]⊗pi,SFS

is injective. The composite factors through the map

S(1) ⊗pi,SFS→ S(1)[E−1]∧p ⊗pi,SFS,

which is therefore injective.
(iv) We first show that the first map is an isomorphism of A[p−1]-modules. By the definition

of a finitely generated completed prismatic crystal, the map A⊗̂SFS→ FA is an isomorphism.
Since FS is finitely generated over S and A is classically (p,E)-complete, the natural map

A⊗SFS→ A⊗̂SFS

is surjective. Thus, it suffices to show that the induced surjective map (A⊗SFS)[p−1]→
(A⊗̂SFS)[p−1] is also injective.

Since FS[p−1] is finite projective over S[p−1], there exists an S[p−1]-module Q such that
FS[p−1]⊕Q is finite free over S[p−1]. We have an S-submoduleN ⊂ FS[p−1]⊕Q withN [p−1] =
FS[p−1]⊕Q such that N is free over S and that the inclusion FS ↪→ N [p−1] factors through
FS ↪→ N ⊂ N [p−1].

Consider the induced map A⊗SFS→ A⊗SN . Note that A⊗SN is (p,E)-complete since
N is finite free over S. Thus, this map factors through

A⊗SFS→ A⊗̂SFS→ A⊗SN.

On the other hand, since FS[p−1] is a direct summand of N [p−1], the map (A⊗SFS)[p−1]→
(A⊗SN)[p−1] is injective. Since it factors through

(A⊗SFS)[p−1]→ (A⊗̂SFS)[p−1]→ (A⊗SN)[p−1],

the map (A⊗SFS)[p−1]→ (A⊗̂SFS)[p−1] in question is also injective.
Similarly, the second map is an isomorphism of A[E−1]-modules since FS[E−1] is finite

projective over S[E−1] by Remark 3.15(i). Hence, it remains to show the statements for
ϕ-compatibility. Note that ϕ((p,E)m) ⊂ (p,E)m for each m ≥ 1. It follows that A⊗̂SFS admits
a Frobenius endomorphism induced from that on A⊗SFS. Thus, the natural map A⊗SFS→
A⊗̂SFS is ϕ-compatible, and so are

(A⊗SFS)[p−1]→ (A⊗̂SFS)[p−1] and ((A⊗SFS)[E−1])/pn → ((A⊗̂SFS)[E−1])/pn

for each n ≥ 1. �

3.3 Completed prismatic F -crystals in terms of descent data
Keep Assumption 2.9. We can explicitly describe the category CR∧,ϕ(RΔ) in terms of certain
descent data as follows.

Definition 3.25. Let DDS denote the category consisting of triples (M, ϕM, f) where:

(i) M is a finite S-module that is projective away from (p,E) and saturated;
(ii) ϕM: M→M is a ϕ-semi-linear endomorphism such that (M, ϕM) has finite E-height;
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(iii) f : S(1) ⊗p1,S M
∼=−→ S(1) ⊗p2,S M is an isomorphism of S(1)-modules that is compatible

with Frobenii and satisfies the cocycle condition over S(2).

The morphisms of DDS are S-linear maps compatible with all structures.
For a fixed non-negative integer r, let DDS,[0,r] denote the full subcategory consisting of

objects for which (M, ϕM) has E-height ≤ r.
We call an object of DDS an integral Kisin descent datum. One can also consider a triple

(M, ϕM, f) where (M, ϕM) is as above and f : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M is an

isomorphism of S(1)[p−1]-modules that is compatible with Frobenii and satisfies the cocycle
condition over S(2)[p−1]. Such an object is called a rational Kisin descent datum.

Proposition 3.26. The association F 
→ FS = F(S, (E)) gives rise to a functor CR∧,ϕ(RΔ)→
DDS and induces equivalences of categories

CR∧,ϕ(RΔ) ∼= DDS and CR∧,ϕ
[0,r](RΔ) ∼= DDS,[0,r].

Furthermore, under this equivalence, (M, ϕ, f) corresponds to an object in Vectϕeff(RΔ) if and
only if M is finite projective over S.

Proof. Let F ∈ CR∧,ϕ(RΔ). By Lemma 3.5 and Remark 3.12, we have an isomorphism of
S(1)-modules

f : S(1) ⊗p1,SFS

∼=−→ FS(1)

∼=← S(1) ⊗p2,SFS

satisfying the cocycle condition over S(2). Thus, any completed crystal in CR∧,ϕ(RΔ) naturally
gives an object in DDS via F 
→ FS, which gives a functor from CR∧,ϕ(RΔ) to DDS.

Conversely, let (M, ϕM, f) ∈ DDS. Take any prism (A, I) ∈ RΔ. By [DL23, Lemma 4.1.8],
there exists a prism (B, IB) ∈ RΔ which covers (A, I) and admits a map (S, (E))→ (B, IB)
over R. By Lemma 3.3, the pushout of the diagram (B, IB)← (A, I)→ (B, IB) of maps of
bounded prism over R is represented by (B ⊗A B)∧(p,I), and (B ⊗A B ⊗A B)∧(p,I) satisfies a similar

property for the self-triple cofiber product. By the universal property of S(1) and S(2), we have
maps S(1) → (B ⊗A B)∧(p,I) and S(2) → (B ⊗A B ⊗A B)∧(p,I).

Consider the B-module B ⊗S M. The base change of the descent datum f : S(1) ⊗p1,S
M

∼=−→ S(1) ⊗p2,S M along S(1) → (B ⊗A B)∧(p,I) gives a descent datum of B ⊗S M, namely, a
(B ⊗A B)∧(p,I)-linear isomorphism

fB : (B ⊗A B)∧(p,I) ⊗p1,B (B ⊗S M)
∼=−→ (B ⊗A B)∧(p,I) ⊗p2,B (B ⊗S M)

satisfying the cocycle condition over (B ⊗A B ⊗A B)∧(p,I). By reducing modulo (p, I)n, fB induces
a compatible system of isomorphisms

fB,n : (B ⊗A B)/(p, I)n ⊗p1,B (B ⊗S M)
∼=−→ (B ⊗A B)/(p, I)n ⊗p2,B (B ⊗S M)

satisfying the cocycle condition over (B ⊗A B ⊗A B)/(p, I)n for each n ≥ 1.
Since A→ B is (p, I)-completely faithfully flat, each fB,n defines a finitely generated

A/(p, I)n-module Fn,A by the usual faithfully flat descent. We claim that Fn,A is independent
of the choice of the cover (A, I)→ (B, IB) and that the association (A, I) 
→ Fn,A defines a
sheaf Fn of OΔ-modules on RΔ. To see the former, take another prism (B′, IB′) ∈ RΔ which
covers (A, I) and admits a map (S, (E))→ (B′, IB′) over R. Let F ′

n,A denote the finitely gen-
erated A/(p, I)n-module given by the descent of ((B′ ⊗S M)/(p, I)n, fB′,n). By Lemma 3.3,
the pushout of the diagram (B, IB)← (A, I)→ (B′, IB′) of maps of bounded prism is rep-
resented by (B ⊗A B′)∧(p,I). Since the maps B → (B ⊗A B′)∧(p,I) and B′ → (B ⊗A B′)∧(p,I) are
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(p, I)-completely faithfully flat, we can canonically identify both Fn,A and F ′
n,A with the descent

of (((B ⊗A B′)∧(p,I) ⊗S M)/(p, I)n, f(B⊗AB′)∧
(p,I)

,n). To see that the association (A, I) 
→ Fn,A
defines a sheaf Fn of OΔ-modules on RΔ, take a (p, I)-completely faithfully flat map of prisms
(A, I)→ (A′, IA′) over R. Then the pushout of the diagram (A′, IA′)← (A, I)→ (A′, IA′) is
represented by (A′ ⊗A A′)∧(p,I). Hence, we need to show the exactness of the sequence

0→ Fn,A → Fn,A′ → Fn,(A′⊗AA′)∧
(p,I)

. (3.3)

On the other hand, we see that (A′ ⊗A B)∧(p,I) (respectively, (A′ ⊗A A′ ⊗A B)∧(p,I)) together with
the ideal generated by I gives a bounded prism over R that admits a map from (S, (E)) over R
and covers (A′, IA′) (respectively, ((A′ ⊗A A′)∧(p,I), I(A

′ ⊗A A′)∧(p,I))). By construction, we have
a left exact sequence

0→ (B ⊗S M)/(p, I)n → (A′ ⊗B ⊗S M)/(p, I)n → (A′ ⊗A A′ ⊗A B ⊗S M)/(p, I)n.

Since this left exact sequence is the base change of the sequence (3.3) along the classically
faithfully flat map A/(p, I)n → B/(p, I)n, we conclude that the sequence (3.3) is left exact. This
completes the verification of the claim.

The sheaf Fn is equipped with an induced Frobenius, since ϕ((p, I)n) ⊂ (p, I)n. Furthermore,
Fn is a finitely generated crystal of OΔ,n-modules. This follows from a similar argument as in
the above paragraph and the verification is left to the reader. We also remark that {Fn}n≥1

forms an inverse system of sheaves of OΔ-modules such that OΔ,n+1 ⊗OΔ,n
Fn+1

∼= Fn. Hence
F := lim←−nFn is a completed prismatic crystal on R equipped with Frobenius by Lemma 3.13.
By construction, we see F(S, (E)) = M. As a result, F ∈ CR∧,ϕ(RΔ). This proves the essential
surjectivity.

The fully faithfulness also follows directly from a similar argument as above (alterna-
tively, one can check that the above two functors are quasi-inverse to each other). Obviously,
this equivalence also induces CR∧,ϕ

[0,r](RΔ) ∼= DDS,[0,r]. The last assertion follows from [Sta22,
Tag 0D4B]. �

3.4 Étale realization and the main theorem in the small affine case
We now formulate our main theorem. For this, we first attach to a completed prismatic F -crystal
F on R a finite free Zp-representation T (F) of GR. This will be based on the results in [BS23,
§ 3] (see also [MW21]). Keep Assumption 2.9: R is small over OK or R = OL.

Recall that Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 denotes the category of Laurent F -crystals, i.e. crystals
of vector bundles V on (RΔ,OΔ[1/IΔ]∧p ) together with isomorphisms ϕV : ϕ∗V ∼= V (see [BS23,
Definition 3.2]). There is an equivalence of categories

Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 ∼= Reppr
Zp

(GR)

given by (V, ϕV) 
→ V(Ainf(R), (ξ))ϕV=1 (see [BS23, Corollary 3.8], [MW21, Theorem 3.2]), which
is functorial in R.

Proposition 3.27.

(i) The assignment F 
→ Fét := lim←−nOΔ[1/IΔ]/pn ⊗OΔ
F defines a faithful functor

CR∧,ϕ(RΔ)→ Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1.

Moreover, if F ∈ Vectϕeff(RΔ), then the canonical morphism OΔ[1/IΔ]∧p ⊗OΔ
F → Fét is an

isomorphism.
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(ii) Define a contravariant functor T : CR∧,ϕ(RΔ)→ Reppr
Zp

(GR) by

T (F) :=
(
(Fét(Ainf(R), (ξ)))ϕFét

=1
)∨
.

Then it satisfies the following properties:
(a) there is a GR-equivariant identification

T (F)[p−1]∨ = (W (R�[(π�)−1])[p−1]⊗Ainf(R) FAinf(R))
ϕ=1,

where the GR-action on the right-hand side is the tensor product of those on

W (R�[(π�)−1]) and on FAinf(R) = F(Ainf(R), (ξ));
(b) FS[E−1]∧p is the étale ϕ-module associated with T (F)∨|GR̃∞

via Proposition 2.16;

(c) if R is small over OK and if R→ R′ is a p-adically completed étale map together
with a compatible W -map R0 → R′

0, then T is compatible with the restrictions
CR∧,ϕ(RΔ)→ CR∧,ϕ(R′

Δ) (see Remark 3.23) and Reppr
Zp

(GR)→ Reppr
Zp

(GR′); we also
have the analogous compatibility for the base changes along R→ OL and R→ OKg .

We call the functor T the étale realization functor. We remark that our functor is contravari-
ant and it is the dual of the covariant étale realization functor in [BS23]. Our contravariant
convention agrees with that in the theory of Breuil–Kisin modules [Kis06, BT08], which is heavily
used in this paper.

Proof. (i) We start with a description of Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 in terms of the category of
certain descent data: let DDOE denote the category of triples (M, ϕM, g) where (M, ϕM) is a
finite projective étale ϕ-module over OE as in § 2.3, and g is an isomorphism of S(1)[E−1]∧p -
modules

g : S(1)[E−1]∧p ⊗p1,OE M
∼=−→ S(1)[E−1]∧p ⊗p2,OE M

that is compatible with Frobenii and satisfies the cocycle condition over S(2)[E−1]∧p . We claim
that evaluating on the diagram S

p1−→ S(1) p2←− S gives an equivalence of categories from
Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 to DDOE ; for any prism (A, I) ∈ RΔ, take a prism (B, IB) ∈ RΔ
which covers (A, I) and admits a map (S, (E))→ (B, IB) over R. Then (B ⊗A B)∧(p,I) and
(B ⊗A B ⊗A B)∧(p,I) represent the self-cofiber product and the self-triple cofiber product of the
map (A, I)→ (B, IB) of bounded prisms over R. Moreover, for each n, the map A/pn → B/pn

is I-completely faithfully flat, and the self-cofiber product and the self-triple cofiber product
for I-completely flat topology are given by (B/pn ⊗A/pn B/pn)∧I and (B/pn ⊗A/pn B/pn ⊗A/pn

B/pn)∧I , respectively. Now the claim follows as in the proof of Proposition 3.26 with faithfully
flat descent replaced by [Mat22, Theorem 7.8] (see also [Wu21, § 3] when R = OK). Moreover,
the proof shows the following: if G is the Laurent F -crystal associated to (M, ϕM, g), then
G(B, J) = lim←−nB/p

n ⊗SM for any prism (B, J) that admits a map from (S, (E)).
Let F ∈ CR∧,ϕ(RΔ). By Proposition 3.26, we have an isomorphism of S(1)-modules

f : S(1) ⊗p1,SFS

∼=−→ S(1) ⊗p2,SFS

satisfying the cocycle condition over S(2). LetM = FS[E−1]∧p , which is a finite projective étale
ϕ-module over OE . By extending scalars, f induces a descent datum (M, ϕM, g) with

g : S(1)[E−1]∧p ⊗p1,OE M
∼=−→ S(1)[E−1]∧p ⊗p2,OE M.

Via the equivalence Vect(RΔ,OΔ[1/IΔ]∧p )ϕ=1 ∼= DDOE , it defines a Laurent F -crystal F ′
ét such

that F ′
ét(B, J) = lim←−nB/p

n ⊗SM for any prism (B, J) ∈ RΔ with a map (S, (E))→ (B, J).
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For such a prism, Lemma 3.24(iv) gives the natural isomorphism B[E−1]/pn ⊗SM/pn
∼=−→

FB[E−1]/pn and, thus, yields an identification F ′
ét(B, J) = FB[E−1]∧p . Since every prism over R

admits a map from (S, (E)) locally in the (p, I)-completely faithfully flat topology, one can check
that F ′

ét coincides with Fét := lim←−nOΔ[1/IΔ]/pn ⊗OΔ
F , which is obtained as the sheafification

of the presheaf (A, I) 
→ lim←−nA[1/I]/pn ⊗A FA.
Let us verify the remaining assertions: the faithfulness of F 
→ Fét

∼= F ′
ét follows from the

construction of F ′
ét and Lemma 3.24(iii). Now assume F ∈ Vectϕeff(RΔ) and consider the canonical

morphism OΔ[1/IΔ]∧p ⊗OΔ
F → Fét. We need to show that it is an isomorphism, which can be

checked locally on RΔ. Since F is locally a direct summand of O⊕m
Δ for some m, the statement

follows from the case F = OΔ.
(ii) By the paragraph before the proposition, ((Fét(Ainf(R), (ξ)))ϕFét

=1)∨ is a finite free
Zp-representation of GR for F ∈ CR∧,ϕ(RΔ), and T is well-defined.

First we verify part (a). By construction in part (i), we have

Fét(Ainf(R), (ξ)) ∼= Ainf(R)[E−1]∧p ⊗OE M∼= W (R�[(π�)−1])⊗SFS.

On the other hand, it follows from Lemma 3.24(iv) and Example 3.7 that

F(Ainf(R), (ξ))[p−1] ∼= Ainf(R)[p−1]⊗SFS.

Thus, we deduce

T (F)[p−1]∨ = (Fét(Ainf(R), (ξ)))ϕFét
=1[p−1] = (Fét(Ainf(R), (ξ))[p−1])ϕFét

=1

∼= (W (R�[(π�)−1])[p−1]⊗SFS)ϕ=1

∼= (W (R�[(π�)−1])[p−1]⊗Ainf(R) FAinf(R))
ϕ=1.

Since Fét is a crystal, the GR-action on the prism (Ainf(R), (ξ)) induces the
GR-action on the last term (W (R�[(π�)−1])[p−1]⊗Ainf(R) FAinf(R))

ϕ=1, for which T (F)[p−1]∨ ∼=
(W (R�[(π�)−1])[p−1]⊗Ainf(R) FAinf(R))

ϕ=1 in the above paragraph becomes GR-equivariant.

Next we prove part (b). Since T (F)∨ ∼= (W (R�[(π�)−1])⊗OE M)ϕ=1, it suffices to show that
the natural injective map

(Ôur
E ⊗OE M)ϕ=1 → (W (R�[(π�)−1])⊗OE M)ϕ=1

is bijective. Indeed, this holds for any étale (ϕ,OE)-module; as in the proof of [GL20,
Lemma 2.1.4], one can reduce it to the p-torsion case, where the étale (ϕ,OE)-module is finite
projective over OE/(p) by [Kim15, p. 8200] and, thus, the result follows from Fp = (ẼR∞)ϕ=1 =

(R�[(π�)−1])ϕ=1.
We now prove part (c). Let R→ R′ be a p-complete étale map. From the above construction,

we have an induced map of Zp-modules

T (F)∨ → T (F|R′)∨,

which is compatible with GR′-actions. By part (b) and the functoriality of étale ϕ-modules as in
the end of § 2.3, this map T (F)∨ → T (F|R′)∨ is an isomorphism. The statements for R→ OL
and R→ OKg follow from a similar argument. �

Example 3.28. Recall the Breuil–Kisin twist OΔ{1} ∈ Vectϕ(RΔ) from [BS23, Example 4.5].
It is an invertible OΔ-module with ϕ∗OΔ{1} ∼= I−1

Δ OΔ{1} and is given informally by
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OΔ{1} :=
⊗

i≥0(ϕ
i)∗IΔ. For n ∈ Z, set OΔ{n} := (OΔ{1})⊗n. This is an invertible OΔ-module

such that ϕ∗OΔ{n} ∼= I−nΔ OΔ{n}. By [BS23, Example 4.9], we have T (OΔ{n}) = Zp(−n).2

For F ∈ CR∧,ϕ(RΔ), consider a sheaf of OΔ-modules F{n} := F ⊗OΔ
OΔ{n}. Suppose that

the image of the induced map ϕ∗(F{n})S→ (F{n})S[E−1] lies in (F{n})S. It follows directly
from the definition that F{n} ∈ CR∧,ϕ(RΔ). We claim that T (F{n}) ∼= T (F)⊗Zp Zp(−n).
To see this, note that we have a natural GR-equivariant map T (F)∨ ⊗Zp Zp(n) = T (F)∨ ⊗Zp

T (OΔ{n})∨ → T (F{n})∨. Since the equivalence in Proposition 2.16 is compatible with tensor
products and duals, it follows from the proof of Proposition 3.27(ii)(b) that this map is bijective,
which shows the claim.

Now we state our main theorem. Let Repcris
Zp,≥0(GR) (respectively, Repcris

Zp,[0,r]
(GR)) denote the

category of crystalline Zp-representations of GR with non-negative Hodge–Tate weights (respec-
tively, with Hodge–Tate weights in [0, r]). Note that Zp(1) has Hodge–Tate weight one by our
convention.

Theorem 3.29. We keep Assumption 2.9.

(i) The étale realization T as in Proposition 3.27 gives a fully faithful functor from CR∧,ϕ(RΔ)
to Repcris

Zp,≥0(GR). Moreover, T restricts to CR∧,ϕ
[0,r](RΔ)→ Repcris

Zp,[0,r]
(GR).

(ii) The functor T gives an equivalence CR∧,ϕ
[0,r](RΔ) ∼= Repcris

Zp,[0,r]
(GR), which is functorial in R.

Remark 3.30. Note that for every crystalline Zp-representation T0 of GR, there exists n ∈ Z such
that T0 ⊗Zp Zp(n) ∈ Repcris

Zp,≥0(GR), and that the étale realization functor T is compatible with
Breuil–Kisin twists by Example 3.28. Hence, as in [Kis10, § 1.2], one can extend the definition of
completed prismatic F -crystals in a way that the resulting category is equivalent to Repcris

Zp
(GR),

the category of Zp-crystalline representations of GR. We leave it to the reader to make a precise
formulation.

The functor T is functorial in R since so are the étale realization for Laurent F -crystals and
the functor F 
→ Fét. We prove the first part here. The essential surjectivity in the second part
is proved in the next section.

Proof of Theorem 3.29(i). Let F ∈ CR∧,ϕ
[0,r](RΔ). Consider the map R→ OKg as in Notation 2.8.

By Remarks 3.23 and 3.18, we have F|(OKg)Δ
∈ CR∧,ϕ

[0,r]((OKg)Δ) = Vectϕ[0,r]((OKg)Δ). Thus,
by [BS23, Proposition 5.3] (see also [DL23, Theorem 4.1.10]), we have T (F|(OKg )Δ

) ∈
Repcris

Zp,[0,r]
(GKg) where GKg

:= GOKg
. Note that by Proposition 3.27(ii)(c), T (F|(OKg )Δ

) is equal
to T (F)|GKg

.
We first show that the essential image of T is contained in Repcris

Zp,≥0(GR). Let V (F) =
T (F)[p−1] denote the corresponding Qp-representation of GR. By Proposition 3.27(ii)(a), we
see

V (F)∨ ∼= (W (R�[(π�)−1])[p−1]⊗Ainf(R) FAinf(R))
ϕ=1.

By Lemma 3.24(iv), we have FAinf(R)[p
−1] ∼= Ainf(R)[p−1]⊗S[p−1] FS[p−1], which is finite pro-

jective over Ainf(R)[p−1]. Since Fét(Ainf(R), (ξ)) is an étale ϕ-module finite projective over
W (R�[(π�)−1]), we obtain

W (R�[(π�)−1])[p−1]⊗Qp V (F)∨ ∼= W (R�[(π�)−1])[p−1]⊗Ainf(R)[p−1] FAinf(R)[p
−1]. (3.4)

2 Recall that our étale realization functor T is the dual of that of [BS23].
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Consider each p ∈ P and R∧ → (Rp)∧ → (OKg
)∧ as in Notation 2.8. Equation (3.4) induces

W (O�
Kg

[(π�)−1])[p−1]⊗Qp V (F)∨ = W (O�
Kg

[(π�)−1])[p−1]⊗Ainf(R)[p−1] FAinf(R)[p
−1]

by the base change along W (R�[(π�)−1])→W (O�
Kg

[(π�)−1]). Set Tg := T (F|(OKg )Δ
). Since Tg ∈

Repcris
Zp,[0,r]

(GKg), the proof of [BMS18, Lemma 4.26] shows FAinf(OKg
) ⊂ T∨

g ⊗Zp Ainf(OKg
) and

T∨
g ⊂ FAinf(OKg

) ⊗Ainf(OKg
) Ainf(OKg

){r}. Here Ainf(OKg
){r} denotes the base change of the

rth Tate twist μ−rAinf(OKg
)⊗Zp Zp(r), defined in [BMS18, Example 4.24] with μ := [ε]− 1,

along the Frobenius inverse ϕ−1 : Ainf(OKg
)→ Ainf(OKg

); note that our functor T is contravari-
ant and the cokernel of 1⊗ ϕFAinf (OKg

)
is supported on (E), whereas [BMS18, Definition 4.22]

uses (ϕ(E)). Since ϕ−1(μ) divides μ, we obtain inclusions of W (O�
Kg

)[p−1]-modules

W (O�
Kg

)[p−1]⊗Ainf(R)[p−1] FAinf(R)[p
−1] ⊂W (O�

Kg
)[p−1]⊗Qp V (F)∨

⊂ 1
μr
W (O�

Kg
)[p−1]⊗Ainf(R)[p−1] FAinf(R)[p

−1]. (3.5)

Since the Ainf(R)[p−1]-module FAinf(R)[p
−1] is finite projective, (3.4) and (3.5) together with

Lemma 3.1(ii) and Lemma 3.32 yield

Ainf(R)[p−1][μ−1]⊗Qp V (F)∨ = FAinf(R)[p
−1][μ−1]. (3.6)

Consider the map of prisms (S, (E))→ (R0, (p)) over R given by u 
→ 0. Let D(F) :=
FR0 [p

−1]. We have D(F) ∼= R0[p−1]⊗SFS by Lemma 3.24(iv), and 1⊗ ϕ : ϕ∗D(F)→ D(F)
is an isomorphism. Choose a positive integer l with pl ≥ e as in Example 3.8 so that we have the
map of prisms (R0, (p))

ϕl+1−−−→ (φlOAcris(R), (p)) over R. Thus,

OAcris(R)[p−1]⊗ϕl+1,R0
D(F) ∼= F(φlOAcris(R), (p))[p−1]

∼= OAcris(R)[p−1]⊗ϕl,OAcris(R) F(OAcris(R), (p))

by Lemma 3.24(iv), and we obtain

OBcris(R)⊗ϕl+1,R0
D(F) ∼= OBcris(R)⊗ϕl,OAcris(R) F(OAcris(R), (p)). (3.7)

On the other hand, again by Lemma 3.24(iv),

F(φlOAcris(R), (p))[p−1] ∼= OAcris(R)[p−1]⊗ϕl+1,Ainf(R) FAinf(R)[p
−1].

Thus, (3.6) gives

OBcris(R)⊗Qp V (F)∨ ∼= OBcris(R)⊗ϕl,OAcris(R) F(OAcris(R), (p)). (3.8)

By (3.7), (3.8), and OBcris(R)⊗ϕl+1,R0
D(F) ∼= OBcris(R)⊗R0 D(F) obtained by (l + 1)-times

iterations of the isomorphism 1⊗ ϕ, we deduce the isomorphism

OBcris(R)⊗R0 D(F) ∼= OBcris(R)⊗Qp V (F)∨ (3.9)

that is compatible with GR-actions and ϕ. Since (OBcris(R))GR = R0[p−1], we deduce from this
isomorphism that OBcris(R)⊗Qp V (F)∨ is spanned by its GR-invariants as an OBcris(R)-module.
It follows that αcris(V (F)∨) is surjective and, thus, V (F)∨ is crystalline. So V (F) is crystalline.
Note that V (F) has Hodge–Tate weights in [0, r], since it has Hodge–Tate weights in [0, r]
considered as a representation of GKg .
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The faithfulness follows from the construction of the étale realization T in Proposition 3.27.
For the fullness, let F1,F2 ∈ CR∧,ϕ(RΔ), and suppose we have a map h : T (F1)→ T (F2) of
representations of GR. By Proposition 3.27(ii)(b), h|GR̃∞

induces a map

(F2)S[E−1]∧p → (F1)S[E−1]∧p

of étale ϕ-modules over OE . On the other hand, by Lemma 3.24(i) and [Gao20, Proposition 4.2.7],
h|GÕL,∞

induces a ϕ-equivariant map

(F2)SL
→ (F1)SL

of SL-modules. These two maps are compatible after the base changes to OE,L, and thus we
obtain an induced ϕ-equivariant map of S-modules

(F2)S[E−1]∧p ∩ (F2)SL
→ (F1)S[E−1]∧p ∩ (F1)SL

,

i.e. a map f : (F2)S→ (F1)S by Lemma 3.24(ii).
By the construction of the étale realization, f is compatible with the descent data

S(1)[E−1]∧p ⊗p1,OE (Fi)S[E−1]∧p
∼=−→ S(1)[E−1]∧p ⊗p2,OE (Fi)S[E−1]∧p

for i = 1, 2. So by Lemma 3.24(iii), the map f : (F2)S→ (F1)S is compatible with the descent
data

S(1) ⊗p1,S (Fi)S

∼=−→ S(1) ⊗p2,S (Fi)S

for i = 1, 2. Thus, the fullness follows from Proposition 3.26. �

Remark 3.31. For F ∈ CR∧,ϕ(RΔ), the isomorphism (3.9) in the above proof shows that there is
an isomorphism F(R0, (p))[p−1] ∼= D∨

cris(T (F)[p−1]) as ϕ-modules over R0[p−1]. Since ϕ is an iso-
morphism on D∨

cris(T (F)[p−1]), Lemma 3.24(iv) for the map of prisms (S, E) u �→0−−−→ (R0, (p))
ϕ−→

(R0, (p)) gives a ϕ-equivalent R0[p−1]-linear isomorphism

(R0 ⊗ϕ,R0 FS/uFS)[p−1] ∼= D∨
cris(T (F)[p−1]).

In Remark 4.35, we explain how to obtain the connection on D∨
cris(T (F)[p−1]) and the filtration

on R⊗R0 D
∨
cris(T (F)[p−1]) from F under the above isomorphism.

We used the following lemma in the proof of Theorem 3.29(i).

Lemma 3.32. As subrings of
∏

p∈P W (Kg
�),

W (R�[(π�)−1]) ∩
∏
p∈P

W (O�
Kg

) = Ainf(R).

Furthermore, we have

W (R�[(π�)−1])[p−1] ∩
∏
p∈P

W (O�
Kg

)[p−1] = Ainf(R)[p−1].

Proof. Recall that Ainf(R) denotes W (R�). For any x ∈ R�[(π�)−1], if its π�-adic valuation as
element in Kg

� is non-negative for all p ∈ P, then x ∈ R�. Thus, R�[(π�)−1] ∩∏
p∈P O�Kg

= R
�

as subrings of (
∏

p∈P O�Kg
)[(π�)−1]. By considering the Teichmüller expansion of p-typical Witt

vectors, we deduce both statements. �
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3.5 Height-one case
This subsection discusses the case where crystalline representations have Hodge–Tate weights in
[0, 1], and studies the relation to p-divisible groups. We keep Assumption 2.9: R is small over
OK or R = OL. We first recall a main result in [ALeB23] on classifying p-divisible groups over
R via prismatic F -crystals on R. Let BT(R) denote the category of p-divisible groups over R

For a p-complete R-algebra with bounded p∞-torsion, let RQSYN denote the big quasi-
syntomic site of R (cf. [ALeB23, § 3.3], [BMS19, § 4]). By [ALeB23, Corollary 3.24], the functor
RΔ → RQSYN sending (A, I) to R→ A/I is cocontinuous, so it defines a morphism of topoi

u : Shv(RΔ)→ Shv(RQSYN).

For a p-divisible group H over R, we consider the sheaf MΔ(H) := Ext1
RΔ

(u−1H,OΔ) on RΔ.
Let ϕMΔ(H) be the endomorphism of MΔ(H) induced from ϕ on OΔ. The following is proved in
[ALeB23].

Theorem 3.33 (Anschütz–Le Bras). The assignment

H 
→ (MΔ(H), ϕMΔ(H))

gives an equivalence of categories from BT(R) to Vectϕ[0,1](RΔ).

Proof. Let H ∈ BT(R). By [ALeB23, Theorem 4.71, Lemma 4.38], we see that (MΔ(H), ϕMΔ(H))
is an object in Vectϕ[0,1](RΔ). So the assignment defines a functor from BT(R) to Vectϕ[0,1](RΔ).
From [ALeB23, Theorem 4.74, Proposition 5.10], we deduce that this is an equivalence: note that
the proof of [ALeB23, Proposition 5.10] uses the existence of a quasi-syntomic cover R∞ of R,
which is constructed in the proof of [ALeB23, Proposition 5.8]. In our case, R = R0[[u]]/(E(u))
with R0 unramified, so we can do a similar construction by extracting p-power roots of u. �
Remark 3.34. In [ALeB23], an equivalence between BT(R) and the category of admissible
prismatic Dieudonné crystals over R is proved for any quasi-syntomic ring R.

For H ∈ BT(R), we write Tp(H) for its Tate module. Note that we have a natural
GR-equivariant isomorphism

Tp(H) ∼= Hom
BT(R

∧
)
((Qp/Zp)R∧ , H

R
∧).

Proposition 3.35. There exists a natural GR-equivariant isomorphism

Tp(H) ∼= T (MΔ(H)),

where T (MΔ(H)) is the étale realization of MΔ(H) ∈ Vectϕ[0,1](RΔ) ⊂ CR∧,ϕ(RΔ) as in
Proposition 3.27.

Proof. Since R
∧ is an integral perfectoid ring, the prism (Ainf(R), (ξ)) is the final object of

(R∧)Δ. LetM = MΔ(H)(Ainf(R), (ξ)). By [MT21, Proposition 1.39] (where the covariant version
of MΔ(·) is used), we have a GR-equivariant isomorphism

Tp(H) ∼= (M∨)ϕ=1.

We claim that the natural injective map

(M∨)ϕ=1 → (M∨ ⊗Ainf(R) W (R�[(π�)−1]))ϕ=1

is also surjective. Note that the natural map (M∨)ϕ=1/p→ (M∨/p)ϕ=1 is injective, and
(M∨/p)ϕ=1 ⊂ ((M∨/p)[(π�)−1])ϕ=1. On the other hand, by Proposition 2.16, we have

dimFp((M
∨/p)[(π�)−1])ϕ=1 = rankAinf(R)M = rankZpTp(H).
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Thus, we deduce that the map (M∨)ϕ=1/p→ ((M∨/p)[(π�)−1])ϕ=1 is bijective, and the claim
follows. Since (M∨ ⊗Ainf(R) W (R�[(π�)−1]))ϕ=1 ∼= ((M ⊗Ainf(R) W (R�[(π�)−1]))ϕ=1)∨, it follows
from the definition of the étale realization functor that Tp(H) ∼= T (MΔ(H)). �

Based on an example in [VZ10, § 5.4], we now present an example of a crystalline rep-
resentation with Hodge–Tate weights in [0, 1] that does not come from a p-divisible group.
By Theorems 3.29, 3.33, and Proposition 3.35, such an example implies that the inclusion
Vectϕeff(RΔ) ⊂ CR∧,ϕ(RΔ) is strict in general.

Example 3.36. Let R0 = W (k)〈T±1〉 and R = R0 ⊗W (k) OK . Suppose p ≥ 3 and the ramifica-
tion index [K : K0] is p. Let M1 be a free S/pS-module with a basis {e1, e2, e3}, equipped with
Frobenius given by

ϕ =

⎛
⎝(1 + T )p−1 − u 0 u

0 up−1 (1 + T )pup−1 − (1 + T )
1 0 0

⎞
⎠

and with the trivial connection ∇(ei) = 0 for i = 1, 2, 3. Note that for

ψ =

⎛
⎝ 0 0 up

(1 + T )− (1 + T )pup−1 u (u− (1 + T )p−1)((1 + T )− (1 + T )pup−1)
up−1 0 up−1(u− (1 + T )p−1)

⎞
⎠ ,

we have ϕψ = ψϕ = upI3. Thus, M1 ∈ (Mod FI)Ki
S (ϕ,∇0) in the sense of [Kim15, Definition 9.2].

By [Kim15, Theorem 9.8], M1 is associated with a finite flat group scheme H1 over R.
Let M2 be a free S/pS-module with a basis {f}, equipped with Frobenius given by ϕ(f) = f

and with the trivial connection∇(f) = 0. Then M2 ∈ (Mod FI)Ki
S (ϕ,∇0) and it is associated with

a finite flat group scheme H2 over R.
Let h : M1 →M2 be a map of torsion Kisin modules given by (1 + T u (1 + T )u).

Since h is not surjective, the associated map H2 → H1 of finite flat group schemes is not a
monomorphism. On the other hand, the induced maps H2[p−1]→ H1[p−1] and H2 ×R OL →
H1 ×R OL are monomorphisms of finite flat group schemes over R[p−1] and OL, respectively.

By [BBM82, Théorème 3.1.1], there exists a ∈ R with a /∈ (π, 1 + T ) ⊂ R such that (H1)R′

can be embedded into some p-divisible groupH overR′, the p-adic completion ofR[a−1]. Consider
the p-divisible group H ′ over R′[p−1] given by

H ′ := HR′[p−1]/(H2)R′[p−1],

and let V be the associated representation of GR′ . Since V ∼= Tp(H)[p−1] by construction, V is a
crystalline representation of GR′ with Hodge–Tate weights in [0, 1].

On the other hand, we claim that H ′ cannot be extended to a p-divisible group over R′.
Suppose otherwise, i.e. suppose that H ′ extends to a p-divisible group H ′

R′ over R′. Let R1 be
the (π, 1 + T )-adic completion of the localization R′

(π,1+T ). Let m ∈ SpecR1 be the closed point,
and let U := SpecR1 −m be the open subscheme of SpecR1. Note that by the construction
of h : M1 →M2 above, the induced map (H2)R1 → (H1)R1 is not a monomorphism whereas
the restriction (H2)U → (H1)U to U is a monomorphism. In particular, by [Tat67, Theorem 4],
we have H ′

R′ ×R′ U = (H ×R′ U)/(H2)U as p-divisible groups over U . The isogeny H ×R′ U →
H ′
R′ ×R′ U extends to an isogeny i : H ×R′ R1 → H ′

R′ ×R′ R1. The kernel of i is a finite flat group
scheme over R1 whose restriction to U is (H2)U . Since R1 is a regular local ring of dimension
2, the kernel of i is then equal to (H2)R1 , and (H2)R1 embeds into H ×R′ R1. This contradicts
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that (H2)R1 → (H1)R1 is not a monomorphism, so H cannot be extended to a p-divisible group
over R′.

In the above example, the ramification index e := [K : K0] needs to be large. In fact, when
e < p− 1, such an example does not exist.

Theorem 3.37 [LM20, Theorem 1.2]. Suppose e < p− 1 (so that p ≥ 3). Assume moreover
that R0/pR0 is a unique factorization domain (UFD), and that R0 is complete with respect
to some ideal J ⊂ R0 containing p such that R0/J is finitely generated over some field. Then
for any T ∈ Repcris

Zp,[0,1]
(GR), there exists a p-divisible group G over R such that Tp(G) ∼= T as

representations of GR.

In particular, we have Vectϕ[0,1](RΔ) = CR∧,ϕ
[0,1](RΔ) under the assumptions of the above

theorem.

Remark 3.38. In fact, we have a little stronger result: Vectϕ[0,1](RΔ) = CR∧,ϕ
[0,1](RΔ) if e < p− 1

and R0 is small over OK . To see this, we use arguments in our proof of Theorem 3.29(ii) (the
essential surjectivity) in § 4. More precisely, for T ∈ Repcris

Zp,[0,1]
(GR), the associated completed

prismatic F -crystal F ∈ CR∧,ϕ
[0,1](RΔ) satisfies FS = M where M is given by the construction in

§ 4.4. By Remark 4.23, FS is projective over S when e < p− 1. Hence, Proposition 3.26 implies
Vectϕ[0,1](RΔ) = CR∧,ϕ

[0,1](RΔ) when e < p− 1 (even without the additional assumptions on R0 in

Theorem 3.37). By [LM20, Remark 4.6], we can similarly deduce Vectϕ[0,r](RΔ) = CR∧,ϕ
[0,r](RΔ)

when er < p− 1. In particular, when r = 0, we have Vectϕ[0,0](RΔ) = CR∧,ϕ
[0,0](RΔ) for any e.

3.6 Completed prismatic F -crystals on a smooth p-adic formal scheme
This subsection globalizes the construction and the main theorem in § 3.4. Let X be a smooth
p-adic formal scheme over OK . To define the category CR∧,ϕ(XΔ) by gluing, we need to show
the descent property of completed prismatic F -crystals with respect to Zariski open coverings.

Lemma 3.39. Let X =
⋃
λ∈Λ Spf Rλ be an affine open covering of X. For a sheaf F ofOΔ-modules

on XΔ, it is a finitely generated completed prismatic crystal on X if and only if F|Spf Rλ
is a

finitely generated completed prismatic crystal on Spf Rλ for every λ.

Proof. The necessity is obvious. To show the sufficiency, assume that F|Spf Rλ
is a finitely

generated completed prismatic crystal on Spf Rλ for every λ. Consider the quotient sheaf
Fn := F/(p, IΔ)nF = OΔ,n ⊗OΔ

F on XΔ for each n ∈ N. Then (Fn)n forms an inverse sys-
tem of OΔ-modules and the natural morphism F → lim←−nFn is an isomorphism since it is so on
(Spf Rλ)Δ for each λ. By Lemma 3.13, it is enough to show that Fn is a finitely generated crystal
of OΔ,n-modules for every n ∈ N.

Take any (A, I) ∈ XΔ. Then there exist a finite affine open covering Spf A/I =
⋃l
j=1 Spf Rj

and an element λj ∈ Λ for each j = 1, . . . , l such that the map Spf Rj → Spf A/I → X factors
through Spf Rλj ⊂ X. Since A/I → Rj is p-completely étale map, it lifts uniquely to a (p, I)-
completely étale map A→ Aj of δ-rings (cf. [BS22, Construction 4.4]) and defines (Aj , IAj) ∈
(Spf Rλi)Δ ⊂ XΔ. Set B :=

∏l
j=1Aj . Then B admits a natural δ-structure and (B, IB) ∈ XΔ.

Moreover, (A, I)→ (B, IB) is (p, I)-completely faithfully flat. Let (B′, IB′) be the object of XΔ
corresponding to the pushout of the diagram (B, IB)← (A, IA)→ (B, IB) of maps of bounded
prisms over X. Note B′/(p, I)nB′ = B/(p, I)nB ⊗A/(p,I)n B/(p, I)nB by Lemma 3.3. Let p1 and
p2 denote the two structure maps B → B′.
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Since Fn is a sheaf on XΔ, we have an exact sequence

0→ Fn(A, I)→ Fn(B, IB)
p∗1−p∗2−−−−→ Fn(B′, IB′).

By the definition of B, we also have an identification Fn(B, IB) =
∏l
j=1Fn(Aj , IAj). By

assumption, Fn|(Spf Rλ)Δ
is a finitely generated crystal of OΔ,n-modules. Hence, we have a

B′/(p, I)nB′-linear isomorphism

η : B′ ⊗p1,B Fn(B, IB) ∼= Fn(B′, IB′) ∼= B′ ⊗p2,B Fn(B, IB)

satisfying the cocycle condition over B/(p, I)nB ⊗A B/(p, I)nB ⊗A B/(p, I)nB. Since A/(p, I)n

→ B/(p, I)nB is classically faithfully flat, it follows from faithfully flat descent that Fn(A, I) is
a finitely generated A/(p, I)n-module and B ⊗A Fn(A, I) ∼= Fn(B, IB).

Let (A, I)→ (Ã, IÃ) be a map of bounded prisms over X. Set B̃ := Ã ⊗̂AB. Then B̃ admits
a natural δ-structure and (B̃, IB̃) ∈ XΔ. Moreover, (Ã, IÃ)→ (B̃, IB̃) is (p, I)-completely faith-
fully flat. By the same argument as above, Fn(Ã, IÃ) is an Ã/(p, I)nÃ-module with B̃ ⊗Ã
Fn(Ã, IÃ) ∼= Fn(B̃, IB̃). Since Fn|(Spf Rλ)Δ

is a finitely generated crystal of OΔ,n-modules, we
also have B̃ ⊗B Fn(B, IB) ∼= Fn(B̃, IB̃). Hence, the natural map Ã⊗A Fn(A, I)→ Fn(Ã, IÃ)
is an isomorphism since it is so after tensored with B̃/(p, I)B̃ over Ã/(p, I)nÃ. Therefore, Fn is
a finitely generated crystal of OΔ,n-modules on XΔ. �

Remark 3.40. An analogue of Lemma 3.39 holds for an étale covering of X in place of an affine
open covering. The verification is left to the reader.

Recall that for an integral domain R that is small over OK , we defined the category
CR∧,ϕ(RΔ) of completed prismatic F -crystals on R in Definition 3.16.

Lemma 3.41. Assume that X = Spf R is an affine formal scheme that is connected and small over
OK and let F be a sheaf of OΔ-modules on XΔ together with 1⊗ ϕF : ϕ∗F → F . Then (F , ϕF ) ∈
CR∧,ϕ(RΔ) if and only if there exists an affine open covering X =

⋃
λ∈Λ Spf Rλ such that for each

λ, Rλ is connected and small over OK , and (F|(Spf Rλ)Δ
, ϕF |(Spf Rλ)Δ

) ∈ CR∧,ϕ((Rλ)Δ).

Proof. The necessity is straightforward. For the sufficiency, choose a p-complete étale map R0 →
Rλ,0 that induces R→ Rλ after the base change along W → OK . Set R′

0 :=
∏
λ∈ΛRλ,0 and

extend the Frobenius on R0 to R′
0. Let S′ := R′

0[[u]] and equip it with Frobenius ϕ extending
the one on R′

0 by ϕ(u) = up. Via S′/(E) ∼= ∏
λ∈ΛRλ ← R, we regard (S′, (E)) as an object

of RΔ. Since (S, (E))→ (S′, (E)) is a classically faithfully flat map of bounded prisms over R,
the sufficiency follows from Lemmas 3.19 and 3.39. �

Definition 3.42. Let X be a smooth p-adic formal scheme over OK . A completed F -crystal
of OΔ-modules on XΔ is a pair (F , ϕF ), where F is a finitely generated completed crystal of
OΔ-modules on XΔ and

ϕF : F → F
is a ϕ-semilinear morphism of OΔ-modules satisfying the following property: there exists an
affine open covering X =

⋃
λ∈Λ Spf Rλ such that each Rλ is connected and small over OK in the

sense of Definition 2.1 and such that (F|(Spf Rλ)Δ
, ϕF |(Spf Rλ)Δ

) ∈ CR∧,ϕ((Rλ)Δ). When X = Spf R
is affine that is connected and small over OK , this definition coincides with Definition 3.16 by
Lemma 3.41.

We also call such an object a completed prismatic F -crystal on X. The morphisms between
completed F -crystals of OΔ-modules are OΔ-module maps compatible with Frobenii ϕF .

1134

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

We write CR∧,ϕ(XΔ) for the category of completed F -crystals of OΔ-modules on XΔ. Let
Vectϕeff(XΔ) denote the full subcategory of CR∧,ϕ(XΔ) consisting of objects (F , ϕF ) where F is a
locally free OΔ-module. For a fixed non-negative integer r, we let CR∧,ϕ

[0,r](XΔ) and Vectϕ[0,r](XΔ)

denote the full subcategories consisting of objects which locally lie in CR∧,ϕ
[0,r]((Rλ)Δ).

Let Xη denote the adic generic fiber of X. Recall that Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1 denotes
the category of crystals of vector bundles V on (XΔ,OΔ[1/IΔ]∧p ) together with isomorphisms
ϕV : ϕ∗V ∼= V (see [BS23, Definition 3.2]) and that there is a natural equivalence of categories

Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1 ∼= LocZp(Xη),

where LocZp(Xη) denotes the category of étale Zp-local systems on Xη (see [BS23, Corollary 3.8]).

Proposition 3.43. The assignment F 
→ Fét := lim←−nOΔ[1/IΔ]/pn ⊗OΔ
F defines a faithful

functor

CR∧,ϕ(XΔ)→ Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1.

Proof. Take an affine open covering X =
⋃
λ Spf Rλ such that Rλ is connected and small over

OK for each λ. Then for each λ, F|(Spf Rλ)Δ
is naturally an object of CR∧,ϕ((Rλ)Δ). Hence,

by Proposition 3.27(i), we obtain an object (F|(Spf Rλ)Δ
)ét of Vect((Spf Rλ)Δ,OΔ[1/IΔ]∧p )ϕ=1

together with an identification

(F|(Spf Rλ)Δ
)ét|(Spf Rλ×XSpf Rλ′ )Δ

∼= (F|(Spf Rλ′ )Δ)ét|(Spf Rλ×XSpf Rλ′ )Δ

satisfying the cocycle condition over (Spf Rλ ×X Spf Rλ′ ×X Spf Rλ′′)Δ. Hence, they glue to an
object Fét of Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1. It is immediate to see that Fét is independent of the
choice of the affine open covering and this gives the desired faithful functor F 
→ Fét. �
Definition 3.44. Define a contravariant functor T : CR∧,ϕ(XΔ)→ LocZp(Xη) to be the
composite

CR∧,ϕ(XΔ)→ Vect(XΔ,OΔ[1/IΔ]∧p )ϕ=1 ∼= LocZp(Xη)
( )∨−−→ LocZp(Xη),

where the last functor sends L to its dual Zp-local system L∨. We call the functor T the étale
realization functor. Note that we use the contravariant convention as opposed to the covariant
convention in [BS23].

Notation 3.45. Let Loccris
Zp,≥0(Xη) denote the full subcategory of LocZp(Xη) consisting of

Zp-local systems L on Xη such that L⊗Zp Qp is a crystalline local system on Xη with non-
negative Hodge–Tate weights. See Appendix A for the definition of crystalline local systems
on Xη.

Theorem 3.46. Let X be a smooth p-adic formal scheme over OK and let Xη denote its adic
generic fiber. The étale realization functor T induces the equivalence of categories

T : CR∧,ϕ(XΔ)
∼=−→ Loccris

Zp,≥0(Xη).

Moreover, T is functorial in X.

Proof. By Theorem 3.29(i), we see that T factors through Loccris
Zp,≥0(Xη) ⊂ LocZp(Xη) and T

is fully faithful since both properties are of local nature. Once the full faithfulness is estab-
lished, it follows from Proposition 3.27(ii)(c), Theorem 3.29(ii), and gluing that T : CR∧,ϕ(XΔ)→
Loccris

Zp,≥0(Xη) is also essentially surjective. The functoriality follows from the construction
of T . �
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4. Quasi-Kisin modules associated with crystalline representations

The goal of this section is to prove the second part of Theorem 3.29 (the essential surjectivity
of the étale realization functor). Recall S = R0[[u]] as in Notation 2.6. Given a Zp-lattice T of
a crystalline representation of GR, we construct a certain S-module equipped with a Frobenius
and a connection, which we call a quasi-Kisin module associated with T .

In § 4.1, we introduce quasi-Kisin modules (Definition 4.1) and attach a rational Kisin descent
datum to a quasi-Kisin module (Construction 4.3 and Propositions 4.6 and 4.9). The proof
crucially uses explicit computations of elements in A

(1)
max (Lemmas 4.4 and 4.8). Section 4.2

shows, under Assumption 2.9, that if (M, ϕM) is a finitely generated torsion free ϕ-module of
finite E-height over S, then M[p−1] is projective over S[p−1] (Proposition 4.13). In § 4.3, we
consider the special case where R = OL and establish some preliminary results. In §§ 4.4 and 4.5,
we construct a quasi-Kisin module associated with T ∈ Repcris

Zp,≥0(GR). Finally, § 4.6 completes
the proof of Theorem 3.29 by spreading the rational Kisin descent datum to an integral Kisin
descent datum via the theory of étale ϕ-modules.

Since some of the arguments work for a general base ring R, which may be of some interest,
we let R be a base ring over OK as in Set-up 2.3 unless otherwise noted.

4.1 Quasi-Kisin modules and associated rational Kisin descent data
Recall that S denotes the p-adically completed divided power envelope of S with respect to
(E(u)), equipped with the Frobenius extending that on S. Let FiliS be the PD-filtration of S.
Namely, Fili S is the p-adically completed ideal of S generated by the divided powers γj(E(u))
(j ≥ i), where γj(x) := xj/j!. Let Nu : S → S be the R0-linear derivation given by Nu(u) = −u,
and let ∂u : S → S be the R0-linear derivation given by ∂u(u) = 1. Note that −u∂u = Nu. We also
have a natural integrable connection ∇ = ∇S : S → S ⊗R0 Ω̂R0 given by the universal derivation
on R0, which commutes with Nu.

Definition 4.1. Let r be a non-negative integer. A quasi-Kisin module over S of E-height ≤ r
is a triple (M, ϕM,∇M) where:

(i) M is a finitely generated S-module that is projective away from (p,E) and saturated;
(ii) ϕM: M→M is a ϕ-semi-linear endomorphism such that (M, ϕM) has E-height ≤ r;
(iii) if we set M := R0 ⊗ϕ,R0 M/uM equipped with the induced tensor-product Frobenius, then

∇M: M [p−1]→M [p−1]⊗R0 Ω̂R0

is a topologically quasi-nilpotent integrable connection commuting with Frobenius and
satisfies the S-Griffiths transversality (see the following).

Let us explain the definition of the S-Griffiths transversality. Set M := S ⊗ϕ,S M and define
a decreasing filtration F iM [p−1] by

F iM [p−1] := {x ∈M [p−1] | (1⊗ ϕM)(x) ∈ (FiliS[p−1])⊗S M}.
By Lemma 4.2, we have M [p−1] ∼= S[p−1]⊗R0[p−1] M [p−1], which admits a connection

∇M [p−1] : M [p−1]→M [p−1]⊗R0 Ω̂R0

given by ∇M [p−1] = ∇S[p−1] ⊗ 1 + 1⊗∇M so that ϕ is horizontal. Let ∂u : M [p−1]→M [p−1] be
the derivation given by ∂u,S[p−1] ⊗ 1. We say that the connection ∇M or ∇M [p−1] satisfies the
S-Griffiths transversality if, for every i,

∂u(F i+1M [p−1]) ⊂ F iM [p−1] and ∇M [p−1](F
i+1M [p−1]) ⊂ (F iM [p−1])⊗R0 Ω̂R0 .
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Lemma 4.2. Let (M, ϕM) be a ϕ-module finite torsion free over S of E-height ≤ r such that
M[p−1] is projective over S[p−1]. Let M := R0 ⊗ϕ,R0 M/uM and M := S ⊗ϕ,S M equipped with
the induced Frobenii. Consider the projection q : M � M induced by the ϕ-compatible pro-
jection S � R0, u 
→ 0. Then q admits a unique ϕ-compatible section s : M [p−1]→M [p−1].
Furthermore, 1⊗ s : S[p−1]⊗R0[p−1] M [p−1]→M [p−1] is an isomorphism.

Proof. Since M has E-height ≤ r, the map

(1⊗ ϕ)[p−1] : ϕ∗M [p−1] := (R0 ⊗ϕ,R0 M)[p−1]→M [p−1]

is an isomorphism, and the preimage of M is contained in p−r(ϕ∗M). It then follows
from the standard argument as in the proof of [Kim15, Lemma 3.14] that there exists a
unique ϕ-compatible section s : M [p−1]→M [p−1]. Furthermore, the map 1⊗ s : S[p−1]⊗R0[p−1]

M [p−1]→M [p−1] is a map of projective S[p−1]-modules of the same rank. Thus, by a similar
argument as in the proof of [Moo23, Lemma 4.17], 1⊗ s is an isomorphism. �

Let (M, ϕM,∇M) be a quasi-Kisin module of E-height ≤ r. We associate with (M, ϕM,∇M)
a rational Kisin descent datum, namely, an isomorphism of S(1)[p−1]-modules

f : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M

satisfying the cocycle condition over S(2)[p−1] and compatible with Frobenius.
First, we construct an isomorphism of S(1)[p−1]-modules

fS : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M

satisfying the cocycle condition over S(2)[p−1] and compatible with Frobenius and filtration.
For each i = 1, . . . , d, let ∂Ti,M : M [p−1]→M [p−1] be the derivation given by ∇M: M [p−1]→
M [p−1]⊗R0 Ω̂R0

∼= ⊕d
i=1M [p−1] · dTi composed with the projection to the ith factor.

Construction 4.3. Let (M, ϕM,∇M) be a quasi-Kisin module of E-height ≤ r. Identify
M [p−1] with D := S[p−1]⊗R0 M as in Lemma 4.2. Let ∂u : D → D be the derivation given by
∂u,S ⊗ 1, and for i = 1, . . . , d, let ∂Ti : D → D be the derivation given by ∂Ti,S ⊗ 1 + 1⊗ ∂Ti,M .
We define fS : S(1) ⊗p1,S D → S(1) ⊗p2,S D by

fS(x) =
∑

∂j0u ∂
j1
T1
· · · ∂jdTd

(x) · γj0(p2(u)− p1(u))
d∏
i=1

γji(p2(Ti)− p1(Ti)),

where the sum goes over the multi-index (j0, . . . , jd) of non-negative integers. Note that ∂u and
∂Ti are topologically quasi-nilpotent, so the above sum converges. It follows from a standard
computation that this defines a ϕ-compatible isomorphism of S(1)[p−1]-modules fS : S(1) ⊗p1,S
D

∼=−→ S(1) ⊗p2,S D satisfying the cocycle condition over S(2)[p−1].
By the identification M [p−1] = D , we obtain a descent datum fS : S(1)[p−1]⊗p1,S M

∼=−→
S(1)[p−1]⊗p2,S M . Since ∇M [p−1] satisfies the S-Griffiths transversality, we see that fS is
compatible with filtrations (see the following for the filtration on S(1)).

To further construct a rational Kisin descent datum, we need to discuss filtrations on
subrings of A(1)

max[p−1] such as S(1) and S(1). Recall that A(1)
max is defined after Example 3.9.

Our argument in the following can be regarded as a counterpart of the argument about the
‘boundedness of descent data at the boundary’ in [BS23, § 6.3] via the isomorphism A

(1)
max
∼=

S(1)〈E/p〉 (see also [DL23, Remark 2.2.14]). For any subring B ⊂ A(1)
max[p−1] that is stable
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under ϕ
A

(1)
max[p−1]

, define

FilmB := B ∩ EmA(1)
max[p

−1].

In particular, we have FilmS = EmS and FilmS(1) = EmS(1) by [DL23, Corollary 2.2.9]. Note
that FilmS(1) is compatible with the PD-filtration on S(1), i.e.

FilmS(1) =
{ ∑
i0+···+id+1≥m

ai0,...,id+1
γi0(E)γi1(y − u)γi2(s1 − T1) · · · γid+1

(sd − Td)
∣∣∣∣

ai0,...,id+1
∈ S⊗̂[1], ai0,...,id+1

→ 0 (as i0 + · · ·+ id+1 →∞)
}
.

Lemma 4.4. Assume p ≥ 3 and let r be a fixed non-negative integer. There exists an integer
h0 > r such that if m ≥ h0 and x ∈ S(1)[E−1] with Erx ∈ Film S(1), then ϕ(x) = a+ b for some

a ∈ S(1) and b ∈ Film+1 S(1) (as elements in A
(1)
max).

Proof. By the explicit description of Film S(1), since y − u = Ez0, sj − Tj = Ezj and zj ∈ S(1),
we can write Erx =

∑
i≥m ciγi(E) for some ci ∈ S(1) with ci → 0 p-adically as i→∞. Thus,

ϕ(x) =
∑
i≥m

ϕ(ci)ϕ
(
γi(E)
Er

)
.

It suffices to show that there exists h0 > r such that if m ≥ h0 then ϕ(Em−r/m!) = am + bm for
some am ∈ S and bm ∈ Film+1 S. For this, note that ϕ(E) = Ep + pt for some t ∈ S. Thus,

ϕ(E)m−r = (Ep + pt)m−r =
m−r∑
i=0

(
m− r
i

)
Ep(m−r−i)(pt)i.

Let vp(·) be the p-adic valuation with vp(p) = 1. Since vp(m!) < m/(p− 1), we have

am :=
1
m!

m−r∑
i≥m/(p−1)

(
m− r
i

)
Ep(m−r−i)(pt)i ∈ S.

Consider bm := (1/m!)
∑

0≤i<m/(p−1)

(
m−r
i

)
Ep(m−r−i)(pt)i. If p(m− r −m/(p− 1)) ≥ m+ 1, i.e.

m ≥ (p− 1)(pr + 1)/(p2 − 3p+ 1) (since p > 2), then bm ∈ Film+1 S. Hence, we can set h0 =
�(p− 1)(pr + 1)/(p2 − 3p+ 1)�. �

We now return to the discussion on the quasi-Kisin module (M, ϕM,∇M). Set M∗ :=
S⊗ϕ,S M. For j = 1, 2, let M

(1)
j := S(1) ⊗pj ,S M, M

∗,(1)
j := S(1) ⊗pj ,S M∗, and M

∗,(1)
max,j :=

A
(1)
max[p−1]⊗pj ,S M∗. If B is a subring of A(1)

max[p−1] stable under ϕ
A

(1)
max[p−1]

and if pj : S→
A

(1)
max[p−1] factors through B, then define

Fili(B ⊗pj ,S M∗) := {x ∈ B ⊗pj ,S M∗ | (1⊗ ϕM)(x) ∈ FiliB ⊗pj ,S M}.
Note that

FiliM∗ = {x ∈M∗ | (1⊗ ϕ)(x) ∈ EiM}
and

FiliM∗,(1)
j = {x ∈M

∗,(1)
j | (1⊗ ϕ)(x) ∈ EiM

(1)
j }.

1138

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

Since M has E-height ≤ r, 1⊗ ϕ : FilrM∗ → ErM is an isomorphism. Let ϕr : FilrM∗ →M∗

be the ϕ-semi-linear map given by the composite

ϕr : FilrM∗ 1⊗ϕ−−→ ErM ∼= ErS⊗S M

ϕ⊗1
ϕ(Er)−−−−→ S⊗ϕ,S M = M∗.

Note that ϕr(FilrM∗) generates M∗ as an S-module. Similarly, we define the ϕ-semi-linear map
ϕr : FilrM∗,(1)

j →M
∗,(1)
j .

Lemma 4.5. We have (FiliM∗,(1)
max,j) ∩M

∗,(1)
j = FiliM∗,(1)

j .

Proof. By assumption, (p, u) forms a regular sequence for M as an S-module. Thus, (p,E) is a
regular sequence for M, and M/EM is p-torsion free. Since pj : S→ S(1) is classically flat by
Lemma 3.5, M

(1)
j /EM

(1)
j is p-torsion free. In particular, EiM

(1)
j [p−1] ∩M

(1)
j = EiM

(1)
j .

It suffices to show
(EiA(1)

max[p
−1]⊗pj ,S M) ∩M

(1)
j = EiM

(1)
j

as submodules of A(1)
max[p−1]⊗pj ,S M, which makes sense since M[p−1] is projective over S[p−1]

by assumption. Since EiA
(1)
max[p−1] ∩S(1)[p−1] = EiS(1)[p−1], Lemma 3.1(i) implies that

(EiA(1)
max[p

−1]⊗pj ,S M[p−1]) ∩M
(1)
j [p−1] = EiS(1)[p−1]⊗pj ,S[p−1] M[p−1] = EiM

(1)
j [p−1].

Since EiM
(1)
j [p−1] ∩M

(1)
j = EiM

(1)
j by the above, the assertion follows. �

We can now show that fS defines a rational Kisin descent datum when p ≥ 3. The same
result also holds for p = 2 (Proposition 4.9) with a similar but longer proof, and we postpone
the latter case.

Proposition 4.6. Assume p ≥ 3. Let (M, ϕM,∇M) be a quasi-Kisin module of E-height ≤ r.
There exists a unique rational Kisin descent datum

f : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M

such that idS(1) ⊗ϕ,S(1) f = fS , where fS is defined as in Construction 4.3.

Proof. For j = 1, 2, we write M
(1)
j for the image of S(1) ⊗pj ,S M in S(1)[p−1]⊗pj ,S M under the

natural map. We show that there exists a unique S(1)[p−1]-linear map

f : S(1)[p−1]⊗p1,S M→ S(1)[p−1]⊗p2,S M

such that idS(1) ⊗ϕ,S(1) f = fS . Let h0 > r be a constant given as in Lemma 4.4. Note that by the

explicit description of FilmS(1), for any x ∈ S(1), we have ph0x = y + z for some y ∈ S⊗̂[1] and
z ∈ Filh0S(1). Thus, we can take a sufficiently large integer n ≥ 0 such that f ′S := pnfS satisfies
f ′S(M (1)

1 ) ⊂M
(1)
2 and

f ′S(M∗) ⊂M
∗,(1)
2 + Filh0S(1) ·M (1)

2

as submodules of A(1)
max[p−1]⊗p2,S M∗. We claim that

f ′S(M∗) ⊂M
∗,(1)
2 + FilmS(1) ·M (1)

2

for any m ≥ h0. We induct on m. Suppose that the claim holds for m (≥ h0). Let w ∈ FilrM∗

viewed as an element in M
(1)
1 via p1. Then we can write

f ′S(w) = z +
∑
i

aiwi
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for some z ∈M
∗,(1)
2 , ai ∈ FilmS(1), wi ∈M∗ that are viewed as elements in M

(1)
2 via p2 with

a finite index set for i. Note that z ∈ (FilrM∗,(1)
max,2) ∩M

∗,(1)
2 = FilrM∗,(1)

2 by Lemma 4.5. Let
a′i = ai/E

r ∈ S(1)[E−1]. Then f ′S(w) = z +
∑

i a
′
i · Erwi with Erwi ∈ FilrM∗.

We have
f ′S(ϕr(w)) = ϕr(z) +

∑
i

ϕ(a′i)ϕr(E
rwi).

Since Era′i ∈ FilmS(1), we have ϕ(a′i) = bi + ci for some bi ∈ S(1) and ci ∈ Film+1S(1) by
Lemma 4.4. Thus, f ′S(ϕr(w)) ∈M

∗,(1)
2 + Film+1S(1) ·M (1)

2 . Since ϕr(FilrM∗) generates M∗ as
S-modules, the claim follows.

Since M[p−1] is finite projective over S[p−1] by assumption and the filtration {Film S(1)[p−1]}
is separated, we deduce that f ′S(M∗) ⊂M

∗,(1)
2 [p−1]. By increasing n if necessary, we may further

assume f ′S(M∗) ⊂M
∗,(1)
2 . Then f ′S(M∗,(1)

1 ) ⊂M
∗,(1)
2 , and

f ′S(FilrM∗,(1)
1 ) ⊂ (FilrM∗,(1)

max,2) ∩M
∗,(1)
2 = FilrM∗,(1)

2

by Lemma 4.5. Consider the composite of the isomorphisms

FilrM∗ 1⊗ϕ∼= E(u)rM ∼= M.

Since pj : S→ S(1) is classically faithfully flat by Lemma 3.5, we obtain the isomorphism
FilrM∗,(1)

j
∼= M

(1)
j of S(1)-modules for j = 1, 2. Via these isomorphisms, f ′S : FilrM∗,(1)

1 →
FilrM∗,(1)

2 induces f ′ : S(1)[p−1]⊗p1,S M→ S(1)[p−1]⊗p2,S M. If we set f := p−nf ′, then we
have idS(1) ⊗ϕ,S(1) f = fS . The uniqueness is obvious.

By applying the same argument to f−1
S , we conclude that f is an isomorphism. Hence, f is

a rational Kisin descent datum. �
We now explain how to obtain a rational Kisin descent datum from fS when p = 2. We

consider two auxiliary subrings S̃, Ŝ of A(1)
max, defined by

S̃ := S(1)

[[
E2

2

]]
=

{ ∑
i≥0

ai

(
E2

2

)i ∣∣∣∣ ai ∈ S(1)

}

and

Ŝ := S(1)

[[
E4

2

]]
=

{ ∑
i≥0

ai

(
E4

2

)i ∣∣∣∣ ai ∈ S(1)

}
.

Since ϕ(E) = E2 + 2δ(E) and S(1) is 2-adically complete, both S̃ and Ŝ are stable under the
ring endomorphism ϕ on A(1)

max. The following is shown in [DL23].

Lemma 4.7 (Cf. [DL23, Lem. 2.2.12]). Suppose p = 2. The following properties hold:

(i) ϕ(A(1)
max) ⊂ S̃ and ϕ(S̃) ⊂ Ŝ;

(ii) for every positive integer h, we have

FilhS̃ =
{ ∑
i≥h

ai
Ei

2�i/2�

∣∣∣∣ ai ∈ S(1)

}
and FilhŜ =

{ ∑
i≥h

ai
Ei

2�i/4�

∣∣∣∣ ai ∈ S(1)

}
.

Lemma 4.8. Assume p = 2, and let r be a fixed non-negative integer. There exists an integer
h0 > r such that if m ≥ h0 and x ∈ Ŝ[E−1] with Erx ∈ Film Ŝ, then ϕ(x) = a+ b for some a ∈
S(1) and b ∈ Film+1 Ŝ (as elements in A

(1)
max).
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Proof. By Lemma 4.7(ii), we can write

Erx =
∑
i≥m

ci
Ei

2�i/4�

for some ci ∈ S(1). Thus,

ϕ(x) =
∑
i≥m

ϕ(ci)
ϕ(Ei−r)
2�i/4�

.

It suffices to show that there exists h0 > r such that if m ≥ h0, then ϕ(Em−r)/2�m/4� = am + bm
for some am ∈ (2, u)m−r−�m/4�S and bm ∈ Film+1 Ŝ. For this, note that

ϕ(Em−r) = (E2 + 2δ(E))m−r =
m−r∑
i=0

(
m− r
i

)
E2(m−r−i)(2δ(E))i.

We have

am :=
1

2�m/4�

m−r∑
i≥�m/4�

(
m− r
i

)
E2(m−r−i)(2δ(E))i ∈ (2, u)m−r−�m/4�S.

Set bm := (1/2�m/4�)
∑

0≤i≤�m/4�−1

(
m−r
i

)
E2(m−r−i)(2δ(E))i. If 2(m− r − �m/4�+ 1) ≥ m+ 1,

then bm ∈ Film+1 Ŝ. Since

2
(
m− r −

⌊
m

4

⌋
+ 1

)
≥ 2

(
m− r − m

4
+ 1

)
=

3
2
m− 2r + 2,

we can set h0 = 4r + 1. �

Using Lemmas 4.7 and 4.8, we now construct a rational Kisin datum when p = 2.

Proposition 4.9. Assume p = 2. Let (M, ϕM,∇M) be a quasi-Kisin module of E-height ≤ r.
There exists a unique rational Kisin descent datum

f : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M

such that idS(1) ⊗ϕ,S(1) f = fS , where fS is defined as in Construction 4.3.

Proof. For j = 1, 2, write M
(1)
j for the image of S(1) ⊗pj ,S M in S(1)[p−1]⊗pj ,S M under the

natural map. We first claim that fS(M∗) ⊂ S̃[p−1]⊗p2,S M. For this, take a sufficiently large
integer n ≥ 0 such that f ′S := pnfS satisfies f ′S(M (1)

1 ) ⊂M
(1)
2 and

f ′S(M∗) ⊂M
∗,(1)
2 + FilrS(1) ·M (1)

2

as submodules of A(1)
max[p−1]⊗p2,S M∗. Let w ∈ FilrM∗. We can write

f ′S(w) = z +
∑
i

aiwi

for some z ∈M
∗,(1)
2 , ai ∈ FilrS(1), wi ∈M∗ (with finitely many indices i). Note that z ∈

(FilrM∗,(1)
max,2) ∩M

∗,(1)
2 = FilrM∗,(1)

2 by Lemma 4.5. Since ai ∈ FilrS(1), it follows from the explicit

description of FilrS(1) that a′i := pr(ai/Er) lies in A
(1)
max. We have f ′S(prw) = prz +

∑
i a

′
i · Erwi
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with Erwi ∈ FilrM∗ as elements in A(1)
max[p−1]⊗p2,S M∗, and so

f ′S(ϕr(prw)) = ϕr(prz) +
∑
i

ϕ(a′i)ϕr(E
rwi).

Note that ϕ(a′i) ∈ S̃ by Lemma 4.7(i). Thus, we deduce fS(ϕr(w)) ∈ S̃[p−1]⊗p2,S M. Since
ϕr(FilrM∗) generates M∗ as S-modules, the claim follows.

Let a ∈ FilrS̃. Since �(i− r)/2� − (�i/2� − r) ≥ 0, it follows from Lemma 4.7(ii) that
pr(a/Er) ∈ S̃. Furthermore, ϕ(S̃) ⊂ Ŝ by Lemma 4.7(i). Thus, starting with fS(M∗) ⊂
S̃[p−1]⊗p2,S M, we can repeat a similar argument to further obtain

fS(M∗) ⊂ Ŝ[p−1]⊗p2,S M.

As in the proof of Proposition 4.6 with Lemma 4.8 in place of Lemma 4.4, we deduce fS(M∗) ⊂
M

∗,(1)
2 [p−1]. The rest of the proof proceeds exactly as in the proof of Proposition 4.6. �
We end this subsection with a simple lemma.

Lemma 4.10. Let M be a finitely generated S-module which is projective away from (p,E) and
saturated. Then the natural map

S(1) ⊗pj ,S M→ (S(1)[p−1]⊗pj ,S M) ∩ (S(1)[E−1]∧p ⊗pj ,S M)

is an isomorphism.

Proof. Note first that the maps

S(1) ⊗pj ,S M→ S(1)[p−1]⊗pj ,S M and S(1) ⊗pj ,S M→ S(1)[E−1]∧p ⊗pj ,S M

are injective by the same argument as in the proof of Lemma 3.24(iii).
We need to show that the injective map

S(1) ⊗pj ,S M ↪→ (S(1)[p−1]⊗pj ,S M) ∩ (S(1)[E−1]∧p ⊗pj ,S M)

is also surjective. Suppose not. Set L := (S(1)[p−1]⊗pj ,S M) ∩ (S(1)[E−1]∧p ⊗pj ,S M) for
simplicity. For any Zp-module Q, write Q/p for Q/pQ. Then the induced map

S(1)/p⊗pj ,S M→ L/p

is not injective since S(1)[p−1]⊗pj ,S M = L[p−1]. On the other hand, by the saturation
assumption, we have M[p−1] ∩M[E−1] = M. Thus, by Lemmas 3.1(i) and 3.5,

(S(1) ⊗pj ,S M[p−1]) ∩ (S(1) ⊗pj ,S M[E−1]) = S(1) ⊗pj ,S M.

This implies that the map

S(1)/p⊗pj ,S M→ S(1)[E−1]∧p /p⊗pj ,S M = S(1)[E−1]/p⊗pj ,S M

is injective. This factors through the map S(1)/p⊗pj ,S M→ L/p, which therefore is injective.
This gives a contradiction, and the surjectivity follows. �

4.2 Projectivity of M[p−1] under Assumption 2.9
In this subsection, assume that either R is small over OK or R = OL (Assumption 2.9). We
show that if (M, ϕM) is a finitely generated torsion free ϕ-module of finite E-height over S, then
M[p−1] is projective over S[p−1] (Proposition 4.13). For this, we need two preliminary results.

Lemma 4.11. Let k1 be a perfect field of characteristic p, and let A be a power-series ring
W (k1)[[s1, . . . , sa]]. Suppose that A is equipped with a Frobenius endomorphism ϕ extending the
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Witt vector Frobenius on W (k1). Then there exist t1, . . . , ta ∈ A such that A = W (k1)[[t1, . . . , ta]]
and ϕ(ti) has zero constant term for each i.

Proof. Write ϕ(si) = spi + p(fi(s1, . . . , sa)) + pbi, where fi(s1, . . . , sa) ∈ A satisfying
fi(0, . . . , 0) = 0 and bi ∈W (k1). Write vp(·) for the p-adic valuation on W (k1) with vp(p) = 1.
Suppose bi �= 0 for some i, and define I = {j | vp(bj) = min1≤i≤a{vp(bi)}}.

Let i0 ∈ I, and let ci0 ∈W (k1) such that ϕ(ci0) = bi0 . We claim that if we replace si0 by
si0 − pci0 , then ϕ(si) = spi + p(f ′i(s1, . . . , sa)) + pb′i satisfying vp(b′i) ≥ min{vp(bi), vp(bi0) + 1} for
each i = 1, . . . , a, and vp(b′i0) ≥ vp(bi0) + 1 and vp(b′i) = vp(bi) if i0 �= i ∈ I. Here, f ′i and b′i denote
the corresponding power series and the constant replacing fi and bi, respectively. To check the
claim, note that

ϕ(si0 − pci0) = spi0 + p(fi0(s1, . . . , sa)) + pbi0 − ϕ(pci0)

= (si0 − pci0 + pci0)
p + pfi0(s1, . . . , si0 − pci0 + pci0 , . . . , sa).

Since vp(ci0) = vp(bi0), we have vp(b′i0) ≥ vp(bi0) + 1. For i �= i0, we have

ϕ(si) = spi + p(fi(s1, . . . , si0 − pci0 + pci0 , . . . , sa)) + pbi.

So vp(b′i) ≥ min{vp(ci0) + 1, vp(bi)}. Furthermore, if i ∈ I (with i �= i0), then vp(b′i) = vp(bi). This
proves the claim.

Thus, if #I ≥ 2, then after replacing si0 by si0 − pci0 , #I decreases by 1. If #I = 1, then
after replacing si0 by si0 − pci0 , we have

min
1≤i≤a

{vp(b′i)} ≥ 1 + min
1≤i≤a

{vp(bi)}.

By repeating the above process, we deduce that there exist c1, . . . , ca ∈W (k1) such that for
ti = si − pci, ϕ(ti) has zero constant term for each i. It is clear that A = W (k1)[[t1, . . . , ta]]. �
Lemma 4.12. Let k1 be a perfect field of characteristic p over k, and let A be a power-series ring
W (k1)[[t1, . . . , ta]]. Suppose that A is equipped with a Frobenius endomorphism ϕA extending
the Witt vector Frobenius on W (k1) such that ϕA(ti) ∈ A has zero constant term for each i.
Let SA := A[[u]] equipped with Frobenius extending that on A by ϕ(u) = up. Let N be a finite
SA-module equipped with a ϕ-semi-linear endomorphism ϕN : N→ N such that the induced
map 1⊗ ϕN : (SA ⊗ϕ,SA

N)[E(u)−1]→ N[E(u)−1] is an isomorphism. Then N[p−1] is projective
over SA[p−1].

Proof. When a = 0 (i.e. A = W (k1)), the statement is proved in [BMS18, Proposition 4.3]. For
the general case, we prove by reducing to the case a = 0 as follows. Suppose a ≥ 1. Let J be the
non-zero Fitting ideal of N over SA with the smallest index. It suffices to show that JSA[p−1] =
SA[p−1]. Assume the contrary. Since Fitting ideals are compatible under base change, we have

JSA[E(u)−1] = ϕSA
(J)SA[E(u)−1] (4.1)

as ideals of SA[E(u)−1], and so

(SA/J)[E(u)−1] = (SA/ϕSA
(J))[E(u)−1]. (4.2)

Write K1 = W (k1)[p−1]. Let B be the rigid analytic open unit ball in coordinates
(t1, . . . , ta, u). Hence, the set of K1-valued points of B is given by

{(t1, . . . , ta, u) ∈ K1
a+1 | 0 ≤ |ti|, |u| < 1},

where we use the p-adic norm such that |p| = p−1. We have a natural map SA[p−1]→ OB(B)
whose image is dense. Note that by [DeJ95, Lemma 7.1.9], we have a functorial bijection between
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the set of maximal ideals of SA[p−1] and the points of B. Moreover, the Frobenius ϕSA
on SA

induces an endomorphism on B.
For any real number c with 0 < c < 1, set

Mc := {(x1, . . . , xa+1) ∈ Ra+1 | 0 ≤ xi ≤ c}
and

Vc := {(x1, . . . , xa+1) ∈ Ra+1 | 0 ≤ xi < 1 for 1 ≤ i ≤ a, xa+1 = c}.
Consider the K1-valued points of Spec(SA[p−1]/J), and let Z = {(|t1|, . . . , |ta|, |u|)} be the

set of corresponding (a+ 1)-tuple norms. Define

Z ′ = {(|t1|, . . . , |ta|, |u|) ∈ Ra+1 | 0 ≤ |ti|, |u| < 1, (|ϕA(ti)|, |u|p) ∈ Z}.
By (4.2), we have Z − V|π| = Z ′ − V|π|. For i = 1, . . . , a, let yi, ti ∈ K1 with 0 ≤ |yi| < 1 and
0 ≤ |ti| < 1 such that ϕA(ti) = yi. Note that by the assumption on ϕA(ti),

|yi| ≤ max{|ti|p, p−1|t1|, . . . , p−1|ta|}
for each i. Thus, we have

max
1≤i≤a

{|yi|} ≤ max
1≤i≤a

{|ti|p, p−1|ti|}. (4.3)

First we show that Z contains a point with |u| < |π|. Suppose otherwise. Recall that
we assume JSA[p−1] �= SA[p−1] so that Z �= ∅. Since Z − V|π| = Z ′ − V|π|, we deduce that
if Z ∩ Vc �= ∅, then c = |π|p−n

for some integer n ≥ 0. Moreover, the rigid analytic K1-space
(Spf(SA/J))rig has finitely many connected components since they correspond to the idempo-
tents of the noetherian ring (SA/J)[p−1] (see [Mar17, paragraph before Lemma 4.13]). Thus,
there exists a finite set of non-negative integers {n1, . . . , nm} such that Z ∩ Vc �= ∅ if and only if
c = |π|p−ni for some i. Without loss of generality, let n1 be maximal among {n1, . . . , nm}. Since
Z − V|π| = Z ′ − V|π|, we have Z ∩ V|π|p−(n1+1) �= ∅, which is a contradiction. Thus, Z contains a
point with |u| < |π|.

Next we show (0, . . . , 0) ∈ Z, i.e. JSA[p−1] ⊂ (t1, . . . , ta, u)SA[p−1]. Suppose otherwise. Then
there exists f(t1, . . . , ta, u) ∈ J whose constant term is non-zero, and let b be the norm of the
constant term. Since Z contains a point with |u| < |π|, we deduce from Z − V|π| = Z ′ − V|π| and
the inequality (4.3) that Z ∩Mε �= ∅ for any sufficiently small ε > 0. However, |f(t1, . . . , ta, u)| =
b > 0 if (|t1|, . . . , |ta|, |u|) ∈Mε for any sufficiently small ε > 0, which is a contradiction. Thus,
(0, . . . , 0) ∈ Z.

On the other hand, we claim JSA[p−1] �⊂ ISA[p−1] where I = (t1, . . . , ta) ⊂ SA. Suppose
otherwise. Take n ≥ 0 such that J ′ := pnJ satisfies J ′ ⊂ ISA. We show by induction that
J ′ ⊂ (p, I)m ∩ I (as ideals of SA) for each m ≥ 0. The base case m = 0 is clear. Suppose
J ′ ⊂ (p, I)m ∩ I. By (4.1) and the assumption on ϕA(ti), we have

E(u)sJ ′ ⊂ ϕ((p, I)m ∩ I) ⊂ (p, I)m+1 ∩ I
for some integer s ≥ 0. Thus, it suffices to show that if f ∈ SA satisfies E(u)f ∈ (p, I)m+1 ∩ I,
then f ∈ (p, I)m+1 ∩ I. For this, choose a set of generators g1, . . . , gb ∈ A = W (k1)[[t1, . . . , ta]] of
(p, I)m+1 ∩ I. We have E(u)f =

∑b
i=1 gihi for some hi ∈ SA. Note that we can write

hi =
e−1∑
j=0

ciju
j + E(u)h′i
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for some cij ∈W (k1)[[t1, . . . , ta]] and h′i ∈ SA. Thus,

E(u)f =
e−1∑
j=0

( b∑
i=1

cijgi

)
uj + E(u)

b∑
i=1

gih
′
i.

Setting u = π in the above equation, we get
∑e−1

j=0(
∑b

i=1 cijgi)π
j = 0 as an element in

OK′ [[t1, . . . , ta]], where K ′ := W (k1)⊗W (k) K. This implies
∑b

i=1 cijgi = 0 for each j = 0, . . . ,
e− 1 and, thus, f =

∑b
i=1 gih

′
i ∈ (p, I)m+1 ∩ I. Hence, J ′ ⊂ (p, I)m ∩ I for each m ≥ 0. Since

SA is (p, I)-adically separated, we have J ′ = 0 and, thus, J = 0, which is a contradiction. This
proves the claim.

Finally, consider the ϕ-equivariant projection SA → SA0
:= SA/ISA

∼= W (k1)[[u]]. Let J0 ⊂
SA0 be the image of J . Since JSA[p−1] �⊂ IS[p−1], we have J0 �= (0). Moreover, J0SA0 [p

−1] �=
SA0 [p

−1] since (0, . . . , 0) ∈ Z. On the other hand, (4.2) gives via SA → SA0

(SA0/J0)[E(u)−1] = (SA0/ϕSA0
(J0))[E(u)−1],

which gives a contradiction by the case a = 0. Hence, JSA[p−1] = SA[p−1]. �
Let us return to the discussion on the projectivity of M[p−1].

Proposition 4.13. Suppose that R satisfies Assumption 2.9: R is small over OK or R = OL.
If (M, ϕM) is a finitely generated ϕ-module over S of finite E-height, then M[p−1] is projective
over S[p−1].

Proof. The case where R = OL follows from [BMS18, Proposition 4.3] for OKg (cf.
Notation 2.8) and the classically faithful flatness of SL[p−1]→ Sg[p−1] := OK0,g [[u]][p

−1].
Consider the case where R0 is the p-adic completion of an étale extension of W (k)〈T±1

1 , . . . , T±1
d 〉.

Note that the Krull dimension of R0 is the same as that of W (k)〈T±1
1 , . . . , T±1

d 〉. Let m ⊂ R0

be any maximal ideal, and let (R0)∧m denote the m-adic completion of the localization (R0)m.
Since m ∩W (k)〈T±1

1 , . . . , T±1
d 〉 is a maximal ideal of W (k)〈T±1

1 , . . . , T±1
d 〉, the residue field

km := (R0)∧m/m(R0)∧m is a finite extension of k. Note that since p ∈ m and ϕ(m) ⊂ m, (R0)∧m
is equipped with the Frobenius induced from R0. Let f : W (k)→ (R0)∧m be the composite
W (k)→W (k)〈T±1

1 , . . . , T±1
d 〉 → (R0)∧m, which is compatible with ϕ. Since W (k)→W (km) is

étale, f factors uniquely through W (k)→W (km)→ (R0)∧m. By unicity, W (km)→ (R0)∧m is com-
patible with ϕ. Since p /∈ m2, {p} can be extended to a minimal set generating m, and the map
W (km)→ (R0)∧m extends to an isomorphism

W (km)[[t1, . . . , td]]
∼=−→ (R0)∧m.

Furthermore, by Lemma 4.11, t1, . . . , td can be chosen such that ϕ(ti) has zero constant term for
each i (where ϕ on W (km)[[t1, . . . , td]] is given by the above isomorphism).

Now, let P ⊂ S[p−1] be any maximal ideal. Then the prime ideal q = S ∩P is maxi-
mal among the prime ideals of S not containing p. Thus, n :=

√
q + pS is a maximal ideal

of S. Let S∧
n be the n-adic completion of the localization Sn. By the above discussion,

S∧
n
∼= W (kn)[[t1, . . . , td]][[u]] for some finite extension kn of k and t1, . . . , td such that W (kn) ↪→ S∧

n

is compatible with ϕ and ϕ(ti) has zero constant term for each i.
Let Mn := S∧

n ⊗S M equipped with the induced tensor-product Frobenius. By Lemma 4.12,
Mn[p−1] is projective over S∧

n [p−1]. Let Pn ⊂ S∧
n [p−1] be a maximal ideal lying over P ⊂ S[p−1].

Note that the natural map on localizations

(S[p−1])P→ (S∧
n [p−1])Pn
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is classically faithfully flat. Since (S∧
n [p−1])Pn ⊗S∧

n [p−1] Mn[p−1] is finite projective over
(S∧

n [p−1])Pn , we deduce that (S[p−1])P⊗S[p−1] M[p−1] is projective over (S[p−1])P. This holds
for any maximal ideal P ⊂ S[p−1], so M[p−1] is projective over S[p−1]. �

4.3 Crystalline representations and Breuil–Kisin modules in the CDVR case
We follow Notation 2.8. In particular, recall that OL denotes the p-adic completion of R(π).
Then L is a complete discrete valuation field whose residue field has a finite p-basis given by
{T1, . . . , Td}. We first consider crystalline representations of GOL

= Gal(L/L), and study certain
properties of the associated Breuil–Kisin modules. By abuse of notation, we also write GL and
G
L̃∞ for the Galois groups GOL

and GÕL,∞
, respectively (see (2.2) for the definition of O

L̃∞).
Fix a non-negative integer r. Let V be a crystalline Qp-representation of GL with Hodge–Tate

weights in [0, r]. By [BT08, Proposition 4.17], there exists an SL-module ML satisfying the
following properties:

– ML is finite free over SL;
– ML is equipped with a ϕ-semi-linear endomorphism ϕML

: ML →ML with E-height ≤ r;
– set

ML := OL0 ⊗ϕ,OL0
ML/uML

and equip it with the induced tensor-product Frobenius; we have a natural isomorphism of
L0-modules ML[p−1] ∼= D∨

cris(V ) compatible with Frobenii; via this isomorphism, ML[p−1]
admits a topologically quasi-nilpotent connection ∇ML

.

We call the triple (ML, ϕML
,∇ML

) the Breuil–Kisin module associated with V . Note that
[BT08] considers ML/uML instead of the Frobenius pullback ML. However, we have a natural
isomorphism of L0-modules ML[p−1]

∼=−→ (ML/uML)[p−1] compatible with Frobenii. Following
[Kim15], we use ML since it is more suitable when we consider the filtration.

Let SL be the p-adically completed divided power envelope of SL with respect to (E(u)). The
Frobenius on SL extends uniquely to SL. For each integer i ≥ 0, let FiliSL be the PD-filtration
of SL as before. Let Nu : SL → SL be the OL0-linear derivation given by Nu(u) = −u. We also
have a natural integrable connection ∇ : SL → SL ⊗OL0

Ω̂OL0
given by the universal derivation

on OL0 , which commutes with Nu.
Set

ML := SL ⊗ϕ,SL
ML

equipped with the induced Frobenius. If we let q : SL � OL0 denote the ϕ-compatible projection
given by u 
→ 0, it induces the projection q : ML � ML.

We define two filtrations on ML[p−1] and study their compatibility. Let

DL := SL[p−1]⊗L0 D
∨
cris(V ).

By the above isomorphism ML[p−1] ∼= D∨
cris(V ) and Lemma 4.2, we have a ϕ-equivariant iden-

tification ML[p−1] = DL. Let Nu : DL → DL be the L0-linear derivation given by Nu,SL
⊗ 1,

and let ∇ : DL → DL ⊗OL0
Ω̂OL0

be the connection given by ∇SL
⊗ 1 + 1⊗∇D∨

cris(V ). Define a
decreasing filtration on DL by SL[p−1]-submodules FiliDL, inductively as follows: Fil0DL = DL

and
Fili+1DL = {x ∈ DL | Nu(x) ∈ FiliDL, qπ(x) ∈ Fili+1(L⊗L0 D

∨
cris(V ))},

where qπ : DL → L⊗L0 D
∨
cris(V ) is the map induced by SL[p−1]→ L, u 
→ π. The following is

proved in [Moo23]. Note that [Moo23, § 4.1] assumes p > 2 and r ≤ p− 2, but the results we cite
in this subsection hold without these assumptions.
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Lemma 4.14 [Moo23, Lemma 4.2]. The connection ∇ on DL satisfies the Griffiths
transversality:

∇(Fili+1DL) ⊂ FiliDL ⊗OL0
Ω̂OL0

.

For the second filtration, let

FiML[p−1] := {x ∈ML[p−1] | (1⊗ ϕML
)(x) ∈ (FiliSL[p−1])⊗SL

ML}.
We show that these two filtrations coincide under the identification ML[p−1] = DL and, thus,
∇ML

satisfies the SL-Griffiths transversality. For this, consider the base change along OL0 →
W (kg) as in Notation 2.8. Note that W (kg) is a CDVR with perfect residue field. Let Sg be
the p-adically completed divided power envelope of Sg := W (kg)[[u]] with respect to (E(u)). It
is equipped with ϕ, PD-filtration, and Nu similarly as above. Let

Mg = Sg ⊗SL
ML, Mg = Sg ⊗ϕ,Sg Mg, and Dg = Sg[p−1]⊗W (kg) D

∨
cris(V |GKg

).

We can identify Mg[p−1] = Dg compatibly with ϕ, and define two filtrations FiliDg and
FiMg[p−1] similarly as above. By the proof of [Liu08, Corollary 3.2.3], we have

FiliDg = FiMg[p−1].

Note also K0,g ⊗L0 D
∨
cris(V )

∼=−→ D∨
cris(V |GKg

) by [Ohk13, 4B].

Lemma 4.15. Under the ϕ-equivariant identification ML[p−1] = DL, we have

FiDL = FiliDL.

In particular, the triple (ML, ϕML
,∇ML

) is a quasi-Kisin module of E-height ≤ r over SL.

Proof. We consider DL as a SL[p−1]-submodule of Dg via Sg ⊗SL
DL = Dg. Recall that

π is a uniformizer of OL, and let e = [L : L0]. Note that any x ∈ SL can be written
as x =

∑
i≥0(E(u)i/i!)(

∑e−1
j=0 aiju

j) for some aij ∈ OL0 (with aij → 0 p-adically as i→∞).
Furthermore, the aij can be seen to be uniquely determined by inductively setting u = π. The
analogous statement holds for the elements in Sg and, thus, we have SL ∩ FiliSg = FiliSL.

Let x ∈ FiliDL. Since FiliDL ⊂ FiliDg = FiDg, we have

(1⊗ ϕ)(x) ∈ (FiliSg[p−1])⊗SL
ML.

Since SL[p−1] ∩ FiliSg[p−1] = FiliSL[p−1] and ML[p−1] is projective over SL[p−1], we deduce
(1⊗ ϕ)(x) ∈ (FiliSL[p−1])⊗SL

ML by Lemma 3.1(i). Thus, FiliDL ⊂ FiDL.
Conversely, let x ∈ FiDL. Note that

(L⊗L0 D
∨
cris(V )) ∩ Fili(Kg ⊗W (kg) D

∨
cris(V |GKg

)) = Fili(L⊗L0 D
∨
cris(V )).

Hence, we deduce by induction on i that DL ∩ FiliDg = FiliDL. Since FiDL ⊂ FiDg = FiliDg,
we have x ∈ DL ∩ FiliDg = FiliDL. Hence, FiDL ⊂ FiliDL. The second assertion follows from the
first and Lemma 4.14: Nu(Fili+1DL) ⊂ FiliDL by definition, and it is straightforward to check
∂u(Fili+1DL) ⊂ FiliDL by induction. �

Next we explain how to recover V from DL as a representation of GL. Note that
the embedding SL →W (O�

L
) given in § 2.3 extends to SL → Acris(OL), which is compat-

ible with ϕ, filtrations, and G
L̃∞-actions. Consider an Acris(OL)-semi-linear G

L̃∞-action
on Acris(OL)[p−1]⊗SL

DL given by the G
L̃∞-action on Acris(OL)[p−1] and the trivial G

L̃∞-action
on DL. We extend this action to a GL-action as follows (see [Moo23, § 4]). For each i = 1, . . . , d,
write NTi : DL → DL for the derivation given by ∇ : DL → DL ⊗OL0

Ω̂OL0

∼= ⊕d
i=1 DL · d log Ti
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composed with the projection to the ith factor. Note NTi = Ti∂Ti for the derivation ∂Ti : DL →
DL in § 4.1. For σ ∈ GL, denote

ε(σ) :=
σ([π�])

[π�]
and μi(σ) :=

σ([T �i ])
[T �i ]

(i = 1, . . . , d).

Note that log(ε(σ)) and log(μi(σ)) lie in Fil1Acris(OL). For any element a⊗ x ∈
Acris(OL)[p−1]⊗SL

DL, define

σ(a⊗ x) =
∑

σ(a)γi0(− log(ε(σ)))γi1(log(μ1(σ))) · · · γid(log(μd(σ))) ·N i0
u N

i1
T1
· · ·N id

Td
(x),

(4.4)
where the sum ranges over the multi-index (i0, i1, . . . , id) of non-negative integers. This sum
converges since ∇DL

is topologically quasi-nilpotent and since γj(− log(ε(σ))), γj(log(μi(σ)))→
0 p-adically as j →∞. It follows from standard computations that this gives a well-defined
Acris(OL)-semi-linear GL-action compatible with ϕ. This GL-action preserves the filtration since
log(ε(σ)), log(μi(σ)) ∈ Fil1Acris(OL) and since Nu and ∇ satisfy the Griffiths transversality by
definition and Lemma 4.14.

Let

V (DL) := HomSL,Fil,ϕ(DL,Acris(OL)[p−1]).

Using the identification

HomSL,Fil,ϕ(DL,Acris(OL)[p−1]) = HomSL,Fil,ϕ(Acris(OL)[p−1]⊗SL
DL,Acris(OL)[p−1]),

we define the GL-action on V (DL) by setting σ(f)(x) = σ(f(σ−1(x))) for any x ∈
Acris(OL)[p−1]⊗SL

DL.

Proposition 4.16 (Cf. [Moo23, § 4]). There is a natural GL-equivariant isomorphism

V (DL) ∼= V.

Proof. This is proved in [Moo23, § 4], and we sketch the proof here. We first study how the above
constructions are related to étale ϕ-modules. If we letML = OE,L ⊗SL

ML with the induced ϕ,
then ML is an étale ϕ-module over OE,L. Consider the G

L̃∞-equivariant map

HomSL,ϕ(ML, Ŝ
ur
L )→ T∨(ML) = HomOE,L,ϕ(ML, Ôur

E,L)

induced by the embedding Ŝur
L → Ôur

E,L. By [Moo23, Lemma 4.6], this map is an isomorphism.
The embedding ϕ : Ŝur

L → Acris(OL) induces a natural G
L̃∞-equivariant injective map

HomSL,ϕ(ML, Ŝ
ur
L )[p−1]→ V (DL)

by Lemma 4.2. On the other hand, any f ∈ V (DL) induces a ϕ-equivariant map f ′ : D∨
cris(V )→

Bcris(OL) via the map D∨
cris(V )→ DL. We see that f ′ is also compatible with filtration, since

Bcris(OL) ∼= Bcris(OKg
) and the induced map D∨

cris(V |GKg
)→ Bcris(OKg

) is compatible with fil-
tration by the proof of [Bre97, Lemme 8.1.2] and [Liu08, § 3.4]. Thus, we obtain a natural injective
map

V (DL)→ HomFil,ϕ(D∨
cris(V ),Bcris(OL)).

Since HomSL,ϕ(ML, Ŝ
ur
L )[p−1] and V are Qp-vector spaces of the same dimension, it suffices to

show that HomFil,ϕ(D∨
cris(V ),Bcris(OL)) admits a GL-action compatibly with V (DL) and there

exists a natural isomorphism HomFil,ϕ(D∨
cris(V ),Bcris(OL)) ∼= V as GL-representations.
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Write D = D∨
cris(V ) for simplicity. Lemma 2.11 yields a Bcris(OL)-linear isomorphism

Bcris(OL){X1, . . . , Xd} ∼= OBcris(OL)

sending Xi to Ti ⊗ 1− 1⊗ [T �i ]. The projection

pr : OBcris(OL)→ Bcris(OL)

given by Xi = Ti − [T �i ] 
→ 0 induces the projection

pr : OBcris(OL)⊗ι1,L0 D → Bcris(OL)⊗ι2,L0 D

compatible with Frobenii and filtrations (after tensoring with L over L0). Here, ι1 : L0 →
OBcris(OL) is given by Ti 
→ Ti ⊗ 1, and ι2 : L0 → Bcris(OL) is given by Ti 
→ [T �i ].

We define a Bcris(OL)-linear section s to pr as follows. For x ∈ D, let

s(x) =
∑

(−1)i1+···+idγi1

(
log

(
T1

[T �1 ]

))
· · · γid

(
log

(
Td

[T �d ]

))
N i1
T1
· · ·N id

Td
(x),

where the sum ranges over the multi-index (i1, . . . , id) of non-negative integers. The map s is a
well-defined section, and it induces an isomorphism

s : Bcris(OL)⊗ι2,L0 D
∼=−→ (OBcris(OL)⊗ι1,L0 D)∇=0

of Bcris(OL)-modules, compatibly with filtrations and ϕ (see [Moo23, § 4.1]). Moreover, if we
define GL-action on Bcris(OL)⊗ι2,L0 D by

σ(a⊗ x) =
∑

σ(a)γi1(log(μ1(σ))) · · · γid(log(μd(σ))) ·N i1
T1
· · ·N id

Td
(x)

for σ ∈ GL and a⊗ x ∈ Bcris(OL)⊗ι2,L0 D, then by [Moo23, § 4.1], the map

V (DL)→ HomFil,ϕ(D,Bcris(OL)) = HomFil,ϕ(Bcris(OL)⊗ι2,L0 D,Bcris(OL))

is GL-equivariant, and s induces a GL-equivariant isomorphism

HomFil,ϕ(D,Bcris(OL)) ∼= HomFil,ϕ,∇(D,OBcris(OL)) = V.

This shows that V (DL) ∼= V as representations of GL. �
Since HomSL,ϕ(ML, Ŝ

ur
L )[p−1] ∼= V as G

L̃∞-representations, we have a natural map

ML → Ŝur
L ⊗Zp V

∨. Via the embedding Ŝur ϕ−→ Bcris(OL) ↪→ OBcris(OL), this induces a map
ML[p−1]→ V ∨ ⊗Qp OBcris(OL). Composing this with the section ML[p−1]→ML[p−1] in
Lemma 4.2, we obtain a ϕ-compatible map

ML[p−1]→ OBcris(OL)⊗Qp V
∨.

Write D = D∨
cris(V ) as before. If we compose the above map with

OBcris(OL)⊗Qp V
∨ α−1

cris−−−→ OBcris(OL)⊗ι1,L0 D
pr−→ Bcris(OL)⊗ι2,L0 D,

then we obtain a ϕ-compatible map

ML[p−1]→ Bcris(OL)⊗ι2,L0 D.

We use the following proposition in § 4.5.

Proposition 4.17. The image of the above map ML[p−1]→ Bcris(OL)⊗ι2,L0 D lies in

D = L0 ⊗L0 D ⊂ Bcris(OL)⊗ι2,L0 D.

Furthermore, the induced map ML[p−1]→ D is an isomorphism of L0-modules.
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Proof. The construction of GL-equivariant isomorphisms

V (DL)
∼=−→ HomFil,ϕ(D,Bcris(OL))

∼=−→ V

and diagram chasing implies that the above map injects into D ⊂ Bcris(OL)⊗ι2,L0 D. Since
ML[p−1] and D are L0-vector spaces of the same dimension, the induced map ML[p−1]→ D is
an isomorphism. �

4.4 Construction of the quasi-Kisin module I: definition of M

We now work over a general base ring: consider R and S = R0[[u]] as in Set-up 2.3 and
Notation 2.6.

Let V be a crystalline Qp-representation of GR with Hodge–Tate weights in [0, r], and let T
be a Zp-lattice of V stable under GR-action. Let

M :=M∨(T ) = HomGR̃∞
(T, Ôur

E )

be the associated étale (ϕ,OE)-module. In the following, we construct a quasi-Kisin module over
S of E-height ≤ r associated with T .

Consider the base change along the map R→ OL as in Notation 2.8. If we consider T as a rep-
resentation of GL := GOL

via GL → GR, then T is a Zp-lattice in a crystalline GL-representation
with Hodge–Tate weights in [0, r]. Note that ML := OE,L ⊗OE M∼= HomG

L̃∞
(T, Ôur

E,L) as étale
(ϕ,OE,L)-modules.

Lemma 4.18. There exists a unique SL-submodule ML of ML stable under Frobenius such
that the following properties hold:

– ML with the induced Frobenius is a quasi-Kisin module over SL of E-height ≤ r; furthermore,
ML is free over SL;

– OE,L ⊗SL
ML =ML;

– if we letML = OL0 ⊗ϕ,OL0
ML/uML, thenML[p−1] ∼= D∨

cris(V |GL
) compatibly with Frobenius

and connection.

Proof. By [BT08, Corollaire 4.18] and Lemma 4.15, there exists a quasi-Kisin module N over
SL of E-height ≤ r such that N is free over SL and OL0 [p

−1]⊗ϕ,OL0
N/uN ∼= D∨

cris(V |GL
) com-

patibly with Frobenii and connections. By [Gao20, Lemma 4.2.9], ML := N[p−1] ∩ML satisfies
the required properties. The uniqueness also follows from the cited lemma. �
Construction 4.19. Let T be a crystalline Zp-representation of GR with Hodge–Tate weights
in [0, r] and keep the notation as above. We set

M := M(T ) := ML ∩M ⊂ML.

This is an S-module. Moreover, since ML and M are p-adically complete and torsion free, so
is M.

We show that M is a quasi-Kisin module over S of E-height ≤ r satisfying OE ⊗S M ∼=M
and SL ⊗S M ∼= ML.

Proposition 4.20. The S-module M is finitely generated. Furthermore, we have M[u−1] ∩
M[p−1] = M.

Proof. Note that the cokernels of the maps SL → OE,L and OE → OE,L are p-torsion free. Thus,
the maps ML/pML →ML/pML andM/pM→ML/pML are injective. By the proof of [LM20,
Lemma 4.1], the intersection ML/pML ∩M/pM insideML/pML is finite over S. To show that
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M is finite over S, it suffices to prove that the natural map M/pM→ML/pML ∩M/pM is
injective since S is noetherian and M is p-adically complete.

We have
pML ∩M = pML ∩M ⊂ pML ∩M.

Since pOE,L ∩ OE = pOE andM is classically flat over OE , we have pML ∩M ⊂ pM. Thus,

pML ∩M ⊂ pML ∩ pM = pM,

where the last equality follows from the p-torsion freeness of ML. Thus, the map M/pM→
ML/pML is injective. Since this map factors as M/pM→ML/pML ∩M/pM→ML/pML, we
deduce the desired injectivity.

For the second part, since M is torsion free, we have M ⊂M[u−1] ∩M[p−1]. On the other
hand,

M[u−1] ∩M[p−1] ⊂ML[u−1] ∩ML[p−1] = ML,

and, thus,
M[u−1] ∩M[p−1] ⊂M[u−1] ∩ML ⊂M∩ML = M. �

Since the Frobenius endomorphisms on M and ML are compatible with that on MOL
, we

have an induced Frobenius ϕM: M→M.

Proposition 4.21. The S-module M with Frobenius has E-height ≤ r.
Proof. Since the composite of maps S⊗ϕ,S M→ OE ⊗ϕ,OE M

1⊗ϕ−−→M is injective, 1⊗
ϕM: S⊗ϕ,S M→M is injective. Consider the natural map S⊗ϕ,SOE → OE ⊗ϕ,OE OE . Since
S⊗ϕ,SOE and OE ⊗ϕ,OE OE are p-adically complete and p-torsion free by Lemma 2.7 and since
the induced map S/(p)⊗ϕ,SOE → OE/(p)⊗ϕ,OE OE is an isomorphism, the map S⊗ϕ,SOE →
OE ⊗ϕ,OE OE is an isomorphism. Thus, the map

S⊗ϕ,SM→OE ⊗ϕ,OE M
is an isomorphism. On the other hand, since R0/pR0 has a finite p-basis which is also a p-basis
of OL0/pOL0 , the natural map S/(p)⊗ϕ,S SL → SL/(p)⊗ϕ,SL

SL is an isomorphism. Since
S⊗ϕ,S SL and SL ⊗ϕ,SL

SL are p-adically complete, the map S⊗ϕ,S SL → SL ⊗ϕ,SL
SL is

an isomorphism. Hence,
S⊗ϕ,S ML → SL ⊗ϕ,SL

ML

is an isomorphism.
Now, let x ∈M. There exists a unique y1 ∈ OE ⊗ϕ,OE M = S⊗ϕ,SM such that (1⊗

ϕ)(y1) = E(u)rx. On the other hand, there exists a unique y2 ∈ SL ⊗ϕ,SL
ML = S⊗ϕ,S ML

such that (1⊗ ϕ)(y2) = E(u)rx. Hence, we have

y1 = y2 ∈ (S⊗ϕ,SM) ∩ (S⊗ϕ,S ML) = S⊗ϕ,S M

by Lemma 3.1(i) since ϕ : S→ S is classically flat. �
Next we show that M satisfies OE ⊗S M ∼=M and SL ⊗S M ∼= ML. For this, we consider

another description of M as an inverse limit of p-power torsion S-modules as follows. Let

ML,n := ML/p
nML, Mn :=M/pnM, and ML,n :=ML/p

nML.

Then ML,n andMn are submodules ofML,n, and we set

M(n) := ML,n ∩Mn ⊂ML,n.
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For any positive integers i > j, let qi,j denote the natural projectionMi →Mj given by modulo
pj , as well as its restriction qi,j : M(i) →M(j). Note thatMi−j is naturally isomorphic to pjMi.
We have the following commutative diagram.

ker(qi,j) � � ��
� �

��

M(i)

qi,j
��

� �

��

M(j)
� �

��
Mi−j � � �� Mi

qi,j
�� �� Mj

Lemma 4.22. We have a natural isomorphism

M ∼= lim←−
n

M(n).

Proof. Recall that M is p-adically complete. By a similar argument as in the proof of
Proposition 4.20, the natural map M/pnM→M(n) is injective for each n ≥ 1. Thus, the
induced map

f : M
∼=−→ lim←−

n

M/pnM→ lim←−
n

M(n)

is injective. On the other hand, let x = (xn)n≥1 ∈ lim←−n M(n). Note that xn lies in both ML,n and
Mn as an element in ML,n. Thus,

x ∈
(

lim←−
n

ML,n

)
∩

(
lim←−
n

Mn

)
⊂ lim←−

n

ML,n,

i.e. x ∈ML ∩M ⊂ML. This implies that x lies in the image of f and, thus, f is surjective. �
Remark 4.23. Suppose r = 1 and e < p− 1. By the above lemma and [LM20, Propositions 4.3
and 4.5], M is projective over S. For general r ≥ 0, as noted in [LM20, Rem 4.6], the S-module
M is projective when er < p− 1. In particular, when r = 0, M is projective for any e.

Proposition 4.24. The following properties hold for M(n):

(i) M(n) is a finitely generated S-module;
(ii) M(n)[u−1] ∼=Mn and SL ⊗S M(n)

∼= ML,n;
(iii) M(n) has E-height ≤ r.

Proof. Since the composite of maps S⊗ϕ,S M(n) → OE ⊗ϕ,OE Mn
1⊗ϕ−−→Mn is injective, 1⊗

ϕ : S⊗ϕ,S M(n) →M(n) is injective. Thus, all statements follow from the same argument as in
the proofs of [LM20, Lemmas 4.1 and 4.2] (where the case r = 1 is studied). �

Consider the set An consisting of S-submodules N of M(n) that are stable under ϕ, have
E-height ≤ r, and satisfy N[u−1] =Mn. Note that An is non-empty by the above proposition.
Let

M◦
(n) :=

⋂
N∈An

N ⊂M(n).

Lemma 4.25. The following properties hold for M◦
(n):

(i) M◦
(n) ∈ An;

(ii) M◦
(n) ⊂ qn+1,n(M◦

(n+1)).

Proof. (i) Let e := [K : K0] be the ramification index. We first show that for each fixed n, there
exists an integer s = s(n) such that usM(n) ⊂ N ⊂M(n) for all N ∈ An. Choose an integer
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a = a(n) ≥ r such that E(u)a ≡ uea mod pn. Let N ∈ An and L := M(n)/N. Without loss of
generality, assume L �= 0. Note that M(n) and N have E-height ≤ r and, thus, E-height ≤ a.
Hence, we have unique S-linear maps ψM(n)

: M(n) → ϕ∗M(n) and ψN : N→ ϕ∗N such that
ψN ◦ (1⊗ ϕN) = ueaIdϕ∗N and ψM(n)

◦ (1⊗ ϕM(n)
) = ueaIdϕ∗M(n)

.
The exact sequence 0→ N→M(n) → L→ 0 induces the following commutative diagram

with exact rows.

0 �� ϕ∗N

1⊗ϕN

��

�� ϕ∗M(n) ��

1⊗ϕM(n)

��

ϕ∗L

1⊗ϕL

��

�� 0

0 �� N ��

ψN

��

M(n) ��

ψM(n)

��

L

ψL

��

�� 0

0 �� ϕ∗N �� ϕ∗M(n) �� ϕ∗L �� 0

Here, 1⊗ ϕL and ψL are the maps induced by 1⊗ ϕM(n)
and ψM(n)

, respectively. We have
ψL ◦ (1⊗ ϕL) = ueaIdϕ∗L.

We show that usL = 0 for s = �(ea+ p)/(p− 1)�. Since N[u−1] =Mn = M(n)[u−1], L is
killed by some u-power. Take an integer l ≥ 1 such that ulL = 0 and ul−1L �= 0. Pick x ∈ L so that
ul−1x �= 0. Set y = 1⊗ x ∈ ϕ∗L. Then uply = 1⊗ ulx = 0 but up(l−1)y = 1⊗ (ul−1x) �= 0, since
ϕ : S→ S is classically faithfully flat by Lemma 2.7. Let z = (1⊗ ϕL)(y) ∈ L. Since ulL = 0,
we have ulz = 0 and, thus,

0 = ψL(ulz) = ul(ψL ◦ (1⊗ ϕL))(y) = uea+ly.

Thus, ea+ l > p(l − 1), i.e. l < (ea+ p)/(p− 1). Hence, usL = 0 for s = �(ea+ p)/(p− 1)�. This
implies that usM(n) ⊂M◦

(n) ⊂M(n), and M◦
(n)[u

−1] =Mn.
It remains to show that M◦

(n) has E-height ≤ r. Let x ∈M◦
(n). We need to show there

exists y ∈ ϕ∗M◦
(n) such that (1⊗ ϕ)(y) = E(u)rx. For each N ∈ An, we have x ∈ N, and there

exists y ∈ ϕ∗N, which is unique as an element of ϕ∗Mn, such that (1⊗ ϕ)(y) = E(u)rx. Since
ϕ : S→ S is finite free by Lemma 2.7, we deduce

y ∈
⋂

N∈An

(S⊗ϕ,S N) = S⊗ϕ,S
( ⋂

N∈An

N

)
= ϕ∗M◦

(n).

(ii) Since M◦
(n+1)[u

−1] =Mn+1 and qn+1,n(Mn+1) =Mn, we have qn+1,n(M◦
(n+1))[u

−1] =
Mn. Thus, it suffices to show that qn+1,n(M◦

(n+1)) has E-height ≤ r. Let K = Ker(qn+1,n). We
have the following commutative diagram with exact rows.

0 �� ϕ∗K ��

��

ϕ∗M◦
(n+1)

��

1⊗ϕ
��

ϕ∗qn+1,n(M◦
(n+1)) ��

1⊗ϕ
��

0

0 �� K �� M◦
(n+1)

qn+1,n
�� qn+1,n(M◦

(n+1)) �� 0

Since qn+1,n(M◦
(n+1)) ⊂Mn, the rightmost vertical map is injective. From the first part, 1⊗ ϕ

in the middle column has cokernel killed by E(u)r. Hence, the cokernel of 1⊗ ϕ in the rightmost
column is killed by E(u)r. �
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Proposition 4.26. The natural maps

OE ⊗S M→M and SL ⊗S M→ML

are isomorphisms. Moreover, M is projective away from (p,E), the Frobenius ϕM has E-height
≤ r, and rankS[p−1]M[p−1] = rankR0[p−1]D

∨
cris(V ).

Proof. We first prove OE ⊗S M ∼=M. Since M⊗SOE and M are p-adically complete and M
is p-torsion free, it suffices to show that the induced map

f : OE ⊗S M/pM ∼= (M/pM)[u−1]→M1

is an isomorphism. It is shown in the proof of Proposition 4.20 that M/pM→M(1) is injective.
Hence, f is injective. By Lemmas 4.22 and 4.25(ii), we have M/pM ⊃M◦

(1) and, thus, f is
surjective by Lemma 4.25(i).

For the second isomorphism, note that SL ⊗S M/pM→ SL ⊗S M(1)
∼= ML,1 is injective

since S→ SL is classically flat. Since SL ⊗S M is p-adically complete and ML is p-torsion
free, SL ⊗S M→ML is injective. In particular, SL ⊗S M is a finite torsion-free SL-module.
Furthermore, since S→ SL is classically flat, we have

(SL ⊗S M)[u−1] ∩ (SL ⊗S M)[p−1] = M⊗S SL

by Lemma 3.1(i) and Proposition 4.20. Thus, SL ⊗S M is a finite free SL-module.
Since M has E-height ≤ r by Proposition 4.21, SL ⊗S M with the induced Frobenius has

E-height ≤ r. We have

OE,L ⊗SL
(SL ⊗S M) ∼= OE,L ⊗OE (OE ⊗S M) ∼= OE,L ⊗OE M∼= OE,L ⊗SL

ML.

Hence, we deduce SL ⊗S M ∼= ML by [Gao20, Propositions 4.2.5 and 4.2.7].
Finally, we deduce from the first isomorphism and Propositions 4.13 and 4.21 that M is

projective away from (p,E), the Frobenius ϕM has E-height ≤ r, and

rankS[p−1]M[p−1] = rankOEM = rankQpV = rankR0[p−1]D
∨
cris(V ). �

4.5 Construction of the quasi-Kisin module II: definition of ∇
We further suppose that either R is small over OK or R = OL (Assumption 2.9).

Let M = R0 ⊗ϕ,R0 M/uM. The R0-module M is equipped with the induced tensor-product
Frobenius. We construct a natural ϕ-equivariant isomorphism M [p−1] ∼= D∨

cris(V ), via which we
define ∇ on M [p−1]. Consider the ϕ-equivariant map R0 →W (kg) as in Notation 2.8, which
naturally factors as R0 → OL0 →W (kg).

Lemma 4.27. The natural GR̃∞-equivariant map

HomS,ϕ(M, Ŝur)→ T∨(M) = HomOE ,ϕ(M, Ôur
E ) ∼= T

is an isomorphism.

Proof. For each p ∈ P, consider the base change along R
∧ → (Rp)∧ → (OKg

)∧ as in
Notation 2.8. The induced map

HomS,ϕ(M, Ŝur
g )→ HomOE ,ϕ(M, Ôur

E,g)

is an isomorphism by [Fon07, § B Proposition 1.8.3]. Since Ŝur = Ôur
E ∩W (R�) by definition, we

deduce the statement from Lemma 3.32. �
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Proposition 4.28. Suppose that R satisfies Assumption 2.9. There exists a natural

ϕ-compatible isomorphism M [p−1]
∼=−→ D∨

cris(V ).

Proof. Let M := S ⊗ϕ,S M equipped with the induced Frobenius. Consider the ϕ-compatible
projection S � R0 given by u 
→ 0. This induces the projection q : M � M . By Lemma 4.2,
Propositions 4.13 and 4.21, the projection q admits a unique ϕ-compatible section s : M [p−1]→
M [p−1], and 1⊗ s : S[p−1]⊗R0[p−1] M [p−1]→M [p−1] is an isomorphism.

We first construct a ϕ-equivariant map M [p−1]→ D∨
cris(V ) similarly as in § 4.3. By

Lemma 4.27, we have a natural map M→ Ŝur ⊗Qp V
∨. This extends to a map M →

OBcris(R)⊗Qp V
∨ via the embedding Ŝur ϕ−→ Bcris(R) ↪→ OBcris(R). So by composing with the

section s : M [p−1]→M [p−1] given in Lemma 4.2, we get a ϕ-compatible map

M [p−1]→ OBcris(R)⊗Qp V
∨. (4.5)

By Lemma 2.11, we have the projection pr : OBcris(R)→ Bcris(R) given by Ti ⊗ 1− 1⊗
[T �i ] 
→ 0. This induces the projection

pr : OBcris(R)⊗ι1,R0 D
∨
cris(V )→ Bcris(R)⊗ι2,R0 D

∨
cris(V ),

where ι1 : R0 → OBcris(R) is the natural map given by Ti 
→ Ti ⊗ 1 and ι2 : R0 → Bcris(R) is the
embedding given by Ti 
→ [T �i ].

If we compose the map (4.5) with

OBcris(R)⊗Qp V
∨ α−1

cris−−−→ OBcris(R)⊗ι1,R0 D
∨
cris(V )

pr−→ Bcris(R)⊗ι2,R0 D
∨
cris(V ),

then we obtain a ϕ-equivariant map

f : M [p−1]→ Bcris(R)⊗ι2,R0 D
∨
cris(V ).

By Proposition 4.17, for each p ∈ P as in Notation 2.8, we have

f(M [p−1]) ⊂ D∨
cris(V |GL

) = L0 ⊗R0 D
∨
cris(V ) ⊂ Bcris(OL)⊗ι2,R0 D

∨
cris(V ).

We claim that

Bcris(R) ∩ L0 = R0[p−1]

as subrings of
∏

p∈P Bcris(OL). Since OL0 ⊂ Acris(OL) for each p ∈ P, it suffices to show

Acris(R) ∩ OL0 = R0.

We clearly have R0 ⊂ Acris(R) ∩ OL0 . Let x ∈ Acris(R) ∩ OL0 . Then

θ(x) ∈ R∧ ∩ OL0 = R0 ⊂
∏
p∈P
O∧
L
,

which implies x ∈ R0. This shows the claim.
Hence, we have by Lemma 3.1(i) that

f(M [p−1]) ⊂ (Bcris(R)⊗R0[p−1] D
∨
cris(V )) ∩ (L0 ⊗R0[p−1] D

∨
cris(V )) = D∨

cris(V ),

since D∨
cris(V ) is projective over R0[p−1]. This gives a natural ϕ-equivariant map f : M [p−1]→

D∨
cris(V ).

It remains to show that f is an isomorphism. Note that by Proposition 4.17, it suffices to
consider the case where R0 is the p-adic completion of an étale extension of W (k)〈T±1

1 , . . . , T±1
d 〉.

By Proposition 4.26, M [p−1] is projective over R0[p−1] of rank equal to rankD∨
cris(V ).
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Moreover, by Proposition 4.17, the map

L0 ⊗R0 M [p−1]→ D∨
cris(V |GL

) = L0 ⊗R0 D
∨
cris(V )

induced by f is an isomorphism. In particular, f : M [p−1]→ D∨
cris(V ) is injective. Let I ⊂ R0[p−1]

be the invertible ideal given by the determinant of f . Since 1⊗ ϕ : ϕ∗M [p−1]→M [p−1] and
1⊗ ϕ : ϕ∗D∨

cris(V )→ D∨
cris(V ) are isomorphisms, we have

ϕ(I)R0[p−1] = IR0[p−1].

Thus, I = R0[p−1] by Proposition 4.30 (which is based on Lemma 4.29), and f is an
isomorphism. �

Lemma 4.29. Let k1 be a perfect field of characteristic p, and let A = W (k1)[[t1, . . . , td]] be a
power-series ring. Suppose that A is equipped with a Frobenius endomorphism ϕ extending the
Witt vector Frobenius on W (k1). Let I ⊂ A[p−1] be an invertible ideal such that IA[p−1] =
ϕ(I)A[p−1]. Then I = A[p−1].

Proof. Suppose I �= A[p−1]. Since A is a UFD, so is A[p−1]. Hence, I is principal, say, generated
by x. Since p is a prime element of A, we may choose x so that x ∈ A� pA and x is not a unit
in A. Write ϕ(x) = xp + py for some y ∈ A. Since p � x, we deduce from ϕ(I)A[p−1] = IA[p−1]
that y = xz for some z ∈ A. Thus,

ϕ(x) = x(xp−1 + pz).

Here xp−1 + pz is not a unit in A since it lies in the ideal (x, p) which is contained in the maximal
ideal of A. Note that p � (xp−1 + pz) as elements in A. Thus, xp−1 + pz is not a unit in A[p−1],
which contradicts ϕ(I)A[p−1] = IA[p−1]. Hence, I = A[p−1]. �

Proposition 4.30. Suppose R0 is the p-adic completion of an étale extension of
W (k)〈T±1

1 , . . . , T±1
d 〉. Let I ⊂ R0[p−1] be an invertible ideal such that ϕ(I)R0[p−1] = IR0[p−1].

Then I = R0[p−1].

Proof. Let P ⊂ R0[p−1] be any maximal ideal. Then the prime ideal q = R0 ∩P is maximal
among the prime ideals of R0 not containing p, and n :=

√
q + pR0 is a maximal ideal of R0. Let

(R0)∧n be the n-adic completion of the localization (R0)n. As in the proof of Proposition 4.13,
(R0)∧n ∼= W (kn)[[t1, . . . , td]] for some finite extension kn of k and t1, . . . , td such that W (kn) ↪→
(R0)∧n is compatible with ϕ.

Since the natural map R0[p−1]→ (R0)∧n [p−1] is classically flat, we have I(R0)∧n [p−1] =
(R0)∧n [p−1] by Lemma 4.29. Let Pn ⊂ (R0)∧n [p−1] be a maximal ideal lying over P ⊂ R0[p−1].
Note that the natural map on localizations

(R0[p−1])P→ ((R0)∧n [p−1])Pn

is classically faithfully flat. Since I((R0)∧n [p−1])Pn = ((R0)∧n [p−1])Pn , we deduce that
I(R0[p−1])P = (R0[p−1])P. This holds for any maximal ideal P ⊂ R0[p−1], so I = R0[p−1]. �

By Proposition 4.28, the connection on D∨
cris(V ) defines a connection

∇M: M [p−1]→M [p−1]⊗R0 Ω̂R0 .

Finally, we show that ∇M satisfies the S-Griffiths transversality. For this, we study the compat-
ibility between two filtrations as in § 4.3. By Lemma 4.2 and Proposition 4.28, we have a natural

1156

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

ϕ-equivariant isomorphism

M [p−1] = S[p−1]⊗ϕ,S M ∼= S[p−1]⊗R0 D
∨
cris(V ).

Let D := S[p−1]⊗R0 D
∨
cris(V ), and identify D = M [p−1] via the above isomorphism. Let

Nu : D → D be the R0-linear derivation given by Nu = Nu,S ⊗ 1, and let ∇ : D → D ⊗R0 Ω̂R0

be the connection given by ∇S ⊗ 1 + 1⊗∇D∨
cris(V ). We consider two filtrations on D = M [p−1].

For the first filtration, set Fil0D = D , and inductively define for i ≥ 1

FiliD := {x ∈ D | Nu(x) ∈ Fili−1D , qπ(x) ∈ Fili(R⊗R0 D
∨
cris(V ))},

where qπ : D → R⊗R0 D
∨
cris(V ) is the map given by u 
→ π. For the second filtration, let

FiM [p−1] := {x ∈ S[p−1]⊗ϕ,S M | (1⊗ ϕM)(x) ∈ (FiliS[p−1])⊗S M}.
Lemma 4.31. We have

FiM [p−1] = FiliD .

Furthermore,

∇(FiliD) ⊂ Fili−1D ⊗R0 Ω̂R0 .

In particular, ∇ satisfies the S-Griffiths transversality.

Proof. By Proposition 4.26, the first part follows from a similar argument as in the proof
of Lemma 4.15 using the base change along R0 →W (kg). The second part on the Griffiths
transversality follows from a similar argument as in the proof of [Moo23, Lemma 4.2]. Note that
Nu(FiliD) ⊂ Fili−1D by definition, and it is straightforward to check ∂u(FiliD) ⊂ Fili−1D by
induction. �

Combining this with Proposition 4.26, we conclude the following.

Proposition 4.32. Suppose that R satisfies Assumption 2.9. With the above structures, M is
a quasi-Kisin module over S of E-height ≤ r.

4.6 Proof of the second part of Theorem 3.29
Throughout this subsection, we suppose that R satisfies Assumption 2.9.

Let V be a finite free Qp-representation of GR, which is crystalline with Hodge–Tate weights
in [0, r]. Let T ⊂ V be a Zp-lattice stable under the GR-action, and let M be the quasi-Kisin
module over S of E-height ≤ r associated with T as in Construction 4.19 and Proposition 4.32.

By Propositions 4.6 and 4.9, we have a rational Kisin descent datum

f : S(1)[p−1]⊗p1,S M
∼=−→ S(1)[p−1]⊗p2,S M.

On the other hand, since T is a finite free Zp-representation of GR, [BS23, Corollary 3.8] (see
also [MW21, Theorem 3.2]) gives an isomorphism of S(1)[E−1]∧p -modules

f1 : S(1)[E−1]∧p ⊗p1,OE M
∼=−→ S(1)[E−1]∧p ⊗p2,OE M

satisfying the cocycle condition over S(2)[E−1]∧p . Here, by Proposition 4.26, M = OE ⊗S M

is the étale ϕ-module finite projective over OE associated with T (contravariantly). Note
S(1)[E−1]∧p ⊗pj ,S M = S(1)[E−1]∧p ⊗pj ,OE M since OE ⊗S M =M.

Proposition 4.33. Under the identification

S(1)[E−1]∧p [p−1]⊗pj ,S M = S(1)[E−1]∧p [p−1]⊗pj ,OE M,

the maps idS(1)[E−1]∧p [p−1] ⊗S(1)[p−1] f and idS(1)[E−1]∧p [p−1] ⊗S(1)[E−1]∧p f1 coincide.
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To show Proposition 4.33, let us consider the base change along R0 → OL0 as before. Recall
that (SL, (E)) = (OL0 [[u]], (E)) is a prism in RΔ with the structure map R→ OL = SL/(E).
Let (S(1)

L , (E)) be the self-product of (SL, (E)) in (OL)Δ. Considering (S(1)
L , (E)) as a prism in

RΔ, the maps f and f1 induce the descent data

fL : S
(1)
L [p−1]⊗p1,SL

ML
∼=−→ S

(1)
L [p−1]⊗p2,SL

ML

and
f1,L : S

(1)
L [E−1]∧p ⊗p1,SL

ML
∼=−→ S

(1)
L [E−1]∧p ⊗p2,SL

ML,

respectively. Here, ML = SL ⊗S M by Proposition 4.26. Since the map S(1) → S
(1)
L is injective,

Proposition 4.33 follows if we show that fL and f1,L coincide over S
(1)
L [E−1]∧p [p−1]. For this, we

need the following proposition.

Proposition 4.34. There exists an SL-submodule NL ⊂ML with NL[p−1] = ML[p−1] such

that fL induces an isomorphism of S
(1)
L -modules

fL : S
(1)
L ⊗p1,SL

NL
∼=−→ S

(1)
L ⊗p2,SL

NL.

Furthermore, NL can be chosen to be finite free over SL of E-height ≤ r and stable under ϕML
.

Proof. Since pi : SL → S
(1)
L is classically faithfully flat by Lemma 3.5, the first part follows

directly from the proof of [Dri22, Proposition 2.8]. We recall some points here. Note that for any
SL-submodule NL ⊂ML, the induced map p∗iNL → p∗iML for i = 1, 2 is injective, where p∗iNL

denotes S
(1)
L ⊗pi,SL

NL. Take an integer n ≥ 0 such that pnfL maps p∗1ML into p∗2ML. It suffices
to find an SL-submodule NL ⊂ML such that pnML ⊂ NL and fL maps p∗1NL to p∗2NL; then it
follows from the cocycle condition on fL for ML[p−1] that the induced map fL : p∗1NL → p∗2NL

is an isomorphism (see also the proof of [Ogu84, Theorem 1.9]). The map fL induces a map

fL : p∗1(ML/p
nML)→ p∗2(p

−nML/ML).

This induces a morphism
β : ML/p

nML → Φ(p−nML/ML),

where Φ := (p1)∗p∗2. Let NL be the kernel of the composite

ML � ML/p
nML

β−→ Φ(p−nML/ML).

Then fL(p∗1NL) ⊂ p∗2ML, and by the proof of [Dri22, Proposition 2.8] (cf. also the proof of
[Ogu84, Theorem 1.9]), we further have fL(p∗1NL) ⊂ p∗2NL.

Since fL is compatible with Frobenius, β as above is compatible with ϕ. Thus, NL constructed
as above is stable under ϕ. Consider the exact sequence

0→ NL →ML → β(ML)→ 0,

where β(ML) ⊂ Φ(p−nML/ML) denotes the image of ML under the above composite. Under
the classically faithfully flat base change along SL → Sg, this induces an exact sequence

0→ Sg ⊗SL
NL → Sg ⊗SL

ML → Sg ⊗SL
β(ML)→ 0.

Note that Sg ⊗SL
ML is a Kisin module of E-height ≤ r that is finite free over Sg. Furthermore,

β(ML) is u-torsion free since p−nML/ML is finite free over SL/p
nSL, and so Sg ⊗SL

β(ML)
is u-torsion free. Thus, Sg ⊗SL

β(ML) is a torsion Kisin module over Sg of E-height ≤ r by
[Liu07, Proposition 2.3.2]. Then Sg ⊗SL

NL is a Kisin module of E-height ≤ r finite free over
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Sg by [Liu07, Corollary 2.3.8]. Since SL → Sg is classically faithfully flat, NL is finite free over
SL and has E-height ≤ r. �
Proof of Proposition 4.33. By the above proposition, NL := OE,L ⊗SL

NL is an étale ϕ-module
finite free over OE,L, and fL induces an isomorphism of S

(1)
L [E−1]∧p -modules

fL : S
(1)
L [E−1]∧p ⊗p1,OE,L

NL
∼=−→ S

(1)
L [E−1]∧p ⊗p2,OE,L

NL
satisfying the cocycle condition over S

(2)
L [E−1]∧p . As in the proof of Proposition 3.27, this cor-

responds to a finite free Zp-representation T ′ of GL. Furthermore, by [BS23, Corollary 3.7,
Example 3.5], T ′ is determined by the GL-action on W (O�

L
[(π�)−1])⊗OE,L

NL. On the other
hand, note that (Acris(OL), (p)) ∈ RΔ similarly as in Example 3.8, and the composite S →
SL → Acris(OL) gives a map of prisms (S, (p))→ (Acris(OL), (p)) over R. Thus, by the con-
struction of the descent datum f and definition of fS in Construction 4.3, the GL-action on
Acris(OL)[p−1]⊗ϕ,SL

NL
∼= Acris(OL)[p−1]⊗SL

DL (with DL = SL[p−1]⊗ϕ,SL
ML) is given by

σ(a⊗ x) =
∑

σ(a)∂j0u ∂
j1
T1
· · · ∂jdTd

(x) · γj0(σ([π�])− [π�])
d∏
i=1

γji(σ([T �i ])− [T �i ]),

for σ ∈ GL and a⊗ x ∈ Acris(OL)[p−1]⊗SL
DL (where the sum goes over the multi-index

(j0, . . . , jd) of non-negative integers). By [LL23, § 8.1], this is the same as the GL-action given by
(4.4), and it is proved in § 4.3 that this gives a Qp-representation of GL isomorphic to T [p−1] = V .
Thus, T [p−1] ∼= T ′[p−1] as representations of GL. This proves the claim that fL and f1,L coincide
over S

(1)
L [E−1]∧p [p−1] and, thus, Proposition 4.33. �

By Proposition 4.33, we see that the descent data f and f1 induce a map

f : S(1) ⊗p1,S M→ (S(1)[p−1]⊗p2,S M) ∩ (S(1)[E−1]∧p ⊗p2,S M).

End of the proof of Theorem 3.29(ii). By Lemma 4.10, we see that f and f1 induce a map

fint : S(1) ⊗p1,S M→ S(1) ⊗p2,S M.

By applying a similar argument to f−1 and f−1
1 , we deduce that fint is an isomorphism. Namely,

fint is a descent datum. Since f is compatible with ϕ, so is fint. By Proposition 3.26, the triple
(M, ϕ, fint) gives rise to a completed prismatic F -crystal F on R with M = FS. It is straight-
forward to see T (F) = T . Hence, the functor T in Theorem 3.29 is essentially surjective (when
R satisfies Assumption 2.9). �
Remark 4.35. We continue the discussion in Remark 3.31. For F ∈ CR∧,ϕ(RΔ), let V =
T (F)[p−1] ∈ Repcris

Zp,≥0(GR). Consider the ϕ-equivalent R0[p−1]-linear isomorphism

h : (R0 ⊗ϕ,R0 FS/uFS)[p−1] ∼= D∨
cris(V )

in Remark 3.31. Note that FS [p−1] ∼= S[p−1]⊗ϕ,SFS by Lemma 3.24(iv) for the map of prisms
(S, E)→ (S, (p)). Thus, h induces a ϕ-compatible isomorphism FS [p−1] ∼= S[p−1]⊗R0 D

∨
cris(V )

by Lemma 4.2.
Since F ∈ CR∧,ϕ(RΔ), we have an isomorphism of S(1)-modules

S(1) ⊗p1,SFS

∼=−→ S(1) ⊗p2,SFS.

Under the map ϕ : S(1) → S(1), this induces an isomorphism of S(1)[p−1]-modules

fS : S(1)[p−1]⊗p1,S FS
∼=−→ S(1)[p−1]⊗p2,S FS . (4.6)
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Note that fS reduces to the identity after the base change along S(1) → S and it satisfies the
cocycle condition over S(2). Let ν : R0 ⊗W R0 → R0 be the multiplication, and let R(1)

0 be the
p-adically completed divided power envelope of R0 ⊗W R0 with respect to Ker(ν). We also write
ν : R(1)

0 → R0 for the induced map. Consider the map S(1) → R
(1)
0 given by u, y 
→ 0. From the

isomorphism (4.6), we obtain an isomorphism of R(1)
0 [p−1]-modules

fR0 : R(1)
0 [p−1]⊗p1,R0 D

∨
cris(V )

∼=−→ R
(1)
0 [p−1]⊗p2,R0 D

∨
cris(V )

such that fR0 reduces to the identity after the base change along ν and it satisfies a similar
cocycle condition. Since Ω̂R0

∼= Ker(ν)/(Ker(ν))[2] where (Ker(ν))[2] denotes the divided square
of Ker(ν), the isomorphism fR0 gives an integrable connection ∇ : D∨

cris(V )→ D∨
cris(V )⊗R0 Ω̂R0 .

On the other hand, we have the natural integrable connection on D∨
cris(V ) induced by that on

OBcris(R) (cf. § 2.2). In the proof of Theorem 3.29(ii) on essential surjectivity, the isomorphism
(4.6) is obtained by Construction 4.3 using the natural connection on D∨

cris(V ) as in § 4.5. Thus,
∇ given above agrees with the natural connection on D∨

cris(V ).
Define the filtration on FS [p−1] by

FiFS [p−1] := {x ∈ S[p−1]⊗ϕ,SFS | (1⊗ ϕ)(x) ∈ FiliS[p−1]⊗SFS}.
Let Fili(R⊗R0 D

∨
cris(V )) be the quotient filtration given by FiFS [p−1] under the map qπ : S → R,

u 
→ π. By the proof of Theorem 3.29(ii), Lemma 4.31 and a similar argument as in the
proof of [Bre97, Proposition 6.2.2.3], this quotient filtration agrees with the natural filtration
on R⊗R0 D

∨
cris(V ) as in § 2.2. In this way, we can directly obtain the filtered (ϕ,∇)-module

(D∨
cris(T (F)[p−1]),∇,Fili(R⊗R0 D

∨
cris(T (F)[p−1]))) from F .

Corollary 4.36. The étale realization functor gives an equivalence of categories from
Vectϕ[0,r]((OL)Δ) to Repcris

Zp,[0,r]
(GL).

Proof. By Remark 3.18, the category CR∧,ϕ
[0,r]((OL)Δ) is equal to Vectϕ[0,r]((OL)Δ). Thus, the

statement follows from Theorem 3.29. �

Remark 4.37. As a corollary, we can deduce that the construction of Brinon and Trihan in [BT08]
is independent of the choice of a uniformizer and the Kummer tower.

Appendix A. Crystalline local systems

Let X be a smooth p-adic formal scheme over OK and let X denote its adic generic fiber. In
this appendix, we define the notion of crystalline local systems on X, which is used in § 3.6. The
definition of crystalline local systems goes back to the work [Fal88, V f)] of Faltings. Tan and
Tong [TT19] also defined crystalline local systems in the unramified case OK = W and prove
that their definition agrees with the one given by Faltings. Since we also work on the ramified
case, we give a minimal foundation that generalizes part of the work of Tan and Tong.

For our purpose, we work in two steps: when there exists a smooth p-adic formal scheme X0

over W such that X ∼= X0 ⊗W OK , we define the pro-étale sheaf OBcris on X and use it to define
crystalline local systems. Note that this assumption is satisfied Zariski locally, e.g. by considering
a Zariski open covering consisting of small affines. In the general case, we define crystalline local
systems via gluing.

LetXproét denote the pro-étale site defined in [Sch13, § 3] and [Sch16]. It admits the morphism
of site ν : Xproét → Xét.
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Definition A.1. We introduce sheaves on Xproét.

(i) [Sch13, Definitions 4.1 and 5.10] Set

O+
X := ν−1O+

Xét
, Ô+

X := lim←−O
+
X/p

n, ÔX := Ô+
X [p−1], and Ô+

X� := lim←−
Φ: x→xp

Ô+
X/p.

(ii) [Sch13, Definition 6.1] Set Ainf := W (Ô+
X�) and Binf := Ainf [p−1]. We have ring morphisms

θ : Ainf → Ô+
X and θ : Binf → ÔX .

(iii) [TT19, Definition 2.1] Let A0
cris be the PD-envelope of Ainf with respect to the ideal sheaf

Ker θ, and set Acris := lim←−A0
cris/p

n. Note that the series t := log[ε] converges and is a nonzero-
divisor in Acris|XK

. See [TT19, (2A.6), Corollary 2.24].

Now assume that X admits a W -model, namely, there exists a smooth p-adic formal scheme
X0 over W such that X ∼= X0 ⊗W OK . Let X0 denote the adic generic fiber of X0. Hence, we
have a canonical identification X ∼= X0 ×Spa(W [p−1],W ) Spa(K,OK). In [TT19, § 2B], Tan and
Tong defined the structural crystalline period sheaves OAcris,X0 and OBcris,X0 on (X0)proét. We
define structural crystalline sheaves on Xproét in a similar way.

Definition A.2 (Cf. [TT19, § 2B]). Consider the morphisms of sites

w : Xproét → Xét → Xét → (X0)ét.

Define sheaves Our+
X and Our

X on Xproét by

Our+
X := Our/X0+

X := w−1O(X0)ét and Our
X := Our/X0

X := w−1O(X0)ét [p
−1].

Set OAinf := Our+
X ⊗Z Ainf . By extending the scalars, we have an Our+

X -algebra morphism
θX : OAinf → Ô+

X . Define OAcris to be the p-adic completion of the PD-envelope OA0
cris of OAinf

with respect to the ideal sheaf Ker θX . Note that OAcris is an Acris-algebra. Set

OB+
cris := OAcris[p−1] and OBcris := OB+

cris[t
−1].

Here the sheafOB+
cris|XK

[t−1] onXproét/XK
naturally descends to a sheaf onXproét andOB+

cris[t
−1]

denotes the corresponding sheaf. These sheaves are equipped with a decreasing filtration and a
connection that satisfy the Griffiths transversality, which we omit to explain. See the following
remark.

Remark A.3. The definitions of our sheaves OAinf and OA0
cris are slightly different from the

ones given by Tan and Tong: we use ⊗Z instead of ⊗W to define OAinf . However, our OAcris

still coincides with theirs in the unramified case OK = W since k is perfect. Hence, it follows
that OAcris

∼= OAcris,X0 |Xproét
and OBcris

∼= OBcris,X0 |Xproét
. In particular, one can define the

additional structures on OAcris and OBcris directly from [TT19].

Proposition A.4 (Cf. [TT19, Corollary 2.19]). Let U0 = Spf R0 ∈ (X0)ét be affine such that
R0 is connected and small over W . With the notation as in § 2.1, set R = R0 ⊗W OK and U =
Spa(R[p−1], R), and let U ∈ Xproét denote the affinoid perfectoid corresponding to the pro-étale
cover (R[p−1], R) of (R[p−1], R). Then there is a natural isomorphism of R0 ⊗W Bcris(R)-modules

OBcris(R)
∼=−→ OBcris(U)

that is strictly compatible with filtrations. Moreover, for every i > 0 and j ∈ Z, we have

H i(U,OBcris) = H i(U,Filj OBcris) = 0.

Proof. Note that we have natural identifications R = R0 and OBcris(R) = OBcris(R0). Now
the proposition is nothing but [TT19, Corollary 2.19] for U0 and U ∈ (X0)proét. Note that
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[TT19, Corollary 2.19] only claims that the map OBcris(R)→ OBcris(U) is an isomorphism
of R0 ⊗W Bcris(OK)-modules, but its proof together with [TT19, Corollary 2.8] shows that the
map is indeed an isomorphism of R0 ⊗W Bcris(R)-modules. �
Remark A.5. The modules OBcris(R) and OBcris(U) admit an action of GR (or even GR0). The
above isomorphism is compatible with the Galois actions. It is also compatible with the restriction
along any étale morphism Spf R′

0 → Spf R0.

Remark A.6. By the same argument, we also have a description of OAcris(U) similar to [TT19,
Lemma 2.18].

We now explain the crystalline formalism. Let LocZp(X) (respectively, ILocZp(X)) denote the
category of étale Zp-local systems (respectively, étale isogeny Zp-local systems) on X. See [KL15,
§§ 1.4 and 8.4] for the precise formulation. By [Sch13, Proposition 8.2], LocZp(X) is equivalent
to the category of Ẑp-local systems on Xproét. We also note that if X = Spf R is connected and
affine with X = Spa(R[p−1], R), then there are equivalences of categories

LocZp(X) ∼= Reppr
Zp

(GR) and ILocZp(X) ∼= RepQp
(GR).

Definition A.7 (Cf. [TT19, Definition 3.12]). Keep the assumption on the existence of X0. For
an étale isogeny Zp-local system L on X with corresponding Q̂p-local system L̂ on Xproét, we set

Dcris(L) := w∗(OBcris ⊗Q̂p
L̂) and FiliDcris(L) := w∗(FiliOBcris ⊗Q̂p

L̂).

Note that these are sheaves of O(X0)ét [p
−1]-modules.

We say that L is crystalline (with respect to X0) if:

(i) the O(X0)ét [p
−1]-modules Dcris(L) and FiliDcris(L) (i ∈ Z) are all coherent; and

(ii) the adjunction morphism

OBcris ⊗Our
X [p−1] w

−1Dcris(L)→ OBcris ⊗Q̂p
L̂ (A.1)

is an isomorphism of OBcris-modules.

Remark A.8. In the unramified case, Tan and Tong [TT19, Definition 3.10] defined crys-
talline local systems using the notion of association with a convergent filtered F -isocrystal,
and they proved that their definition is equivalent to conditions (i) and (ii) above in [TT19,
Proposition 3.13].

Lemma A.9 (Cf. [TT19, Lemma 3.14]). Assume that X admits a W -model X0 and let L ∈
ILocZp(X). For each small and connected affine formal scheme U0 = Spf R0 that is étale over
X0, set R := R0 ⊗W OK and U := Spa(R[p−1], R), and let VU denote the Qp-representation of
GR corresponding to L|U . Then there exist natural isomorphisms of R0[p−1]-modules

Dcris(L)(U0)
∼=−→ Dcris(VU ) and (FiliDcris(L))(U0)

∼=−→ FiliDcris(VU ) (i ∈ Z).

Moreover, if we write U ∈ Xproét for the affinoid perfectoid attached to (R[p−1], R), then the
evaluation of the adjunction morphism (A.1) at U coincides with

αcris(VU ) : OBcris(R)⊗R0[p−1] Dcris(VU )→ OBcris(R)⊗Qp VU

under the identification Dcris(L)(U0) ∼= Dcris(VU ).

Proof. The proof in [TT19, Lemma 3.14] also works in the current setting if one uses
Proposition A.4 in place of [TT19, Corollary 2.19]. The second assertion follows from the
construction. �

1162

https://doi.org/10.1112/S0010437X24007097 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007097


Completed prismatic F -crystals and crystalline Zp-local systems

Proposition A.10. Assume that X admits a W -model X0 and let L ∈ ILocZp(X). Then L is
crystalline with respect to X0 in the sense of Definition A.7 if and only if there exists an étale cov-
ering {Uλ,0 → X0} of small and connected affine Uλ,0 = Spf Rλ,0 such that the Qp-representation
Vλ of GRλ

corresponding to L|Spa(Rλ[p−1],Rλ) is crystalline in the sense of Definition 2.12, where
Rλ := Rλ,0 ⊗W OK . In particular, the notion of crystalline local systems on X does not depend
on the choice of a W -model of X.

Proof. The necessity follows from Lemma A.9. For the sufficiency, observe that both conditions
(i) and (ii) in Definition A.7 can be verified locally on (X0)ét. Thus, we may assume X0 = Spf Rλ,0
for some λ. To simplify the notation, write R0 for Rλ,0 and V for Vλ.

First we verify condition (i). Since the proof is similar, we only show that Dcris(L) is a
coherent O(X0)ét [p

−1]-module. Take any connected and affine U0 = Spf R′
0 ∈ (X0)ét. We need to

show that the natural morphism

R′
0[p

−1]⊗R0[p−1] Dcris(L)(X0)→ Dcris(L)(U0) (A.2)

is an isomorphism. Set R′ := R′
0 ⊗W OK . Then R′ is connected and small over OK . By

Lemma A.9, we have identifications Dcris(L)(X0)
∼=−→ Dcris(V ) and Dcris(L)(U0)

∼=−→ Dcris(V |GR′ ).
Since V is crystalline, the map (A.2) is an isomorphism by Lemma 2.13. Now that we have
verified condition (i), condition (ii) follows from the proof of [TT19, Corollaries 3.15 and 3.16]
with Remark A.6, Proposition A.4, and Lemma A.9 in place of Lemma 2.18, Corollary 2.19, and
Lemma 3.14 of [TT19]. This completes the proof of the sufficiency. The last assertion follows
from [Bri08, Proposition 8.3.5]. �

With these preparations, we define the notion of crystalline local systems via gluing.

Definition A.11. Let X be a smooth p-adic formal scheme over OK and let X denote its adic
generic fiber. An étale isogeny Zp-local system L on X is said to be crystalline if there exists an
open covering X =

⋃
λ Uλ such that each Uλ admits a W -model and such that for each λ, L|Uλ

is crystalline in the sense of Definition A.7 where Uλ denotes the adic generic fiber of Uλ. By
Proposition A.10, this definition coincides with Definition A.7 when X itself admits a W -model.

An étale Zp-local system L on X is said to be crystalline if the associated isogeny Zp-local
system is crystalline.

Remark A.12. One could define crystalline local systems by introducing a period sheaf OBmax,K

on Xproét that generalizes the period ring Amax(R)[p−1, t−1] appearing in the proof of [Bri08,
Proposition 8.3.5]. This period sheaf is defined without fixing a W -model of X and, thus, one
could bypass the gluing approach.
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MR3379634.
BS21 B. Bhatt and P. Scholze, Prisms and prismatic cohomology, Preprint (2021), arXiv:1905.

08229v3.
BS22 B. Bhatt and P. Scholze, Prisms and prismatic cohomology, Ann. of Math. (2) 196 (2022),

1135–1275.
BS23 B. Bhatt and P. Scholze, Prismatic F -crystals and crystalline Galois representations, Camb.

J. Math. 11 (2023), 507–562; MR4600546.
Bre97 C. Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307
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